
367

ABSTRACT

BACKGROUND/OBJECTIVES: This study aimed to establish a mother and child cohort in the 
Chinese population, and investigate human breastmilk (HBM) composition and its relationship 
with maternal body mass index (BMI) and infant growth during the first 3 mon of life.
SUBJECTS/METHODS: A total of 101 Chinese mother and infant pairs were included in this 
prospective cohort. Alterations in the milk macronutrients of Chinese mothers at 1 mon (T1), 2 
mon (T2), and 3 mon (T3) lactation were analyzed. HBM fatty acid (FA) profiles were measured 
by gas chromatography (GC), and HBM proteomic profiling was achieved by matrix-assisted 
laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS).
RESULTS: During the first 3 mon of lactation (P < 0.05), significant decreases were 
determined in the levels of total energy, fat, protein, and osteopontin (OPN), as well as 
ratios of long-chain saturated FA (including C16:0, C22:0 and C24:0), monounsaturated FA 
(including C16:1), and n-6 poly unsaturated FA (PUFA) (including C20:3n-6 and C20:4n-6, 
and n-6/n-3). Conversely, butyrate, C6:0 and n-3 PUFA C18:3n-3 (α-linolenic acid, ALA) 
were significantly increased during the first 3 mon (P < 0.05). HBM proteomic analyses 
distinguished compositional protein differences over time (P = 0.001). Personalized mother-
infant analyses demonstrated that HBM from high BMI mothers presented increased total 
energy, fat, protein and OPN, and increased content of n-6 PUFA (including C18:3n-6, 
C20:3n-6 and n-6/n-3 ratio) as compared with low BMI mothers (P < 0.05). Furthermore, BMI 
of the mothers positively correlated with the head circumference (HC) of infants as well as 
the specific n-6 PUFA C20:3n-6 over the 3 time points examined. Infant HC was negatively 
associated with C18:0.
CONCLUSION: This study provides additional evidence to the Chinese HBM database, and 
further knowledge of FA function. It also helps to establish future maternal strategies that 
support the healthy growth and development of Chinese infants.
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INTRODUCTION

Early-life postnatal nutrition plays a critical role in optimal infant growth and development, 
and can have long-term health implications [1]. In addition to providing “general” 
macronutrients that satisfy the normal growth and development of the infant, human 
breastmilk (HBM) is a rich source of bioactive compounds that protect against infection, 
support brain, gastrointestinal, and immune development [2], and contribute to long-term 
benefits such as reducing the risk of obesity and type-2 diabetes [3].

Among the macronutrients present in HBM, lipids are important nutritional components 
constituting the major energy source for the consuming infant. Some essential nutrients 
such as “essential fatty acids” (FAs), which cannot be synthesized in the body but are required 
for biological processes, are all provided by the HBM; these include α-linolenic acid (ALA), 
linoleic acid, and long-chain (LC) poly unsaturated fatty acids (PUFA) [4]. LCPUFA, especially 
docosahexaenoic (DHA) and arachidonic acid (AA), play a crucial role in functioning of the 
immune system and neurodevelopment. DHA, AA and other PUFAs rapidly accumulate in the 
brain of infants, and have been implicated in neural, visual cognitive and motor development 
[5]. It is well documented that maternal characteristics such as body mass index (BMI) [6,7] 
influence the FA composition and concentration in HBM. Moreover, reports indicate that 
maternal BMI impacts the HBM macronutrient composition, omega n-6:n-3 ratio, expression of 
inflammatory markers, gut microbiota, and the immunological profile [8-10]. Thus, exploration 
of the general and specific HBM composition during the first months of life is critical for a full 
understanding of the health implications of the infant and later development in life.

HBM composition and intake has been extensively studied [11-16]. However, methodology and 
the timing of HBM collection in existing studies vary dramatically, and some studies on human 
milk FA composition are limited to the first week of life [17,18]. This study therefore aimed 
to establish a mother and child cohort in the Chinese population, and investigate the HBM 
composition during the first 3 mon of life. The study further determined the association of 
maternal BMI and HBM composition, and its relationship with infant growth and development.

SUBJECTS AND METHODS

Study design
Totally, 101 healthy Chinese mother and infant pairs were recruited at the Changsha Maternal 
and Child Health (MCH) Hospital. Mothers were enrolled postpartum, and requested to 
fill out detailed health history questionnaires. Exclusive breast-feeding up to 3 mon of 
age was an inclusion criterion for the study. The exclusion criteria included maternal use 
of tobacco and alcohol, suffering from disorders such as hypertension, pre-eclampsia, 
infections, hypo- or hyperthyroidism and hepatic renal diseases, consumption of a non-
conventional or vegan diet, and premature infants or infants with other neonatal disease. 
Mothers were interviewed by a trained investigator at 3 time points: mon 1 (T1), mon 2 
(T2), and mon 3 (T3). All mothers agreed to provide an HBM sample during the first 3 mon 
of lactating, and corresponding anthropometric (height, weight and BMI) measurements 
of mothers were collected. Growth measurements of infants were also recorded by trained 
investigators, which included the infant's weight, length, BMI and head circumference (HC). 
Characteristics of the participants are summarized in Table 1. The mother-child pairs from 
the cohort were further classified according to the maternal BMI after childbirth [19,20]: Low 
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BMI (18 kg/m2 ≤ BMI ≤ 20 kg/m2, n = 25) and High BMI (BMI ≥ 25 kg/m2, n = 23). The present 
study was conducted at the Changsha MCH Hospital, China. The study protocol was reviewed 
and approved by the Medical Ethics Research Board of Changsha BCH hospital (approval No. 
CSE20160021). The study was performed in accordance with the principles of Declaration of 
Helsinki. All enrolled participants provided written informed consent for the study.

HBM collection
Morning HBM samples were collected over a 3-mon period, using a modified published 
methodology [21]. Subjects fully pumped the milk from one breast into a bottle, and the 
bottle was inverted 6 times; 10 mL of the HBM was transferred into a 15 mL polypropylene 
tube. The sample was subsequently frozen (−20°C) and transported to the hospital on ice 
within 1 week, and subsequently stored at −80°C until processing.

Macronutrient concentration and osteopontin (OPN) analysis
The concentration of total fat, protein, energy, and true protein were measured by an MIRIS 
HMA breast milk automatic analyzer (Miris Holding AB, Uppsala, Sweden) via a medium 
infrared transmission spectroscopy technique. Before analysis, samples were thawed and 
homogenized by an ultrasonic homogenizer. OPN was measured using the Quantikine 
Human OPN ELISA kit (R&D Systems, Minneapolis, MN, USA), validated for quantitative 
determination of OPN in human milk, as per the protocol of Bruun et al. [22].

FA profiles analysis
The FA composition of individual breast milk samples was determined according to the 
method as described by Chisaguano et al. [23]. FA methyl esters (FAMEs) were prepared with 
sodium methylate in methanol (0.5 M) and boron trifluoride methanol solution (15% v/v). 
They were then resolved and quantified by gas chromatography (GC) using an HP-6890 Series 
GC system equipped with flame ionization detector (FID), and a fused-silica capillary column 
(100 m 0.25 mm internal diameter, 0.2 µm thickness) coated with a 100% bis-cyanopropyl 
polysiloxane stationary phase (Supelco, Saunderton, UK). A standard solution of Supelco 
37-component FAME mix (Sigma-Aldrich, St. Louis, MO, USA) was used to identify peaks of 
interest. FAs were then quantified by standard normalization and expressed as a percentage 
of the total FAs (% total FA). Total FAs were determined by adding the corresponding single 
FA to saturated FAs (SFAs), monounsaturated FAs (MUFAs) and PUFAs, n-6 PUFAs and n-3 
PUFAs, and the n-6 to n-3 ratio were subsequently determined for analyses.
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Table 1. Characteristics of subjects included in the Xiang maternal and child cohort
Characteristics T1 (n = 101) T2 (n = 101) T3 (n = 101)
Maternal characteristics

Maternal age (yrs) 29.45 ± 3.22 29.45 ± 3.22 29.45 ± 3.22
Maternal weight (kg) 58.7 ± 6.8 58.1 ± 7.1 58.1 ± 7.4
Maternal BMI (kg/m2) 22.79 ± 2.57 22.53 ± 2.70 22.56 ± 2.80
C-section 30 (29.7) 30 (29.7) 30 (29.7)

Infant characteristics
Male 49 (48.5) 49 (48.5) 49 (48.5)
Head circumference (cm) 36.95 ± 1.08 38.82 ± 1.23* 40.19 ± 1.22*
Body weight (kg) 4.43 ± 0.52 5.73 ± 0.67* 6.66 ± 0.83*
Body length (cm) 55.6 ± 1.8 59.5 ± 2.0* 62.6 ± 1.9*
Weight/length score (kg/m) 8.0 ± 0.7 9.6 ± 0.9* 10.6 ± 1.2*
BMI (kg/m2) 14.37 ± 1.09 16.20 ± 1.43* 16.99 ± 1.73*

Values are presented as number (%) or mean ± SD.
BMI, body mass index; T1, 1 mon; T2, 2 mon; T3, 3 mon.
*Significantly from baseline, P < 0.05 (analysis of variance and the Bonferroni post hoc test).



Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 
spectrometry (MS) measurements
The milk samples were defrosted at room temperate (20–24°C) and centrifuged at 13,000 g 
for 10 min at 4°C. The fat fraction was carefully removed, and the supernatant collected. For 
MALDI-TOF-MS polypeptide profiling measurements, each defatted breast milk sample was 
mixed with a solution of 0.1% v/v trifluoroacetic acid (TFA) in a 1:1 ratio; 2 µL of this primary 
diluent was then added to 8 µL sinapinic acid (10 mg/mL) (Intelligene Biosystems, Qingdao, 
China), vortexed, and 2.5 µL of this mixture was spotted onto a stainless steel MALDI target 
plate (6 × 16 sample array) and subsequently dried at room temperature. Protein calibration 
reagent (Intelligene Biosystems) was prepared as per the manufacturer's instruction, 
and used as a quality control. MALDI-TOF-MS analysis was performed by the QuanTOF 
(Intelligene Biosystems), a newly developed MALDI-TOF MS system [24]. ReadMzXmlData 
obtained by QuanTOF were further analyzed using the MALDIquant, which includes spectral 
mass adjustment, optimal smoothing, spectral baseline subtraction, normalization, and 
internal peak alignment [25]. Pretreated data were then subjected to visualization and 
statistical analysis.

Statistical analysis
Statistical analyses were performed using the SPSS (v20.0; IBM Corp., Armonk, NY, USA) 
software. Anthropometric and growth characteristics of mother and infants, and HBM 
FA evolution over time, were evaluated using repeated-measure analysis. Bonferroni 
correction was applied for post hoc analyses, and Kruskal-Wallis test was used for the test 
indices that had not passed the Shapiro–Wilk normality test. Nonparametric independent 
sample Wilcoxon signed-rank test was performed to compare the HBM FA composition 
between maternal weight groups. Correlation analyses between maternal BMI and infant 
anthropometric measurements were achieved using a Pearson correlation coefficient. 
Correlation analysis between HBM FAs with maternal BMI or infant growth indicators were 
performed by applying the Spearman correlation analysis. The principle component analysis 
of proteomic data was carried out by an external MATLAB software tool. Data are expressed 
as mean ± SD. A value of P < 0.05 (2-tailed) is considered as statistically significant.

RESULTS

Characteristics of mother and infant pairs
Characteristics of subjects included in the Xiang maternal and children cohort are outlined 
in Table 1. No significant change was observed in the mother's BMI during the first 3 mon of 
lactation (P > 0.05). As expected, infant growth measurements such as body weight, length, 
BMI and HC were significantly increased during the first 3 mon of life.

Compositional changes in human breast milk over lactation
Shifts in milk nutrient concentrations are illustrated in Fig. 1. The concentrations of total 
energy, fat, fatty acid and protein were significantly decreased during the first 3 mon of 
lactation. Moreover, a statistically significant reduction in OPN was observed over time. 
However, no significant changes were observed in the carbohydrate concentration. PCA 
analysis was performed on the MALDI-TOF polypeptide mass spectral data at T1, T2, and T3. 
As highlighted in Fig. 2, significant overlapping area was observed between T1, T2, and T3. 
However, the T1 plots were clearly distinguished from T2 and T3 (P < 0.05), indicating that 
polypeptide profiling of T1 was significantly different from T2 and T3.
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The FA evolution from T1 to T3 is highlighted in Table 2. Medium and long-chain SFA 
(including C13:0, C16:0, C22:0 and C24:0), MUFA (including C16:1), and n-6 PUFA (including 
C20:3n-6 and C20:4n-6 [AA]), and the n-6/n-3 ratio were observed to significantly decrease 
over time (P < 0.05). Conversely, short-chain fatty acids such as butyrate and C6:0, and n-3 
PUFA (including C18:3n-3 [ALA]) were found to increase over time (P < 0.05). No significant 
changes were recorded in the n-3 PUFA levels, which include C20:5n-3 (eicosapentaenoic 
acid, EPA) and C22:6n-3 (DHA).
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Fig. 1. Shifts in human milk nutrient concentrations during the first 3 mon of lactation: total energy (A), fat (B), total fatty acid (C), carbohydrate (D), total 
protein (E), and OPN (F). 
All values are represented as mean ± SD (n = 101). 
OPN, osteopontin; T1, 1 mon; T2, 2 mon; T3, 3 mon. 
*P < 0.05 (analysis of variance and the Bonferroni post hoc test).
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Fig. 2. (A, B) Principal coordinate analysis for the human milk protein profiling at T1 (blue dots), T2 (red dots) and T3 (yellow dots). The polypeptide profiling of 
T1 significantly differs from T2 and T3 (n = 101). 
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*P < 0.05.



Personalized analysis of high-BMI mothers versus low-BMI mothers
The growth measurements recorded at T1, T2, and T3 between infants born to normal weight 
and overweight mothers are illustrated in Fig. 3. No statistically significant differences were 
determined in the mean weight, length and weight/length score of infants in both groups at T1, 
T2, or T3. However, the HC of infants born to overweight mothers was significantly higher than 
values obtained for infants born to normal weight mothers at T1, T2, and T3 (P < 0.05).
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Table 2. Dynamics of the fatty acids in breast-milk during the first 3 mon of life
FA (% by total fatty acid) T1 (n = 101) T2 (n = 101) T3 (n = 101)
SFA profiles

4:0 0.8 ± 0.3 0.9 ± 0.4 1.1 ± 0.7†

6:0 0.068 ± 0.04 0.083 ± 0.04 0.094 ± 0.04†

8:0 0.2 ± 0.1 0.2 ± 0.04 0.2 ± 0.05
10:0 1.3 ± 0.4 1.3 ± 0.3 1.3 ± 0.3
12:0 4.2 ± 1.6 4.2 ± 1.4 4.6 ± 1.5
13:0 0.15 ± 0.4 0.06 ± 0.2 0.04 ± 0.1†

14:0 3.2 ± 1.4 3.3 ± 1.2 3.4 ± 1.3
15:0 0.1 ± 0.04 0.1 ± 0.04 0.1 ± 0.04
16:0 18.3 ± 3.2 16.2 ± 4.6 14.5 ± 5.0†

17:0 0.2 ± 0.05 0.2 ± 0.04 0.2 ± 0.05
18:0 6.1 ± 1.3 6.0 ± 1.4 6.2 ± 1.4
20:0 0.18 ± 0.05 0.21 ± 0.05 0.20 ± 0.05
22:0 0.11 ± 0.16 0.09 ± 0.13 0.08 ± 0.16†

24:0 0.1 ± 0.1 0.1 ± 0.5 0.04 ± 0.1†

SFA 35.1 ± 5.3 33.3 ± 5.5 32.4 ± 6.0†

MUFA profiles
14:1 0.1 ± 0.04 0.1 ± 0.04 0.1 ± 0.04
15:1 0.03 ± 0.03 0.04 ± 0.05 0.04 ± 0.03
16:1 1.7 ± 0.5 1.5 ± 0.5 1.4 ± 0.6†

17:1 0.1 ± 0.04 0.1 ± 0.04 0.1 ± 0.04
18:1 38.6 ± 5.2 39.3 ± 5.4 39.4 ± 6.5
20:1 0.6 ± 0.2 0.7 ± 0.3 0.7 ± 0.2
22:1n9 0.1 ± 0.1 0.2 ± 0.3 0.2 ± 0.3
24:1n9 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1
MUFA 40.8 ± 7.0 42.1 ± 5.8 42.1 ± 6.7

PUFA profiles
n-6 profiles

18:2n-6 20.1 ± 4.6 20 ± 4.4 20.6 ± 3.8
18:3n-6 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
20:3n-6 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1†

20:4n-6 0.53 ± 0.1 0.46 ± 0.1 0.46 ± 0.1†

22:2n-6 0.025 ± 0.06 0.021 ± 0.06 0.017 ± 0.07
PUFA n-6 21.0 ± 5.1 21.1 ± 4.3 21.6 ± 3.9

n-3 profiles
18:3n-3 2.0 ± 1.5 2.2 ± 1.0 2.3 ± 1.0†

20:3n-3 0.066 ± 0.07 0.056 ± 0.06 0.047 ± 0.05
20:5n-3 0.04 ± 0.1 0.03 ± 0.1 0.04 ± 0.1
22:6n-3 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1
PUFA n-3 2.3 ± 1.0 2.6 ± 1.0 2.7 ± 1.0*
n-6/n-3 9.9 ± 4.6 9.1 ± 4.8 9.1 ± 3.4*
PUFA 23.7 ± 5.0 23.8 ± 4.7 24.2 ± 4.1

Trans-FA profiles
18:1t 0.16 ± 0.09 0.17 ± 0.1 0.2 ± 0.15†

18:2t 0.04 ± 0.05 0.03 ± 0.04 0.5 ± 4.2
Trans-FA 0.2 ± 0.1 0.2 ± 0.1 0.7 ± 4.2

Values are presented as mean ± SD.
FA, fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, poly unsaturated fatty acids; 
T1, 1 mon; T2, 2 mon; T3, 3 mon.
*Statistically significant differences among the 3 groups, P < 0.05 (Kruskal-Wallis test); †Statistically significant 
differences among the 3 groups, P < 0.01 (Kruskal-Wallis test).



As highlighted in Fig. 4, the HBM composition of macronutrients, including total energy, 
total fat, total fatty acid, carbohydrate and total protein, was determined in low BMI and 
high BMI mothers during the first 3 mon of lactation. Total energy, total fat, fatty acid and 
total protein were significantly higher in the high BMI group at T1 and/or T2, as compared 
to low BMI group. No significant difference was observed in the carbohydrate concentration 
between groups at any time point. Interestingly, at T3, OPN concentrations were significantly 
higher in the high BMI group as compared to the low BMI group.
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Differences in HBM FAs between weight groups are presented in Table 3. Compared to the 
low BMI group, the high BMI group had higher levels of C18:3n-6, C20:3n-6, and total PUFA 
at T1, higher levels of C20:3n-6 at T2, and higher levels of C20:3n-6 and n-6/n-3 ratio at T3. 
Conversely, the levels of butyrate at T1, and C18:1 and total MUFA at T2 were significantly 
lower in the high BMI group than the low BMI group.
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Table 3. Effect of Maternal BMI on the fatty acid composition
FA (% by total fatty acid) T1 T2 T3

High BMI (n = 23) Low BMI (n = 25) High BMI (n = 23) Low BMI (n = 25) High BMI (n = 23) Low BMI (n = 25)
SFA profiles

4:0 0.8 ± 0.2 1.0 ± 0.4* 1.0 ± 0.5 1.0 ± 0.5 1.1 ± 0.5 1.1 ± 0.6
6:0 0.1 ± 0.02 0.1 ± 0.1 0.1 ± 0.03 0.1 ± 0.1 0.1 ± 0.03 0.1 ± 0.04
8:0 0.2 ± 0.1 0.2 ± 0.05 0.2 ± 0.05 0.2 ± 0.04 0.2 ± 0.1 0.2 ± 0.05
10:0 1.3 ± 0.5 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.4 1.3 ± 0.4
12:0 4.3 ± 1.6 4.3 ± 1.7 4.5 ± 1.1 4.2 ± 1.9 5.0 ± 1.6 4.6 ± 1.7
13:0 0.2 ± 0.4 0.2 ± 0.5 0.02 ± 0.05 0.1 ± 0.2 0.03 ± 0.05 0.04 ± 0.1
14:0 3.3 ± 1.4 3.2 ± 1.5 3.6 ± 1.1 3.2 ± 1.7 4.1 ± 1.6 3.5 ± 1.6
15:0 0.1 ± 0.03 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.02 0.1 ± 0.05 0.1 ± 0.04
16:0 18.5 ± 4.6 17.3 ± 2.4 17.1 ± 4.0 15.6 ± 3.1 14.7 ± 4.2 14.9 ± 4.2
17:0 0.2 ± 0.04 0.2 ± 0.04 0.2 ± 0.04 0.2 ± 0.03 0.2 ± 0.1 0.2 ± 0.04
18:0 6.2 ± 1.8 5.7 ± 0.7 5.9 ± 1.0 5.7 ± 1.1 6.2 ± 1.0 6.0 ± 1.1
20:0 0.2 ± 0.04 0.2 ± 0.04 0.2 ± 0.04 0.2 ± 0.05 0.2 ± 0.1 0.2 ± 0.04
22:0 0.1 ± 0.1 0.1 ± 0.2 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.2 0.04 ± 0.1
24:0 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.05 ± 0.1 0.04 ± 0.1 0.03 ± 0.05
SFA 35.5 ± 6.7 33.8 ± 4.3 34.4 ± 4.4 32.1 ± 5.7 33.5 ± 4.6 32.5 ± 5.5

MUFA profiles
14:1 0.1 ± 0.04 0.04 ± 0.05 0.1 ± 0.05 0.04 ± 0.03 0.1 ± 0.05 0.05 ± 0.04
15:1 0.04 ± 0.03 0.03 ± 0.02 0.03 ± 0.04 0.04 ± 0.03 0.05 ± 0.03 0.04 ± 0.03
16:1 1.7 ± 0.6 1.6 ± 0.4 1.4 ± 0.5 1.4 ± 0.5 1.3 ± 0.6 1.4 ± 0.5
17:1 0.1 ± 0.04 0.1 ± 0.04 0.1 ± 0.03 0.1 ± 0.03 0.1 ± 0.03 0.1 ± 0.03
18:1 38.6 ± 5.9 39.1 ± 5.0 37.9 ± 5.4 40.8 ± 5.7* 36.2 ± 9.2 39.5 ± 5.0
20:1 0.6 ± 0.1 0.6 ± 0.1 0.7 ± 0.4 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2
22:1n9 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.4 0.2 ± 0.3 0.1 ± 0.2 0.2 ± 0.2
24:1n9 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1
MUFA 36.3 ± 12.9 42.0 ± 4.8 40.6 ± 5.6 43.3 ± 5.7* 38.6 ± 9.2 42.2 ± 5.1

PUFA profiles
n-6 profiles

18:2n-6 21.8 ± 6.6 20.3 ± 3.9 21.0 ± 4.4 20.2 ± 3.6 21.7 ± 4.3 20.9 ± 3.8
18:3n-6 0.2 ± 0.1† 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.05 0.1 ± 0.1
20:3n-6 0.5 ± 0.1† 0.4 ± 0.1 0.4 ± 0.1* 0.3 ± 0.1 0.4 ± 0.1† 0.3 ± 0.05
20:4n-6 0.5 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.1
22:2n-6 0.04 ± 0.1 0.01 ± 0.03 0.01 ± 0.03 0.01 ± 0.04 0.01 ± 0.02 0.0 ± 0.02
PUFA n-6 23.0 ± 6.6 21.4 ± 3.9 22.0 ± 4.5 21.1 ± 3.6 22.0 ± 4.5 21.1 ± 3.6

n-3 profiles
18:3n-3 1.8 ± 0.8 1.9 ± 0.7 2.7 ± 3.0 2.4 ± 0.7 2.0 ± 0.7 2.4 ± 1.0
20:3n-3 0.1 ± 0.1 0.04 ± 0.1 0.1 ± 0.1 0.03 ± 0.05 0.04 ± 0.05 0.04 ± 0.1
20:5n-3 0.03 ± 0.04 0.04 ± 0.1 0.04 ± 0.1 0.01 ± 0.03 0.03 ± 0.1 0.04 ± 0.1
22:6n-3 0.3 ± 0.1 0.4 ± 0.2 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1
PUFA n-3 2.2 ± 0.8 2.4 ± 0.7 3.1 ± 3.1 2.7 ± 0.7 2.4 ± 0.7 2.8 ± 1.1
n-6/n-3 11.9 ± 5.7 9.5 ± 2.9 10.8 ± 7.3 8.4 ± 2.9 10.0 ± 2.8* 8.5 ± 3.9
PUFA 25.3 ± 6.9* 23.8 ± 4.1 25.1 ± 5.2 23.8 ± 3.5 25.1 ± 4.7 24.6 ± 3.8

Trans-FA profiles
18:1t 0.1 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.2 0.2 ± 0.1
18:2t 0.03 ± 0.04 0.03 ± 0.05 0.02 ± 0.03 0.03 ± 0.03 2.0 ± 8.7 0.04 ± 0.04
Trans-FA 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.2 2.2 ± 8.7 0.2 ± 0.2

Values are presented as mean ± SD.
BMI, body mass index; FA, fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, poly unsaturated fatty acids; T1, 1 mon; T2, 2 mon; T3, 3 mon.
*Statistically significant differences between the 2 groups, P < 0.05 (Wilcoxon signed-rank test); †Statistically significant differences between the 2 groups, P < 0.01 
(Wilcoxon signed-rank test).



Association of mother's BMI, breast milk FAs, and infant HC growth
As shown in Fig. 5, after adjusting for potential confounders (maternal age, delivery pattern and 
sex of child), maternal BMI was consistently and positively associated with infants' HC at each 
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Fig. 5. Correlation between maternal BMI and infant HC at T1, T2, and T3, examined by Pearson correlation analysis after adjustment for potential confounders: 
maternal age, delivery pattern, and sex of child. The correlation between HBM FAs with maternal BMI or infant HC at T1, T2, and T3, examined by Spearman's rank 
analysis after adjustment for potential confounders: maternal age, delivery pattern, and sex of child (n = 101). 
(A) Correlation between maternal BMI and infant HC at T1, T2, and T3. (B) Correlation between maternal BMI  and C20:3n-6, C18:3n-6 and butyrate at T1. (C) Correlation 
between maternal BMI  and C20:3n-6, C18:3n-6, C18:1 and total MUFA at T2. (D) Correlation between maternal BMI  and C20:3n-6, n-6/n-3, n-3 PUFA, and C18:3n-3 at 
T3. (E) Correlation between infant HC and C18:0 at T2 and T3, and inversely correlated with C20:3n-3,C20:5n-3 at T3. 
BMI, body mass index; HC, head circumference; HBM, human breast milk; FA, fatty acids; MUFA, monounsaturated fatty acid; PUFA, poly unsaturated fatty 
acids; T1, 1 mon; T2, 2 mon; T3, 3 mon.



visit over the first 3 mon of life (T1: r = 0.40, P < 0.001; T2: r = 0.41, P < 0.001; T3: r = 0.28, P = 
0.01). At T1, maternal BMI positively correlated with the HBM: C20:3n-6 (r = 0.45, P < 0.001) 
and C18:3n-6 (r = 0.39, P = 0.002), and was inversely associated with butyrate (r = −0.31, P = 
0.006). At T2, maternal BMI positively correlated with the HBM: C20:3n-6 (r = 0.45, P < 0.001) 
and C18:3n-6 (r = 0.40, P < 0.001), and was inversely associated with C18:1 (r = −0.43, P < 0.001) 
and total MUFA (r = −0.46, P < 0.001). At T3, maternal BMI positively correlated with the HBM: 
C20:3n-6 (r = 0.44, P < 0.001) and n-6/n-3 (r = 0.43, P < 0.001), had a trend toward significance 
with HBM: C18:3n-6 (r = 0.21, P = 0.08), and was inversely associated with C18:3n-3 (r = −0.42, 
P < 0.001) and n-3 PUFA (r = −0.41, P < 0.001). As presented in Fig. 5, correlation analysis of the 
HC of infants and HBM FAs indicate that HC is negatively correlated with C18:0 at T2 and T3 
(T2: r = −0.44, P < 0.001; T3: r = −0.38, P = 0.001), and inversely correlated with HBM: C20:3n-3 
(r = −0.32, P = 0.004) and C20:5n-3 (r = −0.31, P = 0.005).

DISCUSSION

The present study provides prospective data on the HBM of Chinese mothers during the 
first 3 mon of the infant's life. Few studies have evaluated the influence of maternal BMI on 
HBM composition and infant growth, especially HC. Overall, our data on the changes in 
HBM total energy, total fat, total fatty acid, carbohydrate, and total protein are consistent 
with previously reported data [26-28]. However, it should be noted that a common limitation 
in such data sets is the significant variability in HBM composition between individuals and 
during stages of lactation.

To determine changes in the protein composition, we applied MALDI-TOF and demonstrated 
that proteomic polypeptide profiles at T1 are significantly different as compared to T2 and 
T3. This is consistent with a recent meta-analysis, which indicates that the protein contents 
and composition vary with different stages of lactation [29]. It is well recognized that OPN is 
a bioactive protein present in high concentrations in HBM [30], and plays a significant role in 
the maturation of the infant immune system [31]. Decrease in OPN concentrations over time 
were significant, and could be associated with the biological functions during the first 3 mon 
of life. Our previous study has demonstrated that levels of OPN in breast milk acquired from 
Chinese mothers is significantly higher than values obtained in Korean, Japanese and Danish 
mothers [22]. However, the precise reasons are unknown, and warrant further investigation.

As expected, FA profiles have a high level of individual variability; however, our results 
correlate well with previous studies [17,18,32]. Interestingly, our data highlights that the 
concentration of SFAs and MUFAs are lower, when compared with European and African 
studies [32,33]. It is feasible that this could be due to the higher intake of olive oil in these 
countries [18]. Our study also highlights that SFAs, including C13:0, C16:0, C22:0 and C24:0, 
gradually reduce over time. SFA, especially medium-chain (MC) SFA, are preferentially 
absorbed and metabolized by neonates [34]. MCSFAs are beneficial for the absorption of 
fat and Ca, and they represent a rich source of energy [35]. In addition, our study found that 
MUFA and PUFA account for 40.8–42.1% and 23.7–24.2% of the total FA, respectively, which 
is significantly higher than values recorded 10 years ago by Wan et al. [36] (MUFA: 32.59%; 
PUFA: 19.97%) in a study of HBM in north China. These results could be attributed to a shift 
in the Chinese diet [37] and requires further investigation. We also observed a decrease in 
the n-6/n-3 PUFA ratio, which was attributed to the decrease in n-6 PUFA (such as C20:3n-6 
and C20:4n-6) and increase in n-3 PUFA (such as C18:3n-3 [ALA]). PUFAs play an important 
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role in infant growth and development, particularly neurodevelopment [38,39] and visual 
acuity in early life. PUFAs such as LA and ALA are termed essential nutrients, as they cannot 
be synthesized de novo from other lipids [40,41]. Thus, neonatal PUFA intake completely 
relies on the supply from an external source. LCPUFA, such as AA and DHA, can be provided 
to the infant via breast-feeding, or synthesized in the neonatal liver by chain elongation 
and desaturation of their corresponding precursors (LA and ALA, respectively). The rate of 
conversion in most neonates is low [42], and it is therefore necessary to supply adequate AA 
and DHA through diet, and preferably through the mother's HBM [43].

Studies on the effect of maternal factors on human HBM content are limited [11,22,44,45]. In 
the current study, we explored the impact of maternal BMI on HBM composition, with a key 
focus on changes in FA concentrations over time. Personalized analysis indicated that most 
macronutrients in HBM were significantly higher in the high BMI maternal group. n-6 PUFA, 
such as C20:3n-6, C18:3n-6 and n-6/n-3 PUFA ratio, were all significantly higher in the high 
BMI group as compared to the low BMI group, which is consistent with other studies [45]. 
Higher n-6/n-3 PUFA ratio suggests a relatively pro-inflammatory profile in the overweight 
group compared to the normal weight group [45]. Conversely, butyrate, which is reported as 
the anti-inflammatory factor [46], was higher in the normal weight HBM than overweight HBM 
group. Interestingly, a recent study reported that human milk butyrate is negatively associated 
with changes in infant weight [47]. An important factor that could be attributed to differences 
in HBM is maternal diet [48]. Overweight mothers probably have an increased dietary intake of 
n-6 FAs and poor intake of n-3 PUFAs. Our association analysis indicates that BMI is positively 
associated with n-6 PUFA (such as C20:3n-6 and C18:3n-6), and negatively associated with n-3 
PUFA, ALA and butyrate. In accordance with these results, some studies have reported that a 
high dietary intake of n-6 FAs and a low intake of n-3 FAs is related to high weight status [49]. 
It should be noted that not all kinds of n-6 PUFA are elevated in the breastmilk of overweight 
mothers. For instance, no differences were obtained in the levels of C18:2n-6, C18:3n-6 and 
C22:2n-6 between the 2 BMI groups. Thus, future studies are required to evaluate the impact of 
these early nutritional differences on the future development of infants. In our study, we did not 
find any difference in EPA and DHA between the 2 BMI groups, which is inconsistent with other 
studies [45]. This could be due to the variability of DHA concentration in human milk, as this 
HBM component is significantly sensitive to maternal diet [44].

A significant finding in this study is that the HC of infants associated with the overweight 
maternal group was higher than values obtained in the normal weight group. This result was 
supported by our correlation analysis, which highlighted that the HC of infants is positively 
associated with the BMI of the mother. Evidence suggests that infants born to obese mothers 
have a higher than average weight and length at birth [50]. To our knowledge, this is the 
first study to address the relationship of infant HC with the concurrent BMI of mothers. 
Furthermore, our finding shows that n-3 PUFA in HBM, including EPA and C20:3n-3, is 
negatively associated with infant HC at 3 mon. However, it should be noted that there is no 
correlation between changes of the HC with maternal BMI or breastmilk composition. Future 
studies are warranted to get more conclusive outcomes.

It is important to note limitations of the current study. Our study focused on the analysis of 
mature breastmilk from 1 to 3 mon of lactation. Due to challenges with HBM collection, we 
lack data on colostrum and transition milk. Furthermore, this is not a long-term follow up 
study and thus, further investigation is required to evaluate the effect of maternal BMI on 
the health outcomes for infants. Finally, the mothers enrolled in this study did not consume 
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controlled diets, nor did they record their dietary history and the infant intake of breastmilk, 
which are limitations when interpreting results of the effect of maternal BMI on breastmilk 
composition and infant growth. In general, a large sample size and long-term cohort studies 
are needed to give a better understanding of the role of maternal BMI on HBM composition, 
and the subsequent effect on the health outcomes of infants.

In conclusion, our results highlight that the HBM macronutrients, SFA, MUFA, n-6 PUFA 
and n-6/n-3 ratio decrease during the first 3 mon of lactation. Polypeptide profiling of T1 was 
significantly different from T2 and T3. The HBM of high-BMI mothers presented increased 
total fat, total protein and total energy, n-6 PUFA and n-6/n-3 ratio. However, the content of 
MUFA, mainly C18:1, was significantly higher in the milk obtained from low-BMI mothers. 
The BMI of mothers positively correlates with the HC of infants, as well as the n-6 PUFA 
C20:3n-6 and C18:3n-6, over the 3 time points examined. However, the HC of infants was 
negatively associated with C18:0 and EPA. Our data on nutrient composition in a healthy 
population can contribute to evaluating appropriate intake ranges for Chinese infants, and 
support the promotion of healthy BMI in lactating women.
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