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ABSTRACT Taxonomy assignment of freshwater microbial communities is limited
by the minimally curated phylogenies used for large taxonomy databases. Here we
introduce TaxAss, a taxonomy assignment workflow that classifies 16S rRNA gene
amplicon data using two taxonomy reference databases: a large comprehensive da-
tabase and a small ecosystem-specific database rigorously curated by scientists
within a field. We applied TaxAss to five different freshwater data sets using the
comprehensive SILVA database and the freshwater-specific FreshTrain database. Tax-
Ass increased the percentage of the data set classified compared to using only
SILVA, especially at fine-resolution family to species taxon levels, while across the
freshwater test data sets classifications increased by as much as 11 to 40% of total
reads. A similar increase in classifications was not observed in a control mouse gut
data set, which was not expected to contain freshwater bacteria. TaxAss also main-
tained taxonomic richness compared to using only the FreshTrain across all taxon
levels from phylum to species. Without TaxAss, most organisms not represented in
the FreshTrain were unclassified, but at fine taxon levels, incorrect classifications be-
came significant. We validated TaxAss using simulated amplicon data derived from
full-length clone libraries and found that 96 to 99% of test sequences were correctly
classified at fine resolution. TaxAss splits a data set’s sequences into two groups
based on their percent identity to reference sequences in the ecosystem-specific da-
tabase. Sequences with high similarity to sequences in the ecosystem-specific data-
base are classified using that database, and the others are classified using the com-
prehensive database. TaxAss is free and open source and is available at https://www
.github.com/McMahonLab/TaxAss.

IMPORTANCE Microbial communities drive ecosystem processes, but microbial com-
munity composition analyses using 16S rRNA gene amplicon data sets are limited by
the lack of fine-resolution taxonomy classifications. Coarse taxonomic groupings at
the phylum, class, and order levels lump ecologically distinct organisms together. To
avoid this, many researchers define operational taxonomic units (OTUs) based on
clustered sequences, sequence variants, or unique sequences. These fine-resolution
groupings are more ecologically relevant, but OTU definitions are data set depen-
dent and cannot be compared between data sets. Microbial ecologists studying
freshwater have curated a small, ecosystem-specific taxonomy database to provide
consistent and up-to-date terminology. We created TaxAss, a workflow that lever-
ages this database to assign taxonomy. We found that TaxAss improves fine-
resolution taxonomic classifications (family, genus, and species). Fine taxonomic
groupings are more ecologically relevant, so they provide an alternative to OTU-
based analyses that is consistent and comparable between data sets.
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Microbial communities form the foundations of all ecosystems, yet interpretation of
community data is limited by the difficulty of comparison across data sets. With

the rapid development of massively parallel sequencing technology, scientists are
increasingly able to fingerprint microbial communities using amplicon sequencing of
marker genes such as the 16S rRNA gene. The resulting sequences are typically grouped
into operational taxonomic units (OTUs) defined by sequence identity or sequence
variants. Comparison between amplicon data sets is difficult because OTUs are specific
to each analysis. For clarity, this article refers to 16S rRNA gene amplicon sequencing
data sets as “data sets” and defines OTUs as a data set’s sequence unit of measure,
irrespective of whether those units represent clustered sequences, sequence variants,
or unique sequences.

Taxonomy allows cross-study analyses. OTUs are widely used to represent eco-

logically coherent entities (1); however, they represent study-specific phylotypes that
cannot be compared between data sets. Many common OTU definitions, including
sequence identity-based clustering (2), minimum entropy decomposition (3), and
distribution-based clustering (4), are specific to each analysis, resulting in arbitrary OTU
names. OTU definitions based on exact sequences, such as DADA2’s denoising ap-
proach (5) or defining OTUs as unique sequences, are still specific to the amplicon
region and sequencing platform used in each study. For these reasons, direct compar-
ison of OTUs between multiple data sets is most often impossible.

Taxonomic naming systems allow comparisons between data sets by creating
consistent terminology and consistent phylogeny-determined boundaries between
organisms. However, taxonomic naming is most useful when sequences can be clas-
sified to a fine level (e.g., family, genus, or species). Many abundant taxa have poorly
resolved fine-scale phylogenetic structures in reference taxonomy databases (here
“databases”), resulting in only coarse classifications for large proportions of amplicon
data sets (e.g., phylum, class, or order). Coarse taxonomic groupings often include
diverse organisms with different ecological roles, so analyses at coarse taxon levels miss
underlying ecological dynamics (6). Fine-resolution taxonomic names are required to
bridge the gap between ecologically relevant OTU-based analyses and consistent,
comparable taxonomy-based analyses.

Ecosystem-specific taxonomy databases. Microbial ecologists from diverse sub-

fields have created fine-resolution reference taxonomies by curating databases specific
to their ecosystems. These ecosystem-specific databases are small compared to the
large comprehensive databases compiled by Greengenes (7), SILVA (8), and the Ribo-
somal Database Project (9), but they are generally well curated with more finely
resolved phylogenies for ecosystem-specific lineages. Examples of ecosystems with
curated databases include the human oral cavity (10), the cow rumen (11), the honey
bee gut (12), the cockroach and termite gut (13), activated sludge (14), and freshwater
lakes (15). Ecosystem-specific databases are created to establish consistent vocabulary
for common uncultured bacteria, create monophyletic reference structures, incorporate
new reference information, and understand what the “typical” organisms are in a given
ecosystem. Additionally, ecosystem-specific databases can be used to assign taxonomy
to a finer resolution than can be achieved with a large comprehensive database.

The FreshTrain. This paper demonstrates TaxAss’s efficacy using a variety of freshwater

amplicon data sets, the comprehensive SILVA database (8), and the ecosystem-specific
Freshwater Training Set (FreshTrain) (15). The FreshTrain database was created in 2012 and
was originally curated alongside Greengenes. FreshTrain versions match Greengenes and
SILVA at the phylum, class, and order levels, but at finer taxonomic levels, the FreshTrain is
curated based on additional information, such as the geographical distribution of se-
quences. These finer levels are referred to as lineage, clade, and tribe and approximate the
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Linnaean family, genus, and species (15). The FreshTrain is available online at https://
www.github.com/McMahonLab/TaxAss.

Taxonomy assignment algorithm. Classification algorithms assign taxonomic
names to OTUs based on their similarity to reference sequences in a database. The most
commonly used classification algorithm was developed by Wang et al. (16) for the
Ribosomal Database Project and is implemented in both mothur (17) and QIIME (18).
This naive Bayesian classifier (here the “Wang classifier”) assigns taxonomy to OTUs
based on 8-mer signatures and reports a bootstrap confidence estimate for each assign-
ment (16). This bootstrap confidence value is based on the repeatability of the OTU’s
assignment with subsampled 8-mers, not on an absolute similarity measure. In a large
database, an OTU dissimilar to any reference sequences will not be classified repeatably as
any one taxon, resulting in a low bootstrap confidence. However, in a small database, an
OTU dissimilar to any reference sequences nevertheless can be classified repeatably be-
cause there are fewer references from which to choose. We refer to this pitfall as “misclas-
sification” when OTUs are classified as unrelated organisms and “overclassification” when
OTUs are classified to a finer taxon level than warranted.

Introducing TaxAss. We aimed to obtain fine-level taxonomy classifications in
freshwater data sets by leveraging the ecosystem-specific FreshTrain database, while at
the same time maintaining the full biological diversity of each data set. To this end, we
developed an open source taxonomy assignment workflow (TaxAss) that uses the
popular Wang classifier as implemented in mothur and employs both an ecosystem-
specific database and a comprehensive database. TaxAss maintains taxonomic richness
and accuracy by only classifying OTUs that share a high percent identity with
ecosystem-specific reference sequences using the ecosystem-specific database. The
remaining OTUs are classified using the comprehensive database. TaxAss scripts and
step-by-step directions are available online at https://www.github.com/McMahonLab/
TaxAss.

RESULTS
Methods summary. TaxAss uses both an ecosystem-specific database and a large

comprehensive database to improve taxonomic assignment resolution while maintain-
ing richness. To classify the maximum possible number of OTUs and avoid misclassi-
fications, overclassifications, and underclassifications, the amplicon data set is split into
two groups using blastn prior to classification: OTUs with a high percent identity to
ecosystem-specific reference sequences and OTUs with a low percent identity to
ecosystem-specific reference sequences. The two groups are then classified separately
using the Wang classifier and the appropriate database (Fig. 1).

To test TaxAss, we used SILVA version 132 and the FreshTrain as the comprehensive
and freshwater-specific databases. We classified six 16S rRNA gene amplicon (“tag”)
data sets spanning five freshwater ecosystems and a nonfreshwater control. Sequences
in these tag data sets are not directly comparable because they cover five different

FIG 1 TaxAss conceptual diagram. TaxAss separates OTUs into two groups that are classified separately
and then recombined. OTUs similar to any ecosystem-specific reference sequences are classified using
the ecosystem-specific database; otherwise, they are classified by the comprehensive database. BLAST is
used to split the OTUs into groups (left arrows), and the Wang classifier is used to assign taxonomy (right
arrows).
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amplicon regions. We defined OTUs as the unique sequences remaining after basic
quality filtering and chimera checking.

Assignment accuracy. To test the accuracy of TaxAss’s taxonomy assignments, we
compared TaxAss results to the gold standard provided by manual alignment of
full-length 16S rRNA gene sequences. For this test, we used a full-length freshwater
clone library data set from Marathonas Reservoir, Greece (19), which was not previously
incorporated into the FreshTrain. We manually aligned these full-length sequences to
the FreshTrain and then simulated a tag data set by trimming the full-length sequences
to the commonly used primer regions V4, V4-V5, and V3-V4. We classified this simulated
tag data set using TaxAss with the FreshTrain and SILVA and compared the results to
the gold standard results provided by manual full-length alignments and phylogenetic
analysis (Fig. 2).

We found that the majority (74.7%) of V4 tag sequences were classified correctly at
the species/tribe level and that 86% of the incorrect assignments were due to se-
quences being classified using SILVA when they should have received FreshTrain
nomenclature, which results in correct, though not ecosystem-specific, classifications.
The remaining incorrect assignments stemmed from overclassification errors (1.1%),
misclassification errors (0.7%), or incorrect inclusion in the FreshTrain classification set
(1.8%), which can result in overclassification, misclassification, or underclassification
(Fig. 2, left panel). Examples of each classification category are shown in the table in the
right panel of Fig. 2. We do not consider underclassifications to be an error because
underclassifications are expected due to the lower phylogenetic resolution of short
tag sequences compared to full-length sequences. We found slightly lower error rates
for the longer V4-V5 and V3-V4 amplicon regions (see Table S1 in the supplemental
material).

Fine-resolution classifications increased. To test whether TaxAss improved taxo-
nomic classification over solely using a comprehensive database, we assigned taxon-
omy to a Lake Mendota amplicon data set first by using SILVA alone and then by using
TaxAss to leverage both SILVA and the FreshTrain (Fig. 3A; Table 1). We compared the
percentages of reads classified by both methods and observed a marked improvement
in the percentage of the data set classified to the fine taxon levels of family/lineage,

FIG 2 TaxAss validation with tags simulated from full-length Marathonas Reservoir clone libraries. Tags simulated by trimming full-length sequences to the
V4 region were classified by TaxAss, and the resulting classifications were compared to “reference” classifications determined by manually aligning the
full-length sequences to the FreshTrain. Correct classifications are in green, lost ecosystem-specific classifications are in yellow, and incorrect classifications are
in red. (Left) Number of unique sequences in each classification category at fine-resolution taxon levels. (Right) Examples of classifications that fit into each
classification category. Tabular results from this and additional amplicon region simulations are available in Table S1.
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genus/clade, and species/tribe. At the species/tribe level, the percentages of reads
classified increased from 0% to 41%, at the genus/clade level they increased from 35%
to 63%, and at the family/lineage level they increased from 72% to 82%. In addition to
these increases in classifications, TaxAss also improved the quality of classifications
because the FreshTrain is curated with terminology and phylogeny consistent with the
freshwater microbial ecology literature. For example, the abundant and cosmopolitan
freshwater tribe acI-A1 is split into the “hgcl clade” and “Ca. Planktophila” in SILVA,
acI-A4 and -A5 are also grouped with SILVA’s “hgcl clade,” and acI-A3 is grouped
with “Ca. Planktophila.” At the family/lineage level, SILVA alone could classify a majority
of the data set, but 72% of those SILVA-classified reads received more meaningful
ecosystem-specific nomenclature when using TaxAss.

The FreshTrain reference sequences come exclusively from temperate lake epilim-
nia, and many of them come from Lake Mendota itself. Lake Mendota is a eutrophic,
temperate lake in Wisconsin, and the Lake Mendota amplicon data set consists of 95
epilimnetic samples collected by the North Temperate Lakes Microbial Observatory
over 11 years. To test TaxAss’s efficacy when the ecosystem-specific database is less
representative of the ecosystem under investigation, we classified amplicon data sets

FIG 3 TaxAss performance compared to SILVA-only performance. (A and B) The left bars represent the SILVA-only classification, and the right bars represent
the TaxAss classification that leveraged both SILVA and the FreshTrain. Within the right bars, red reads were classified by the FreshTrain using TaxAss and were
unclassified using only SILVA; yellow reads were classified by the FreshTrain using TaxAss but received SILVA classifications using only SILVA, and gray reads
remained classified by SILVA when using TaxAss. (A) In the Lake Mendota data set, TaxAss leveraged the FreshTrain and SILVA to achieve improved
fine-resolution classifications. (B) TaxAss achieved improvements in a range of freshwater data sets despite the FreshTrain’s primary focus on temperate lake
epilimnia. Few changes in classification were observed in the mouse gut control. Versions of this figure across all data sets and taxa levels can be found in Fig. S1.

TABLE 1 Classification of the Lake Mendota data seta using SILVA alone, the FreshTrain
alone, or TaxAss to leverage both databases

Taxonomy level

% classified byb: Taxonomic richness withc:

SILVA TaxAss FreshTrain SILVA TaxAss FreshTrain

Phylum 97 98 85 63 63 6
Class 96 97 84 160 162 10
Order 83 91 76 387 388 31
Family/lineage 72 82 69 700 742 57
Genus/clade 35 63 56 1,468 1,529 94
Species/tribe 0 41 41 1,468 1,579 147
aVersions of this table for each tested data set can be found in Table S2.
b% classified � total reads classified/total reads in data set � 100%.
cTaxonomic richness represents total unique classifications.

TaxAss Achieves Fine-Scale Taxonomic Resolution

September/October 2018 Volume 3 Issue 5 e00327-18 msphere.asm.org 5

msphere.asm.org


from a range of freshwater ecosystems, first by using SILVA alone and then by using
TaxAss to leverage SILVA and FreshTrain (Fig. 3B). The additional ecosystems we chose
included the epilimnion of oligotrophic Lake Michigan (20), the eutrophic Danube River
(21), and the epilimnion and hypolimnion of dystrophic Trout Bog (WI) (22). We also
used a mouse gut data set (23) as a negative control to ensure that TaxAss would not
assign FreshTrain classifications erroneously. All freshwater data sets showed improve-
ments at all fine taxon levels (Fig. 3B; see Fig. S1 in the supplemental material), with the
amount of improvement reflecting the similarity of each ecosystem to the FreshTrain
reference sequences. For example, the temperate Lake Mendota and Lake Michigan
epilimnia received the most FreshTrain classifications (54 and 52% of total reads at the
genus/clade level), while the dystrophic bog hypolimnion benefited least (28% at the
genus/clade level). Only 0.1% of the mouse gut control data set received FreshTrain
classifications at the species, genus, or family levels.

Richness maintained. To test whether TaxAss improved taxonomic classification
over solely using an ecosystem-specific database, we assigned taxonomy to the Lake
Mendota data set first by using the FreshTrain alone and then by using TaxAss to
leverage both the FreshTrain and SILVA. TaxAss maintained taxonomic richness at all
taxon levels by classifying OTUs into a larger variety of taxonomic names (Fig. 4;
Table 1). At the same time, TaxAss prevented overclassifications and misclassifications
at fine-resolution taxa levels compared to FreshTrain-only classifications (Fig. 4B).

The FreshTrain is a more specific database with less taxonomic richness than SILVA,
so a decrease in taxonomic richness in a FreshTrain-only classification was expected. For
example, the FreshTrain focuses on heterotrophic bacteria and does not include any
Cyanobacteria, which comprised 8.3% of the Lake Mendota data set. All of Lake
Mendota’s cyanobacterial OTUs were classified as something else (99.9% as unclassi-
fied), which resulted in a loss of phylum-level richness in the FreshTrain-only classifi-
cation (Fig. 4A). In contrast, TaxAss maintained the taxonomic richness of a SILVA-only
classification (Table 1; see Table S2 in the supplemental material).

We also observed that some OTUs that TaxAss classified using SILVA were misclas-
sified or overclassified by the FreshTrain-only approach (Fig. 4B). These incorrect
classifications by the small FreshTrain database were less common than underclassifi-
cation errors, but they had significant effects on taxon relative abundances at finer-
resolution taxon levels. Lake Mendota’s fifth most abundant lineage, Bacteroidetes bacI,

FIG 4 TaxAss performance compared to FreshTrain-only performance. (A and B) Lake Mendota reads represented by blue bars
were incorrectly classified as red bars in the FreshTrain-only classification. Rank order of the bars follows the TaxAss classification
rank abundances. Only taxa with at least 0.5% relative abundance are included, and at the lineage level, the number of bars
displayed is further truncated to 20. (A) TaxAss maintained phylum richness (blue bars) by classifying phyla using SILVA when they
are not included in FreshTrain. (B) TaxAss prevented lineage-level inaccuracies from misclassifications and overclassifications (red
bars over known taxa) and lineage-level underclassifications (red bar over “unclassified” category). Versions of this figure across
all test ecosystems can be found in Fig. S2.
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gained 30% more reads in a FreshTrain-only classification compared to using TaxAss.
The classification errors TaxAss prevented were significant enough to change basic
attributes such as rank abundances of top taxa and had an even larger impact on the
freshwater test data sets that differed more from the FreshTrain references (see Fig. S2
in the supplemental material).

Percent identity cutoff. An OTU is classified using the ecosystem-specific database
only if it matches a sequence in that database with a percent identity above a threshold
set by the user. Therefore, the percent identity cutoff choice for taxonomic classification
is central to the proper functioning of TaxAss because it determines which OTUs are
classified in each database (ecosystem specific versus comprehensive). If the percent
identity cutoff is set too high, ecosystem-specific OTUs are passed to the comprehen-
sive database for classification; while if it is set too low, non-ecosystem-specific OTUs
are passed to the ecosystem-specific database for classification. In both scenarios, the
majority of misplaced OTUs will be unclassified at fine taxon levels. TaxAss allows users
to compare the percentage of reads classified using different percent identity cutoffs,
the idea being that a percent identity that maximizes reads classified has minimized
misplacement errors of the abundant OTUs (Fig. 5).

We found that a percent identity cutoff of 98 to 99% was appropriate for the
analyzed freshwater data sets, and we applied a cutoff of 98% when processing all data
used in this article (Fig. 5). TaxAss allows users to choose a cutoff specific to their data
by generating the plots shown in Fig. 5, but users who wish to save computational time
can simply choose a percent identity cutoff and only run the classification once.

BLAST conversion. The calculation of percent identity for use in database selection
is based on the percent identity returned by the National Center for Biotechnology
Information’s Basic Local Alignment Search Tool (BLAST) (24). The default megablast
settings are appropriate for our application because they have been highly optimized
to find short, highly similar alignments. However, BLAST finds areas of local similarity,
and there is no way to require BLAST to align the entire length of a query OTU’s
sequence. 16S rRNA gene amplicon sequences are highly similar, and differences in
taxonomic classification can be based on even a single mismatch in the amplified
region. Therefore, we recalculated the percent identities BLAST returned into “full-
length” percent identities for the entire query OTU’s sequence length (see Text S1 in the
supplemental material and the equation under “Percent identity recalculation” in
Materials and Methods).

FIG 5 Percent identity where classifications are maximized. The percentages of reads classified when using different percent identity cutoffs to
separate out ecosystem-specific OTUs are shown for each freshwater data set across taxon levels. Faint vertical lines highlight the 98% identity
chosen for the analyses in this paper. OTUs are predominantly unclassified at fine resolution if they are placed in the wrong classification group,
so this visualization is generated by TaxAss to help users choose a percent identity cutoff appropriate for their data set.
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We found that recalculating percent identity was necessary to prevent dissimilar
OTUs from inclusion in the ecosystem-specific classification. For example, the Fresh-
Train does not include any reference sequences from the major freshwater phylum
Cyanobacteria, so no cyanobacterial OTUs have high true percent identities to any
references in the FreshTrain. We found that the percent identity recalculation was
necessary to prevent some cyanobacterial OTUs from meeting the percent identity
cutoff due to the original BLAST percent identities being based on only a short aligned
section of the OTU sequence (see Fig. S3 in the supplemental material).

We also found that it was necessary to recalculate the percent identity from several
BLAST alignments (“hits”) for each OTU because the best BLAST hit did not always have
the highest recalculated percent identity. TaxAss examines the top five BLAST hits,
recalculates the percent identity of each, and then uses the highest recalculated
percent identity to determine if an OTU meets the cutoff. To ensure enough BLAST hits
were examined to consistently arrive at the highest possible recalculated percent
identity, we calculated the proportion of times each BLAST hit number had the highest
recalculated percent identity. In the Lake Mendota amplicon data set, the first BLAST hit
almost always also had the best recalculated score, and the contribution of additional
BLAST hits was very low, especially when only “good” hits above a stringent percent
identity cutoff were considered (Table 2). In the Lake Mendota data set at the chosen
98 percent identity cutoff, 99.68% of the best hits found by BLAST were also the best
recalculated hits, and only 0.07% of BLAST’s fifth hits were used. TaxAss generates a
version of Table 2 for users’ individual data sets, and if they observe more high-number
BLAST hits contributing to the best recalculated hit, they can increase the number of
BLAST results used for the calculation.

DISCUSSION
Ecosystem-specific databases. The need for curated ecosystem-specific databases

has been recognized by microbial ecologists studying many ecosystems. TaxAss was
developed specifically to leverage the Freshwater Training Set (FreshTrain) (15), but it
could be applied to custom databases curated for other ecosystems: the dictyopteran
gut microbiota reference database (DictDb) (13), the rumen and intestinal methanogen
database (RIM-DB) (11), the honey bee database (HBDB) (12), the microbial database for
activated sludge (MiDAS) (14), and the human oral microbiome database (HOMD) (10).
These databases were created by starting with a comprehensive database such as SILVA
or Greengenes and then recurating the reference sequences from the study ecosystem,
sometimes also incorporating new reference sequences. Often during curation, phy-
logenies were collapsed to be monophyletic and incorporate new organisms, and
abundant but unnamed organisms were given placeholder names to allow for consis-
tent terminology among researchers.

DictDB, HBDB, and MiDAS are fully integrated with modified versions of the entire
SILVA database, so a workflow like TaxAss that leverages two databases is not needed
because the single merged database can be used in one step for taxonomy assignment.
However, fully integrated databases can be difficult to maintain over time because new
versions of each database will diverge from each other, and TaxAss provides a means
to circumvent this divergence. The FreshTrain is an example of this divergence in

TABLE 2 Agreement between BLAST and recalculated percent identities

BLAST
result

Recalculated percent identity cutoff applieda:

95 96 97 98 99 100

Hit 1 96.8b 97.8 99.0 99.68 99.90 100
Hit 2 1.4 1.0 0.5 0.18 0.07 0
Hit 3 0.5 0.3 0.1 0.04 0.01 0
Hit 4 0.7 0.4 0.1 0.03 0.01 0
Hit 5 0.7 0.5 0.2 0.07 0.01 0
aCalculations were performed only on sequences above the listed recalculated percent identities.
bFor example, 96.8% of BLAST’s first hits also had the highest recalculated percent identity.
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action. The FreshTrain was originally integrated into the Hugenholtz database that
eventually became Greengenes, and Greengenes was last updated in May 2013. In
addition, SILVA now contains more total references and has been updated as recently
as December 2017, so some researchers prefer to use the more recently updated SILVA
as their comprehensive database. Similarly, the FreshTrain has been updated almost
annually since its creation as new full-length 16S rRNA gene sequences from freshwater
ecosystems became available. TaxAss allows microbial ecologists to use the most
up-to-date versions of their preferred databases without performing or waiting for
reconciliation of each release.

Once an ecosystem-specific database has diverged from the comprehensive data-
base, as occurred with the FreshTrain, leveraging the ecosystem-specific database for
taxonomy assignment is no longer straightforward. Reintegrating the ecosystem-
specific database into the comprehensive database is more involved than simply
concatenating databases and removing duplicated references because conflicting phy-
logenetic structures must be resolved. Analysis of community amplicon data is a fairly
routine part of many studies for which extensive phylogenetic curation would fall
outside the scope. The FreshTrain has been used in a variety of ways since it di-
verged from the current version of Greengenes, and it is often difficult to discern the
specifics from cursory sentences in a paper’s methods section. TaxAss provides a
well-documented and rigorously tested workflow to leverage two conflicting databases
without extensive curation.

Current FreshTrain usage. The simplest way the FreshTrain has been used to assign
taxonomy to amplicon data sets is as part of a separate, complementary analysis. For
example, in a study of the River Thames Basin (25), FreshTrain and Greengenes classifica-
tions were displayed side by side, and separate metrics such as diversity indices were
calculated for each. However, the bulk of the taxonomic analyses were carried out at the
coarse phylum level, despite most abundant OTUs having FreshTrain nomenclature. When
the FreshTrain is used independently, the loss of richness in taxonomic classifications (Fig. 4
and Table 1) makes it difficult to use ecosystem-specific classifications for entire data set
analyses. TaxAss provides ecosystem-specific classifications without loss of taxonomic
richness, thus allowing for a single comprehensive analysis.

Another straightforward approach has been to classify amplicon data sets sequen-
tially—first using the FreshTrain and then reclassifying the unclassified sequences using
a comprehensive database. For example, in a study of Lake Erken, Sweden (26), OTUs
were first classified with the FreshTrain, and then unclassified OTUs were reclassified
using SILVA. While this approach allows for a single analysis, the initial classification of
all sequences with the small FreshTrain database can cause overclassification and
misclassification errors (Fig. 4B). TaxAss prevents this by splitting the OTUs into two
groups prior to classification.

These classification errors when using the FreshTrain to classify all OTUs were
observed in a study of cyanobacterial blooms in Yanga Lake, Australia (27), where the
authors observed that cyanobacterial OTUs were misclassified as heterotrophic bacte-
ria. To prevent this, Greengenes was used for an initial classification, and then only
OTUs assigned to phyla included in the FreshTrain database were reclassified and
renamed with confidently assigned FreshTrain nomenclature. This approach prevented
the misclassification of Yanga Lake’s abundant cyanobacterial OTUs, but it would not
prevent overclassification of OTUs that belong to phyla included in the FreshTrain
(Verrucomicrobia, Bacteroidetes, Proteobacteria, and Actinobacteria). In freshwater data
sets such as bogs, rivers, and lake hypolimnia, many organisms belonging to FreshTrain
phyla differ significantly from the lake epilimnion references included in the FreshTrain.
TaxAss prevents overclassification and misclassification of OTUs of any phyla.

Another way to avoid the overclassifications and misclassifications observed with
the Wang classifier is to use BLAST-based taxonomy assignment algorithms that
determine assignments based on sequence similarity. Since the BLAST algorithm
calculates an absolute similarity instead of a relative one, a similarity cutoff prevents
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classifications to dissimilar sequences. BLAST was used to assign FreshTrain taxonomy
to sequences from boreal lakes in Quebec, Canada (28). However, unlike the Wang
classifier, BLAST only takes into account individual reference sequences and ignores
their encompassing phylogenetic structure. The BLAST-based algorithm from Classifi-
cation Resources for Environmental Sequence Tags (CREST) (29) addresses this by
taking a lowest common ancestor approach. Each query OTU is classified to the finest
taxon level that its top BLAST hits share. The CREST algorithm has also been used to
assign FreshTrain taxonomy to sequences obtained from the Danube River in south-
eastern Europe (21). This approach avoided overclassifications and misclassifications,
and incorporated phylogenetic information in the taxonomy assignments; however, it
does not maintain diversity by also leveraging a comprehensive database. Additionally,
the Wang classifier is more robust at coarser taxon levels and for shorter sequences (29),
and it is implemented in common tools like mothur and QIIME. TaxAss allows users to
leverage both ecosystem-specific and comprehensive databases using the highly
trusted and conveniently implemented Wang classifier.

Future TaxAss usage. We recommend all microbial ecologists studying freshwater
systems use the FreshTrain and TaxAss to classify their 16S rRNA gene amplicon data
sets. This will result in a consistent, specific, and comparable vocabulary throughout the
field and will improve classification for analysis of individual data sets. We also recom-
mend that microbial ecologists with different ecosystem-specific databases consider
TaxAss when their databases diverge from the most up-to-date comprehensive data-
base and phylogenetic curation is outside the scope of their project.

We recommend microbial ecologists create ecosystem-specific databases if one
does not already exist, since they provide improved analysis and enhanced collabora-
tion for the entire field. Phylogenies must be created from full-length 16S rRNA gene
sequences, which are currently not collected as routinely as short amplicon sequences.
However, we believe the benefit of these databases as a reference for the field and to
improve taxonomic classification of amplicon sequences justifies the effort to create
them, especially since TaxAss allows their use without constant recuration. Additional
full-length sequences to flesh out the existing phylogenetic structure of organisms can
be created with clone libraries, as was done for FreshTrain. New sequencing technol-
ogies, such as the long reads produced by Nanopore (30) and PacBio (31, 32) instru-
ments, promise even easier reference sequence generation in the future.

Practical guidance for using TaxAss. TaxAss includes detailed descriptions of its
constituent scripts, including argument options and descriptions, so users are able to
customize their analyses. The most important decision users make is the cutoff percent
identity that determines which database is used to classify each OTU. If an OTU is above
the cutoff (i.e., has a high percent identity to an ecosystem-specific reference se-
quence), then it will be classified with the ecosystem-specific database. When the cutoff
is higher, fewer OTUs are classified using the ecosystem-specific database, and users
run the risk of leaving some ecosystem-specific OTUs poorly classified or underclassified
by the comprehensive database. When the cutoff is lower, more OTUs will be classified
with the ecosystem-specific database, and users run the risk of overclassifications and
misclassifications or of losing taxonomic richness due to underclassifications. Users can
decide on a percent identity cutoff at the beginning and run only one classification, or
they can run TaxAss with several cutoffs and generate versions of Fig. 5 to help guide
their choice.

We found that a percent identity cutoff of 98 to 99 optimized classifications in our
test data sets. The finding that most OTUs match their ecosystem-specific reference
sequences with such a high percent identity suggests that the commonly chosen 97%
sequence identity clustering is too coarse to observe fine-resolution dynamics. This is
supported by previous findings that sequence identity-based OTUs can impose artificial
delineations between organisms that affect results differently depending on the lin-
eage (33) and that sequence identity-based OTUs can contain temporally discordant
sequences (34). We recommend that users planning a taxonomy-centric analysis classify
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unique sequences after quality trimming and use fine-level taxonomic assignments to
group their data instead of sequence identity cutoffs. The classification step will take
longer with a larger number of unique sequences, but users will likely save computa-
tional time overall by not clustering. For users who also want to emphasize traditional
OTU-based analyses, we recommend choosing a finer sequence identity-based OTU
definition such as 98 or 99% to best leverage the fine-level classification provided by
TaxAss and a detailed ecosystem-specific database. When OTUs have been clustered
based on sequence identity, we recommend that users choose the same or lower
percent identity cutoff in TaxAss to prevent an OTU’s constituent sequences from
falling on either side of the percent identity cutoff. We recommend choosing a percent
identity cutoff using metrics similar to those recommended for unique sequences when
finely resolved OTUs are defined with techniques such as DADA2 denoising (5) or
minimum entropy decomposition (3).

TaxAss informs ecological analyses. Taxonomy-based analyses allow researchers
to compare results across data sets. Leveraging an ecosystem-specific database for
taxonomy assignment results in a high proportion of fine-resolution classifications, and
grouping sequences based on these classifications is a data set-independent way to
describe community composition. The resulting taxonomic terminology is consistent
and comparable between analyses, and the finely resolved taxonomic groupings
enable ecologically informed analyses. TaxAss can complement OTU-based analyses
independent of the users’ chosen OTU definitions. Redefining OTUs to compare across
data sets is computationally expensive and is not possible for data sets created with
different amplification primers. When researchers use TaxAss to assign fine-level tax-
onomy to their data sets, colleagues can compare their results directly, without
reanalysis and regardless of primer set. Additionally, taxonomic nomenclature can also
bridge amplicon-based analyses and genomic analyses.

Leveraging ecosystem-specific databases for taxonomy assignment also improves
researchers’ interpretations of individual data sets. Ecosystem-specific terminology is
more meaningful because ecosystem-specific databases incorporate additional refer-
ence sequences, finer phylogenetic delineations, consistent nomenclature for uncul-
tured organisms, and monophyletic structures. For example, the dominant lineage in
freshwater is the FreshTrain’s actinobacterial lineage acI, which in SILVA is usually
classified as family Sporichthyaceae. Although a classification exists for this organism in
both databases, the SILVA family is much broader and also includes the separate
FreshTrain lineages acSTL and acTH1. The FreshTrain’s finer-level phylogenetic infor-
mation on these abundant freshwater Actinobacteria is based on manually curated
alignments and ecological information, such as their occurrence in different lakes, and
is supported by prior work suggesting the clades and tribes are ecologically and
metabolically differentiated (15, 35, 36). The fine-resolution taxonomy assignments
provided by TaxAss and an ecosystem-specific database allow researchers to link their
amplicon data sets with known ecophysiological traits.

Ecosystem-specific phylogenies that are not fully incorporated into a comprehensive
database are not straightforward to leverage for taxonomy assignment. The FreshTrain,
for example, has diverged from Greengenes since it was created, and it has been used
for taxonomy assignment with inconsistent and sometimes unreliable methods. TaxAss
is a well-documented, open source, and rigorously tested workflow that avoids the
pitfalls of using a small database: forcing incorrect classifications onto sequences and
losing taxonomic richness by leaving unrepresented organisms unclassified. At the
same time, TaxAss achieves the benefits of an ecosystem-specific database: more
meaningful nomenclature, larger proportions of the data set classified, and finer-
resolution classifications.

MATERIALS AND METHODS
How to use TaxAss. TaxAss replaces only the taxonomy assignment step of users’ preferred

amplicon data set processing pipeline such as mothur, qiime, or DADA2. TaxAss consists of a series of
scripts using R, Python, bash, mothur, and BLAST that are run from the terminal command line singly or
as a batch file. The input to TaxAss is a quality-controlled fasta file, and if users opt to run the optional
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percent identity cutoff metrics, a relative abundance table is also required. The output of TaxAss is the
fasta file’s sequence IDs followed by their 7-level taxonomy assignments. Scripts, step-by-step instruc-
tions, and detailed explanations of script argument options are available online at https://github.com/
McMahonLab/TaxAss.

Percent identity recalculation. The naive Bayesian algorithm used for taxonomy assignment (the
Wang classifier) (16) can overclassify or misclassify OTUs when a close match does not exist in a small
reference database. TaxAss uses the well-accepted Wang classifier, but avoids classification errors
resulting from the effects of a small database by only classifying sequences for which a close reference
exists. The National Center for Biotechnology Information’s Basic Local Alignment Search Tool (BLAST)
(37) is utilized to split the amplicon data set into two groups prior to classification: one is classified with
the ecosystem-specific database, the other with the comprehensive database.

blastn queries each OTU sequence against the ecosystem-specific database using the default
megablast settings, which are optimized to find highly similar matches between sequences longer than
30 bp (24). However, BLAST returns the percent identity of the highest-scoring pair (the “pident”), which
does not necessarily include the full length of the query OTU sequence. OTU sequences are highly similar;
a single mismatch can change a classification, so mismatches at the ends of OTU sequences (in the
“overhang”) that BLAST leaves out of the alignment must be included in the percent identity cutoff used
for classification. Therefore, the BLAST pident is recalculated to a full-length percent identity with the
following equation: percent identity � (pident � length)/{qlen � [length � (qend � qstart �1)]}, where
“pident” is the percent identity returned by BLAST, “length” is the length of the alignment, “qlen” is the
query length, “qend” is the query end, and “qstart” is the query start. All of these parameters are returned
by BLAST output format 6, and detailed descriptions of what they are, the equation derivation, and an
example alignment and calculation are included in Text S1.

The recalculation to full-length percent identity is conservative; all query nucleotides not included in
the alignment (i.e., nucleotides in the “overhang”) are considered mismatches. This means that it would
be possible to exclude an OTU from the ecosystem-specific classification when its true percent identity
is above the cutoff due to matches in unaligned overhangs. An example of this situation is illustrated in
Text S1. When the highest-scoring BLAST alignments contain matches on the overhangs, some of the
lower-scoring alignments will be longer and therefore have a higher recalculated percent identity. To
correct for this, TaxAss recalculates the percent identity of the top five BLAST hits and uses the best one
for the cutoff decision. TaxAss also shows users the distribution of chosen hits, so that settings can be
reevaluated if BLAST is not primarily returning hits that have the best recalculated percent identities.

Cutoff choice. OTUs with percent identities greater than or equal to the users’ specified cutoff are
classified with the ecosystem-specific database using the Wang classifier as implemented by mothur. The
remaining OTUs are classified with the comprehensive database, also using the Wang classifier. The
choice of a percent identity cutoff is left to users so that they can balance their choices based on
the structures of their data sets and their plans for analysis. If the percent identity cutoff is too low,
dissimilar OTUs will be classified in the ecosystem-specific database and may be left unclassified or
misclassified, but if the percent identity cutoff is too high, OTUs similar to the ecosystem-specific
database will be classified by the comprehensive database and may end up underclassified.

Users have the option to choose a cutoff percent identity at the start, or they can classify their data
sets with multiple cutoffs and TaxAss will provide metrics to guide their decisions. These metrics include
versions of Fig. 5, which shows the cutoff choices that maximize the proportion of data set classified at
different taxa levels.

As an additional optional check, users can also classify their data sets with only the comprehensive
database and then compare the classifications. TaxAss provides metrics to check for coarse-resolution
misclassifications. Phylum- and class-level classifications are more reliable when assigned by a large
comprehensive database that includes more diversity, so if ecosystem-specific classifications at these
coarse taxon levels disagree with the comprehensive database’s assignments, this suggests that the
percent identity cutoff is too low. Only these coarse levels can be used to check for misclassifications
because at finer taxonomic levels too many OTUs end up unclassified by the comprehensive database
to compare assignments.

Data availability and processing. The freshwater tag data sets used in this paper are all publicly
available on the National Center for Biotechnology Information’s (NCBI) Sequence Read Archive (SRA).
The accession numbers are as follows: Lake Mendota, ERP016591 (34); Trout Bog, ERP016854 (22); Lake
Michigan, SRP056973 (20); and Danube River, SRP045083 (21). The Lake Michigan and bog project
accession numbers include additional sample types, so only the Lake Michigan and Trout Bog samples
were used. The mouse gut data set is the full version of the example data used by mothur’s miSeq SOP,
and is available on the mothur website (https://www.mothur.org/wiki/MiSeq_SOP) (23). The Marathonas
Reservoir clone library data set is available from GenBank under accession no. GQ340065–GQ340365 (19).
The Marathonas Reservoir taxonomy determined by manual alignment to the FreshTrain is available from
https://www.github.com/McMahonLab/TaxAss.

The taxonomy databases used in this article are also publicly available. The Freshwater Training Set
(FreshTrain) version used was FreshTrain30Apr2018SILVAv132 (15), which includes 1,318 freshwater
heterotrophic bacterial references and is available from https://www.github.com/McMahonLab/TaxAss.
The SILVA database version used was version SSU 132 NR 99 (https://www.arb-silva.de) (8), which
includes 213,119 bacterial and archaeal reference sequences clustered to 99% identity to avoid repeat
references. A mothur-formatted version of this database obtained from https://www.mothur.org/wiki/
Silva_reference_files was used for all analyses (accessed January 2018). Further details on download,
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versions, and formatting can be found in Text S2 in the supplemental material and in the detailed
directions provided at https://www.github.com/McMahonLab/TaxAss.

Quality control of tag data set fastq files was performed according to mothur’s MiSeq SOP (23,
accessed September 2017) through the chimera checking step with mothur version 1.39.5 (17). The
resulting unique sequences were defined as OTUs for all further analyses. The single-end sequencing
data sets (Lake Mendota and Trout Bog) were also preprocessed with vsearch version 2.3.4_osx_x86_64
(38) to trim to uniform lengths and remove low-quality sequences with �0.5 expected errors. During
TaxAss, the percent identity cutoff used for all data sets was 98, and the Wang classifier’s bootstrap
confidence was set at 80% for all classifications. Batch files that reproduce all download, quality control,
and TaxAss processing for each data set are available in Text S2.

Manual alignment of the full-length Marathonas Reservoir clone library sequences to the FreshTrain
database was performed using the program ARB (39). Chimeras were manually identified and removed
from the analysis, and sequences without FreshTrain nomenclature were labeled unclassified. Tags were
simulated by trimming full-length sequences to common primer regions with mothur version 1.39.5 (17).
The primers used were V4 (515F, GTGCCAGCMGCCGCGGTAA; 806R, GGACTACHVGGGTWTCTAAT) (40),
V4-V5 (515FB, GTGYCAGCMGCCGCGGTAA; 926R, CCGYCAATTYMTTTRAGTTT) (41), and V3-V4 (341F,
CCTACGGGNGGCWGCAG; 805R, GACTACHVGGGTATCTAATCC) (42). A list of the processing commands
used to trim sequences to the primer regions and classify them is available in Text S3 in the supplemental
material.

SUPPLEMENTAL MATERIAL
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mSphere.00327-18.
TEXT S1, PDF file, 0.1 MB.
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