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Abstract

Protein folding and design are major biophysical problems, the solution of which

would lead to important applications especially in medicine. Here we provide

evidence of how a novel parametrization of the Caterpillar model may be used for

both quantitative protein design and folding. With computer simulations it is shown

that, for a large set of real protein structures, the model produces designed

sequences with similar physical properties to the corresponding natural occurring

sequences. The designed sequences require further experimental testing. For an

independent set of proteins, previously used as benchmark, the correct folded

structure of both the designed and the natural sequences is also demonstrated.

The equilibrium folding properties are characterized by free energy calculations.

The resulting free energy profiles not only are consistent among natural and

designed proteins, but also show a remarkable precision when the folded structures

are compared to the experimentally determined ones. Ultimately, the updated

Caterpillar model is unique in the combination of its fundamental three features: its

simplicity, its ability to produce natural foldable designed sequences, and its

structure prediction precision. It is also remarkable that low frustration sequences

can be obtained with such a simple and universal design procedure, and that the

folding of natural proteins shows funnelled free energy landscapes without the need

of any potentials based on the native structure.

Introduction

Computer simulations of the protein folding process have in the last ten years

reached amazing level of description and accuracy [1–16]. The power of the

computers and the understanding of the physics that governs folding allows now

for a large screening of the experimental data for instance collected in the Protein

Data Bank [17]. From a theoretical point of view a successful approach is
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the‘‘minimal frustration principle’’ (MFP) [18–20] in which protein folding is

described as a downhill sliding process in a low frustration energy landscape

(‘‘funnelled’’ shaped) towards the native state. While MFP has been proven for

lattice heteropolymers [19, 21–27], in more realistic protein representations a

residual frustration which prevents the systematic prediction of the native

structure of natural sequences is often observed. Off-lattice instead MFP is used as

a main justification for the use of structure-based potentials such as the GO [28]

and elastic models [29]. In fact, there is still space for development of transferable

models that are capable of systematic associating the experimentally determined

native structure to natural sequence. Surprisingly, with the exception of few

notable examples [30–38], it has also been extremely difficult to artificially

construct sequences capable of folding into given target protein structures. The

group of David Baker [38] introduced a novel procedure to select sequences with

low frustration capable of correctly refolding in vitro to their target structure with

a success rate between 8% and up to 40% of the total trials. In their work the

authors have introduced a set of rules for the design of the local amino acids

interactions to disfavour non-native states. After many iterations, a refolding

calculation filters out about 90% of the initial sequences that are found not to

have a funnelled energy landscape. The complexity of Baker’s procedure

demonstrates that is not easy to produce sequences with low frustration.

Here we present a novel protein model where low frustration folding is

observed both for natural and designed sequences, the latter obtained without the

need of negative design. The novel model is obtained from the optimization of the

residue-residue and residue-solvent interaction energy terms under the condition

that a large number of sequences designed for 125 test proteins are equal to the

corresponding natural sequences. As a result, designed sequences with our model

are for several properties comparable to natural ones and fold with a low

frustration free energy landscape. We additionally demonstrated that for 15

additional randomly selected proteins, notoriously difficult to fold [39, 40], the

natural sequences correctly refolded to their corresponding native structures with

a remarkable precision between 2.5 and 5 Å. In other words both quantitative

protein design and folding are possible simultaneously. We anticipate that our

methodology will have direct application for protein design and structure

prediction, but also we expect that it will become a reference point for the

development of alternative protein models. For instance, a more or less accurate

description can be obtained by adding or removing details from our model, under

the condition that the maximum valence principle remains satisfied.

Materials and Methods

Recently we have presented many results that point to the existence of a

‘‘maximum valence principle’’ (MVP) [41–43], according to which for a

heteropolymer to be designable and foldable it is sufficient that chain is decorated

with directional (low valence) interactions that shape the configurational space. In
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the case of proteins we have shown (Caterpillar model [43]) that the minimum set

of directional interactions translates into the combination of just the backbone

molecular geometry and the backbone hydrogen bond interactions (see Fig. 1).

In what follows we will show that by optimizing the interactions under the

condition that natural and designed sequences are the same at constant amino

acid composition for a large set of proteins, we will also quantitatively predict the

folded structures of natural and designed sequences with similar accuracy. This is

possible because our model includes the correct set of interactions that satisfy the

MVP and, accordingly, the design procedure [43] alone is capable of predicting if

a sequence, either natural or artificial, will fold to the target structure. Since we

cannot model the particular evolutionary pressure that determined the natural

amino acid composition, we chose to keep it constant. Such pressure could be due

to many factors such as the particular function of the protein or the difficulty of

synthesizing each amino acid type. The ansatz of this work is that folding and

design can occur also outside such conditions and that is possible to design a

foldable artificial protein from an infinite bath of amino acids. Hence, the above

evolutionary pressure is taken into account by fixing the composition to the

Figure 1. Real-space representation of the backbone of the Caterpillar model. The large blue sphere represent the self-avoidance volume RHC~2:0A of
the Ca atoms, while the interaction radius of each residue is represented by the large dashed circle or radius 6 Å (see Eq. S2 in Methods). The H and O
atoms interact through a 10–12 Lennard-Jones potential tuned with a quadratic orientation term that selects for alignment of the C, H, O, and N atoms
involved in a bond (see top right inset and Eq. S1 in Methods). The backbone fluctuates only around the torsional angles w1 and w2.

doi:10.1371/journal.pone.0112852.g001
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natural one. The optimization scheme that we used is the maximum entropy

principle (MEP) already tested for proteins by Seno et al. [44]. MEP states that the

more information is used to model a system the lower the associated entropy will

be [45]. Hence, in order to find the optimal parameters that require the least

amount of information, all is needed is to maximize the entropy associated with

the probability of observing a given protein P(Si,Cj), where Si indicates to the

sequence and Cj the three dimensional structure, under the sequence similarity

and normalization constraints defined in work of Seno et al. [44]. The derivation

follows closely the one used in the work of Seno et al. [44] (the full derivation is in

the Supplemental Material together with the details about the model and

simulations techniques) and we determined that the entropy maximum

corresponds to the values of the model parameters (E, EHOH, and V in Eq. 1) at

which the amino acid hydrophobic/hydrophilic (HP) profile [46] and the

interaction energy of each residue with all other are simultaneously equal to the

natural ones:

Fscore~
XNProt

j

XNj

k

XNSeq

i

P(Si,Cj)E
ik
Sol{E

Realjk
Sol

0
@

1
A

2

z
XNProt

j

XNj

k

XNSeq

i

P(Si,Cj)c
i
k{c

Realj
k

0
@

1
A

2

zEShannon

X
H(E) log H(E)

ð1Þ

where the index i runs over the NSeq designed sequences for each protein j of

length Nj, the ESol is the hydrophobicity scale of each residue (see Eq.S3 in the

SM), while the ci
k’s are the contribution to the total energy of each residue

calculated within the Caterpillar model. The last term instead guarantees that the

Shannon entropy associated to the matrix elements Ekl (H are the histograms) is

maximized to avoid an uniform matrix. We phenomenologically determined

EShannon~8:0 for the scaling term to be a good value. Note that here and in the

following, energies are given in units of kBTRef , where TRef is a reference

temperature that sets the scale of the interactions, hence all simulation

temperatures are given in units of TRef . It is important to stress that TRef is not

necessarily the folding temperature or the environment temperature, but all the

energies can be rescaled to have TRef matching the physical temperature. In fact, in

what follows we will show that all proteins studied fold approximately at the same

temperature, one could think to rescale the energies to set the folding temperature

to the one observed in nature. A schematic representation of the algorithm is

reported in Fig. 2.

To the best of our knowledge our work is the first of his kind to optimize the

model parameters by reducing the differences between natural and designed

sequences and, thanks to the MVP, is the simplest (in terms of the number of
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parameters needed) to successfully and quantitatively reproduce both sequences

and structures of natural proteins to high precision.

Results

Parameters Optimization

We began by selecting a protein training set from the Protein Data Bank (PDB)

[17], which includes all the proteins that obey the following conditions: a X-Ray

structural resolution below 1.5 Å, are made of single chains of length ranging

from 20 to 200 residues, and do not contain any DNA or RNA. According to the

stated conditions we selected 125 proteins (see Tab. S2 of the SM for the complete

list of the PDB id’s). It is important to stress that we did not select for specific

experimental conditions, in particular pH and temperature during the measure-

ments fluctuate significantly among the proteins in the set. In Fig. 3 and Fig. S3 we

plot the comparison of the natural to the designed sequences, the latter obtained

with the MEP optimized interaction parameters. The plot shows strong

correlation (.0.9) between the total energy of the designed (abscissa) and natural

(ordinate) sequences, and between the profiles of the residue the HP profiles and

the energy contribution (Fig. 3 top and bottom insets and Fig. S3). Overall we can

Figure 2. Schematic representation of the MEP algorithm. For a trial set of the E, EHOH, and V parameters
and for each protein in the training set a large number (105) of sequences with composition fixed to the natural
one are generated following the design scheme in the SM. The scoring function Fscore (Eq.S16 in the SM) is
then evaluated and the trial parameters are accepted or reject according to a Metropolis like scheme. New
parameter sets are generated at each iteration, and the sequences of the proteins in the training set are re-
designed by 105 simple pair residue swapping moves, which are accepted or rejected according to a standard
Metropolis algorithm with the energy defined in Eq.S4 (see SM). During each design iteration, the HP and
energy profiles (Eq.S16 in the SM) are averaged over the observed sequences weighted by their Boltzmann
weight. The averaging guarantees that the profiles are calculated over the most probable sequences that, as
we showed previously [43], are robust against mutations and are more thermally stable. After ,108 iterations
the interaction parameters converged to their final values: V~21:0+0:5 and EHOH~0:015+0:001, and the
residue-residue E interaction parameters which are listed in Tab. S1 of the SM.

doi:10.1371/journal.pone.0112852.g002
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conclude that, for all 125 proteins in the training set, the designed proteins and

natural proteins are equally compatible sequences to their respective target structures,

strongly suggesting that our procedure may now be used to design realistic protein

sequences. We applied the MEP derived parameters to design 15 randomly selected

from independent training sets [39, 40], and characterized by different secondary

and tertiary motives. The top five resulting sequences for each target structures are

listed in Tab. S4 of the SM. It is important to stress for this design we relaxed the

constraint on the amino acid composition used during the optimization. Hence,

the folding of the designed sequences does not depend on the previous knowledge

of the natural amino acid composition, nevertheless the amino acids composition

of the artificial sequences is similar to the natural one (see Tab. S3). It has to be

said that the artificial sequences appear unusual with repeats of the same amino

acid (e.g. for 1gab WDDMIIRRRRFVVYYLWGSMTAEVEAEKGTNGFYYHHHD-

FGTKKKAQQQSNNL). Such repeats could be due to the approximations of the

model, however it is important to remember that we did not include in the design

any information about the function of the protein. In fact there is no reason to

expect that natural sequences are the only one capable of folding, and we want to

stress again that additional constraints applied during the design procedure would

dramatically reduce the volume of the sequence space [47] reducing the

probability of repeats. We believe the latter to be the main cause of the repeats and

we tested this hypothesis forcing into the design procedure and additional

constraint expressly rejecting mutations that would result into a repetition of the

same amino acid for 3 residues forward and backwards. The resulting sequences

are listed in Tab. S6 of the SM. We were surprised to find that sequences with

energy comparable to the unconstrained ones had a lower number of

permutations (log(NP)*107 instead of 108). Nevertheless, the now more

reasonable looking sequences folded in a similar fashion with respect to their

unconstrained alternatives (see Fig. ~S4). Finally, we will show below the model is

capable of refolding also several natural sequences, demonstrating that in the

model the presence of repeats is not necessary to stabilize natural protein

structures. It is important to stress that during the last step of the MEP

optimization the fewer sequences generated with fixed composition do not

present the repeating patterns (see Table S5). However, this is an interesting

problem and deserves a dedicated study that is beyond the objective of this work.

Objective of ongoing research is also to experimentally test whether such

sequences are capable of folding to the predicted target structures.

Protein design

In order to apply the model to the folding of both designed and natural sequences,

we need to balance the residue energy term with the backbone hydrogen bond

term (parameter a in Eq.S4 in the SM). The energies can be rescaled by choosing

the value of a for which designed sequences fold best to their target structures

[43]. Hence, we selected four designed sequences from Tab. S4 (PDB ids 2l09,

3mx7,chain A of 3obh, and 1qyp), and for each sequence we performed a

refolding simulation (see SM) with different values of the rescaling parameter a in
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the range [0.05 to 1.0]. The best value of a~0:10+0:01kBTRef was the one for

which all four proteins folded closer and smoother to the native state. In Fig. 4 we

plot the refolding free energy F(DRMSD)=kBTRef as a function of the distance root

mean square displacement (DRMSD, see Appendix DMRSD and Fig. S2 of the

SM), obtained with the best energy value for a~0:10+0:01kBTRef for the four

target proteins below the folding temperatures (estimated to be TF<0:22 for all

proteins see Fig. S1 in the SM for details). The plot shows for each protein a

funnelled profile with a global minimum very close to the respective target

structure (DRMSD [ ½1:5{2:0� Å). So at least below the folding temperature the

proteins seems to follow a downhill process. This observation would need a

verification with a study of the folding dynamics. The refolding free energy profiles

shown in Fig. 4 prove that realistic protein sequences with low frustration folding free

energy landscapes can now be designed with a straightforward positive design scheme.

Figure 3. Comparison between the total residue energy ,ETot/kBTRef. (Eq.S4 in SM) averaged over all
the 105 designed sequences per target(abscissa) and the same energy calculated over the native
sequence of same target (ordinate). Each point corresponds to one protein in the data set and shows a
strong linear trend verified by the fit (red line) with a correlation coefficient of ,0.995 and a slope of ,1.000
indicating that two energies are perfectly correlated. In the insets we show the comparison of the HP profiles
(top left) and interaction energy E=kBTRef of each residue with all other (bottom right), this time each point
corresponds to a single residue of each test protein. In both cases the data follow a remarkable linear trend
(fits in green and blue lines respectively), and a positive correlation close to unity. For the HP profiles the
correlation coefficient (,0.98) indicates that when in natural proteins we find an hydrophobic residue also the
design procedure will put one and vice versa. While the correlation coefficient (,0.90) of E=kBTRef

demonstrates that each natural residue has a very similar contribution to the total energy compared to the
designed ones. A perfect match cannot be expected since natural sequences might have experience a
selection pressure influenced by interactions not represented in the model, different environmental conditions
or simply unknown functional requirements. Nevertheless the accordance is remarkable.

doi:10.1371/journal.pone.0112852.g003
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We now have obtained the optimized parameters for our model:

a~0:10+0:01kBTRef , V~21:0+0:5, EHOH~0:015+0:001 and for the E see Tab.

S1 in the SM.

Refolding of natural sequences

The next logical step is to asses the behaviour of the model when refolding natural

sequences and prove that folding as well can be performed to a quantitative level

with the model. For this we randomly selected 15 proteins known to be difficult to

fold (from Tsai et al. [39] and from the 9th edition of the well known Critical

Assessment of Techniques for Protein Structure Prediction [40]) and we

performed folding simulations of their natural sequences. The results are plotted

in Fig. 5(a) and 5(b), where we have superimposed all the computed free energy

profiles. Although, the details of each profile might not be clearly visible, a first

fundamental feature is apparent, namely the concentration of the free energy

minima in the region between 1.5 and 2 Å DRMSD which remarkably is also the

same regions observed for the design proteins. A second important result is the

funnel shape common to all free energy profiles providing definite proof of the

capability of the model of capturing the low frustration folding of natural proteins

Figure 4. Folding free energy landscape F(DRMSD)/kBTRef as a function of DRMSD of the four designed proteins (PDB ids 2l09, 3mx7, chain A of
3obh, and 1qyp). All profiles have a global minimum around 1.5 and 2 Å DRMSD with a smooth funnelled shape. Due the approximations present in the
model and to thermal fluctuations is shifted with respect to DRMSD~0 (note that to the value DRMSD~0 of each profile will correspond a different native
structure). Because of the definition of DRMSD, the smaller the value the fewer are the possible structures that can have this value of DRMSD. Ultimately,
DRMSD~0 is possible only for the target structure itself. The funnelled profiles with single minimum implies that both an ensemble of arrested structures and
a single alternative fold are less stable compared to the desired configuration. In the bottom right inset we plot the folding free energy landscape
F(DRMSD,QH)=kBTRef for 3mx7 as a function of both the DRMSD and the number of hydrogen bonds QH , to give a visual example of the funnel nature of the
folding landscapes. On the left we compare the experimentally determined structures (in yellow) with a typical folded conformation selected as the sampled
configurations with the lowest energy at the free energy minimum (in red). The RMSD value is indicated in the middle. The structures were aligned using the
RMSD calculator tool in VMD [52], while the secondary structure elments where identified with STRIDE [53].

doi:10.1371/journal.pone.0112852.g004
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with a rather high precision. In fact when the predicted conformations of the

folded states are compared to the experimentally determined structures, the two

overlapped with a precision between 2.4 and 4.1 Å RMSD (see top inset of

Fig. 5(a)) which is surprisingly accurate especially considering the simplicity of

the model. An alternative comparison of the refolded structures to their native

targets is reported in Tab. S7 produced with the ‘‘MaxCluster’’ program from Alex

Herbert (http://www.sbg.bio.ic.ac.uk/maxcluster/index.html) and the TM-scoring

function introduced by Zhang et al. [48, 49]. It is important to note that the

configurations with the lowest energy are not necessarily equal to the ones

corresponding to the minimum of the free energy, however, in most cases, they

are very similar. This is due to the strong directional nature of the hydrogen bonds

which makes them very sensitive to thermal fluctuations. As a consequence, there

are isolated structures that might have a lower energy but are not very stable at

finite temperature. We would like to stress that, since the native sequences fold in

a similar fashion compared to the designed ones and we did not observe the native

sequences themselves as an outcome of the design process (see Tab. S4–S6), we

could speculate that, at least within the Caterpillar model, the space of folding

sequences is much wider than the one comprising only of natural sequences.

Discussion

To the best of our knowledge our coarse-grained protein model is the simplest, in

terms of the number of parameters needed, with a transferable energy function

capable of achieving such precision for the prediction of the native folded

structures. Also it is one of the very few models that allows for both quantitative

proteins design and folding, the latter demonstrated by free energy calculations. It

is remarkable that low frustration sequences can be obtained with such a simple

and universal design procedure, and that the folding of natural proteins shows

funnelled free energy landscapes without the need of any potentials based on the

native structure [50].

Although, the artificial sequences present some unnatural features like

repetitions of some amino acids, the sequences designed with a natural amino acid

composition share many features with the natural occurring ones, and the native

structures of the latter are correctly predicted by our model. Hence, we expect that

our designed proteins (see Tab. S4), once synthesized, may fold to the structures

used as design targets, which may also represent the ultimate and most important

test of our methodology. We hope that our methodology will become an useful

tool in experiments requiring alterations of natural proteins, or the total redesign

of target protein structures. Of course, constraints on the composition can always

be applied to the design procedure with no major changes in the procedure.

Moreover, the prediction power of the model gives us high confidence that our

design methodology may be directly used to tackle important open problems of

drug design, or used in a multi-scale approach where the results from our model
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could be refined with a more accurate but also a computationally more expensive

protein model.

Finally, this work not only extends our previous results obtained with the

Caterpillar model, but also strengthens the connection among all our work on

lattice heteropolymers and protein unrelated systems such as patchy polymers

[41, 51]. The success of the same design strategy for all these systems demonstrates

that the maximum valence principle is a sufficient condition to satisfy for the

generalized design of low frustration sequences and the prediction of their proper

native state.
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Figure 5. Folding free energy landscape F(DRMSD)/kBTRef of the 15 proteins set selected to test the accuracy of the MEP optimized parameters.
The profiles have a common funnel shape and show a clustering of the free energy minima in the region 1.5 and 2 Å DRMSD consistent with the results
obtained for designed sequences. In b) we plot the free energies for proteins with the worst (2ptl) and the best (3nmd-E) distance of the folded structure from
the native one. For the latter the free energy profile shows a minimum remarkably close to the native state probably due to the highly simplified structure of
protein 3nmd-E. The minimum of 2ptl, on the other hand, is located further away from the low DRMSD values than the other proteins. This apparent
discrepancy is due to the definition of the DRMSD which includes the contribution from the Ca atoms located in the long unstructured tail from the residue 1
to 18. Since the probability of observing that particular conformation in solution is very low, it follows that the particular realization of the native structure has a
large entropy penalty. However if we measure the overlap ignoring the contribution from the tail we see that the predicted structure of the protein core is
again reasonably close to the experimentally determined one (<5.2 Å RMSD). In the insets we compare the experimental structures (in yellow) super-
imposed to the equilibrium configurations (in red), and we show that the proteins refolded with a precision between 2.4 and 4.1 Å RMSD.

doi:10.1371/journal.pone.0112852.g005
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Supporting Information

Figure S1. Folding free energy landscape F(DRMSD)=kBTRef as a function of

DRMSD of the designed protein PDB ids 1CTF close to the folding

temperature.

doi:10.1371/journal.pone.0112852.S001 (TIFF)

Figure S2. On the left: correlation plot between the DRMSD and the RMSD

collective variable. The estimated correlation coefficient from a linear regression

fitting (in red) is <0.8 which increases to <0.98, if we exclude the configurations

for values of DRMSD ,1.5 Å which is below the model resolution, indicating that

the free energy profile should be qualitatively similar if the states are projected

over RMSD instead of DRMSD. On the right: Free Energy folding profile of the

protein 3NMD-E projected over the collective variables DRMSD and RMSD. The

profiles are not identical because the RMSD is more sensitive to local distortions

of the protein with respect to the DRMSD. This is also demonstrated by the wider

free energy minimum which reflects the thermal fluctuations. However, overall

the qualitative shape of the profiles is very similar with between each other in

particular since both have a clear global free energy minimum.

doi:10.1371/journal.pone.0112852.S002 (TIFF)

Figure S3. Correaltion between designed and real Esol profiles. The correlation

coefficient has been estimated from a linear regression fitting (in red) to be be very

high <0.98.

doi:10.1371/journal.pone.0112852.S003 (TIFF)

Figure S4. Folding free energy landscape F(DRMSD)=kBTRef as a function of

DRMSD of the four designed proteins (PDB ids 2l09, 3mx7, chain A of 3obh,

and 1qyp). All profiles have a global minimum around 1.5 and 2 Å DRMSD with a

smooth funnelled shape. Due the approximations present in the model and to

thermal fluctuations is shifted with respect to DRMSD~0 (note that to the value

DRMSD~0 of each profile will correspond a different native structure). Because of

the definition of DRMSD, the smaller the value the fewer are the possible structures

that can have this value of DRMSD. Ultimately, DRMSD~0 is possible only for the

target structure itself. The funnelled profiles with single minimum implies that both

an ensemble of arrested structures and a single alternative fold are less stable

compared to the desired configuration. In the bottom right inset we plot the folding

free energy landscape F(DRMSD,QH)=kBTRef for 3mx7 as a function of both the

DRMSD and the number of hydrogen bonds QH , to give a visual example of the

funnel nature of the folding landscapes. On the left we compare the experimentally

determined structures (in yellow) with a typical folded conformation selected as the

sampled configurations with the lowest energy at the free energy minimum (in red).

The RMSD value is indicated in the middle.

doi:10.1371/journal.pone.0112852.S004 (TIFF)

Table S1. Optimized values of the residue-solvent ESol and residue-residue

E(Sk)(Sl) interaction parameters. The uncertainty on the values is <¡0.01.

doi:10.1371/journal.pone.0112852.S005 (PDF)
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Table S2. List of PDB id’s used as training set for the maximum entropy

parameters optimization.

doi:10.1371/journal.pone.0112852.S006 (PDF)

Table S3. Comparison of the average composition of the designed sequences

and the natural sequences used in the parameter optimization. It is important

that since we do not model Cys-Cys bond and the Proline rigid bond we have

excluded them from the design alphabet. This is why the frequency associated to

those amino acids is zero in the designed sequences. We are currently working on

implementing such special cases in the Caterpillar model. We have highlighted in

bold the amino acids types with the largest discrepancies namely: Histidine,

Methionine, Tryptophan, Tyrosine. Such amino acids are know to be the one with

the lowest appearance frequency in nature. Since we did not impose any

restriction on the design procedure over the relative abundance of amino acids in

nature it is not surprising to find the largest discrepancies in the composition for

such amino acids.

doi:10.1371/journal.pone.0112852.S007 (PDF)

Table S4. Designed sequences.

doi:10.1371/journal.pone.0112852.S008 (PDF)

Table S5. Sequences obtained during the last step of the matrix optimization

procedure. The amino acid composition is identical for all sequences and the first

is the natural sequences taken from the pdb file.

doi:10.1371/journal.pone.0112852.S009 (PDF)

Table S6. Designed sequences under the additional constraint that local

repetition of up to 5 residues are forbidden.

doi:10.1371/journal.pone.0112852.S010 (PDF)

Table S7. Summary of the refolded structures with the natural sequences. The

DRMSD value is taken form the minimum of the folding free energy (see Fig. 5),

while the Overlap, the gRMSD and the TM-score are calculated using the Max

Cluster program from Alex Herbert (http://www.sbg.bio.ic.ac.uk/maxcluster/

index.html). The Overlap is a measure of percentage of matched structural

elements between the native and the refolded structures. The gRMSD and TM-

score are calculated over the overlapping structural elements. TM-score was

defined by Zhang et al. [48, 49]. The low overlapping value for 2ptl and 1vif are

due to the unstructured sections of the proteins.

doi:10.1371/journal.pone.0112852.S011 (PDF)

Text S1. Supplemental Material containing the details about the model and

simulations techniques together with the derivation of the scoring function

with the Maximum Entropy Principle.

doi:10.1371/journal.pone.0112852.S012 (PDF)
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