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Abstract

Supra-maximum surgical tumor resection without neurological damage is highly valuable

for treatment and prognosis of patients with glioblastoma multiforme (GBM). We devel-

oped a GBM-specific fluorescence probe using IRDye800CW (peak absorption/

emission, 778/795 nm) and bombesin (BBN), which (IRDye800-BBN) targets the

gastrin-releasing peptide receptor, and evaluated the image-guided resection efficiency,

sensitivity, specificity, and survivability. Twenty-nine patients with newly diagnosed

GBM were enrolled. Sixteen hours preoperatively, IRDye800-BBN (1 mg in 20 ml sterile

water) was intravenously administered. A customized fluorescence surgical navigation

system was used intraoperatively. Postoperatively, enhanced magnetic resonance

images were used to assess the residual tumor volume, calculate the resection extent,

and confirm whether complete resection was achieved. Tumor tissues and non-

fluorescent brain tissue in adjacent noneloquent boundary areas were harvested and

assessed for diagnostic accuracy. Complete resection was achieved in 82.76% of

patients. The median extent of resection was 100% (range, 90.6–100%). Eighty-nine

samples were harvested, including 70 fluorescence-positive and 19 fluorescence-

negative samples. The sensitivity and specificity of IRDye800-BBN were 94.44% (95%

CI, 85.65–98.21%) and 88.24% (95% CI, 62.25–97.94%), respectively. Twenty-five
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patients were followed up (median, 13.5 [3.1–36.0] months), and 14 had died. The mean

preoperative and immediate and 6-month postoperative Karnofsky performance scores

were 77.9 ± 11.8, 71.3 ± 19.2, and 82.6 ± 14.7, respectively. The median overall and

progression-free survival were 23.1 and 14.1 months, respectively. In conclusion, GBM-

specific fluorescent IRDye800-BBN can help neurosurgeons identify the tumor bound-

ary with sensitivity and specificity, and may improve survival outcomes.
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1 | INTRODUCTION

Glioblastoma multiforme (GBM) is considered a grade IV malignant gli-

oma according to the World Health Organization (WHO) and is among

the malignancies with the worst prognoses. No cure is presently avail-

able, and affected patients have a median overall survival (OS) of

14.6 months after treatment with a standard combination of surgery,

radiation therapy, and chemotherapy.1-3

A maximum safe tumor resection is the current goal in the treat-

ment of GBM.4-6 However, this goal is extremely difficult to achieve

because characteristically, GBM is diffusely infiltrating and highly pro-

liferative and generally does not display a location preference.7 Addi-

tionally, more than 50% of GBM tumors are located near or within the

eloquent areas of the brain.8 Damage to a functionally eloquent area

can cause inevitable postoperative neurological deficits, including

motor weakness, sensory deficits, language difficulties, and visual def-

icits.9 During the past two decades, advanced neurosurgical imaging

technologies, such as neuronavigation,10,11 intraoperative ultrasonog-

raphy (iUS),12,13 and intraoperative magnetic resonance imaging

(iMRI),14,15 have been developed to achieve the maximum degree of

tumor resection without incurring neurological deficits. Although

these technologies have improved the potential to achieve a complete

resection of GBM, all are associated with limitations and technical

issues.16 For example, iMRI may cause image distortion and inaccurate

target registration,17 and imaging artifacts that arise during iUS guid-

ance could reduce the tumor detection sensitivity and specificity.18

Moreover, a residual disease measuring <1 cm in diameter might be

missed by iUS.19

Optical fluorescence imaging is a cost-effective and time-efficient

alternative technique that can be used during GBM resection.

5-Aminolevulinic acid (5-ALA), a natural biochemical precursor of

hemoglobin, can elicit the synthesis and accumulation of fluorescent

porphyrins in malignant glioma tissue. A Phase III trial verified that

5-ALA enables a more complete resection of tumors and has led to

improvements in 6-month progression-free survival (PFS) outcomes.20

Fluorescein sodium (FS) is a fluorophore that, when intravenously

injected, accumulates selectively in high-grade glioma (HGG) cells via

an altered blood–brain barrier (BBB). A Phase II study reported that

FS injection is both safe and feasible and enables a high rate of com-

plete resection.21 However, both 5-ALA and FS lack active targeting

capabilities and are characterized by limited penetration depths,

strong background fluorescence, and autofluorescence. Near-infrared

fluorescent (NIRF) dyes, which have excitation and emission wave-

lengths between 700 and 900 nm, could be used to overcome these

negative effects.22,23

Gastrin-releasing peptide receptor (GRPR), also known as bombesin

(BBN) receptor subtype II, is overexpressed in multiple tumor types,

including glioma.24 We previously verified the feasibility and safety of

BBN conjugated to the NIRF dye IRDye800CW (IRDye800-BBN) dur-

ing GBM surgery.25 In this study, we aimed to determine the re-

section efficiency, sensitivity, specificity, and survivability of IRDye800-

BBN-assisted neurosurgery for patients with GBM.

2 | MATERIALS AND METHODS

2.1 | Patients

Patients with preoperative enhanced MRI imaging and/or pathological

evidence of a newly diagnosed GBM considered suitable for surgical

removal were recruited at Peking Union Medical College Hospital and

Beijing Tiantan Hospital. The exclusion criteria were as follows:
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preoperative Karnofsky Performance Status (KPS) score < 70; mental

disease; severe liver or kidney illness with a serum creatinine concen-

tration >3.0 mg/dl; any liver enzyme level ≥5× above the normal

upper limit; a severe allergy to intravenous radiographic contrast;

claustrophobia or an inability to accept positron emission tomography

(PET)/computed tomography (CT) or PET/MRI scanning; pregnancy or

breast feeding; and an inability to voluntarily provide informed

consent.

The tumor locations relevant to the eloquent brain areas were

categorized as Grades I, II, and III, indicating noneloquent, near-

eloquent areas, and eloquent areas, respectively. The ethics commit-

tee of the Peking Union Medical College Hospital and Beijing Tiantan

Hospital approved this study. All included patients provided signed

informed consent preoperatively and underwent surgery at Beijing

Tiantan Hospital. The clinical trial number of the study is NCT

02910804.

2.2 | IRDye800-BBN preparation

Clinical-grade IRDye800-BBN (Figure 1a) was produced using current

good manufacturing practices (cGMP). Briefly, 10.5 mg of BBN and

8.0 mg of IRDye800CW (LI-COR Biosciences Inc.) were dissolved in

4 ml of dimethyl formamide (DMF) in a 20 ml glass vial, to which

0.05 ml of N,N-diisopropylethylamine was added. The mixture was

stirred at room temperature for 2 hr and monitored via analytical

high-performance liquid chromatography (HPLC). Once IRDye800CW

was completely consumed, the mixture was diluted with 4 ml of water

purified on a C-18 prep-HPLC in two separate injections with a linear

gradient starting from 6% A (0.1% TFA in acetonitrile) and 94% B

(0.1% TFA in water) for 5 min; this was increased to 65% A in 35 min

at a flow rate of 12 ml/min. The fractions containing the desired prod-

uct were collected, combined, and lyophilized to give 11.4 mg of final

product with an 81.4% yield. The purity of the product was >97% by

F IGURE 1 Description of glioblastoma multiforme-specific fluorescence-guided surgery using IRDye800-BBN. (a) IRDye800-BBN formula.
(b) IRDye800-BBN was intravenously infused 16 hr before induction of anesthesia. (c) After opening the dura, DPM-III-01 was used to determine
the area and boundary of the tumor. (d) After the operation, pathological examination of the samples was conducted
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analytical HPLC with a linear gradient starting from 5% A and 95% B

for 5 min; this was increased to 65% A by 35 min at a flow rate of

1 ml/min. The identity of the product was verified by LC–MS:

[(MHH)/2]++ = 1,017.8367 (m/z), calc: 2036.7891 (C95H128N16O24S5).

2.3 | Fluorescence imaging system

We developed a customized imaging system (DPM-III-01, Zhuhai

Dipu Medical Technology Co., Ltd.) based on the fluorescence

properties of IRDye800-BBN.26-28 We designed a new 778 nm

laser and re-optimized the optical path and optical elements to cap-

ture the emission fluorescence signal at 795 nm with maximum

efficiency. The DPM-III-01 system could simultaneously acquire

white light images while performing NIR imaging with an overlaid

imaging capability. In addition, it can convert NIR images into

heat maps.

2.4 | Surgical protocol

IRDye800-BBN was infused intravenously at a dose of 1 mg in 20 ml

of sterile water and was administered 16 hr before the induction of

anesthesia (Figure 1b).25 Neuronavigation was allowed only for the

incision, bone flap, and cortex incision region, but not while resecting

the tumor or dissecting the residual tumor around the tumor cavity.

During GBM resection, the DPM-III-01 system was used to determine

the extent of resection. Other techniques, such as iUS and iMRI, were

not utilized.

After opening the dura, the DPM-III-01 was used to determine

the area and boundary of the tumor (Figure 1c). If IRDye800-BBN

fluorescence was present in a safe area, the tumor was resected using

a white-light microscope (M205FA, Leica, Germany). The two pro-

cesses were alternated until wound bed was reached. Finally the

tumor cavity was re-examined using the DPM-III-01. If additional fluo-

rescence was detected in a safe area, the tissue was further resected

and the specimens from different locations were submitted for neuro-

pathological analysis. When safe and feasible, some biopsies were

randomly harvested from nonfluorescent brain tissue in noneloquent

areas around the tumor cavity to assess the diagnostic accuracy. To

avoid inter-surgeon variability, all the operations were performed by

the same neurosurgeon, who had 25 years of experience in brain

tumor practice. All biopsies were analyzed according to standard path-

ological procedures (Figure 1d).

2.5 | MRI analysis

All the patients were intravenously injected with 0.1 mmol/kg body

weight of Magnevist (Omniscan, GE healthcare) and underwent MRI

scans on a 3.0T scanner. The slice thickness was set to 5 mm. Preop-

erative enhanced MRI imaging was performed within 1 week before

surgery. Early postoperative MRI scans were performed within 72 hr

postoperatively. All MRI data were analyzed in the Department of

Neuroradiology at Beijing Tiantan Hospital.

The tumor volume was defined as a high-signal area after

T1-weighted enhancement and was calculated as follows. The tumor

contour of each slice was segmented by two experienced neuropathol-

ogists using Picture Archiving and Communication Systems (PACS) and

was then cross-verified. If discrepancies arose, a consensus opinion

was obtained from another higher-level pathologist. The areas on each

slice were added, and this sum was multiplied by the thickness.

The extent of resection was calculated as: (preoperative tumor

volume—postoperative tumor volume)/preoperative tumor vol-

ume × 100%. The completeness of tumor resection was defined as a

residual tumor volume of <0.175 cm3, in accordance with previous

studies.29,30 Neuropathologists were blinded to the IRDye800-BBN

fluorescence-guided surgery when calculating the completeness of

tumor resection.

2.6 | Follow-up

The patients' living conditions were assessed using the KPS. PFS was

defined as the time interval between surgical treatment and the first

appearance of disease progression. Disease progression was defined

as evidence of residual tumor volume growth in a patient with an

incomplete resection or the presence of new lesions in a patient with

complete resection, according to the Response Assessment in Neuro-

Oncology (RANO) criteria. The endpoint was death from any cause.

OS was defined as the time interval between surgical treatment and

death from any cause. The adverse events experienced by patients

were documented according to the Common Terminology Criteria for

Adverse Event (CTCAE) guidelines, and the relationship between

these events and the use of IRDye800-BBN was analyzed.

2.7 | Statistical analysis

The signal-to-background ratio (SBR) of the IRDye800-BBN fluores-

cence region to the peripheral brain parenchyma (PBP) was calculated

as follows. ImageJ software (Version: 1.52v, National Institutes of

Health, Bethesda, MD) was first used to plot a region of interest (ROI)

in the fluorescent region, and the mean gray value of the ROI (VSignal)

was calculated. Subsequently, a same-sized ROI was placed in the

PBP, and the mean gray value (VBackground) was calculated. The SBR

values of each participant in the study were measured five times by

dividing the VSignal by the VBackground.

Perioperative data are represented using the usual descriptive

statistical methods: mean, median, and standard deviation (SD) for

continuous variables and whole numbers and percentages for categor-

ical variables. Tukey's multiple comparison test was applied to com-

pare the KPS values over time (preoperative, immediate and 6-month

postoperative). A repeated measures analysis of variance and a post-

hoc test based on the tumor eloquence groupings were performed to

determine whether the KPS scores differed across the groups. The
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log-rank test was used to determine the relationship between OS,

methylguanine-DNA methyltransferase (MGMT) promoter methyla-

tion, and the isocitrate dehydrogenase (IDH) gene status. A p-value

<.05 was considered to indicate statistical significance. The sensitivity

and specificity were calculated using the 2015 Standards for

Reporting Diagnostic Accuracy (STARD).31 Both the neuroradiologists

and neuropathologists were blinded to the survival data and

IRDye800-BBN fluorescence data.

3 | RESULTS

3.1 | Patient characteristics

From April 2016 to August 29, 2018 patients who met the inclusion

criteria participated in this study. Their median age was 54 (range,

17–70) years, and their median preoperative KPS score was 80 (range,

70–100). Regarding tumor locations, 8, 9, and 12 tumors were classi-

fied as Grade I, II, and Grade III, respectively. The patients' characteris-

tics are described in Table 1.

3.2 | Fluorescence characteristics

Fluorescence-guided surgery (FGS) with IRDye800-BBN was success-

fully performed on all enrolled patients. The recruited subjects were

treated with FGS according to the preoperative enhanced brain MRI

diagnoses (Figure 2a–c). The mean preoperative contrast-enhanced

tumor volume was 34.10 (range, 2.75–87.76) cm3 (Figure 2d). Immedi-

ately after opening the dura, the superficial tumor exhibited obvious

fluorescence (arrow). In contrast, the normal cortical area and superfi-

cial vein (arrowhead) showed no fluorescence due to the sufficient

washout time (Figure 2e). However, for deep-seated tumors, fluores-

cent signals could only be detected following sufficient exposure. The

mean SBR value of all fluorescent tumor regions was 4.24 ± 0.53,

which allowed neurosurgeons to differentiate tumor tissues from PBP

sufficiently during surgery. The strong fluorescence signal lasted long

enough to complete the tumor resection. After debulking most of the

tumor, any fluorescence remaining in the tumor cavity indicated the

residual tumor (arrow), with an SBR value of 3.17 ± 0.30 (Figure 2f).

Further resection was terminated when a tumor cavity without any

obvious fluorescence, with an SBR value of 1.18 ± 0.08 (Figure 2g).

The relationship between the above three SBR values is shown in

Figure 2h.

Postoperative MRI demonstrated that a total tumor resection was

achieved in the representative case (Figure 2i–k). Complete re-

section was achieved in 24 of 29 included patients (82.76%)

(Figure 2l); of the remaining 5 patients, 2 had Grade II tumors near

eloquent areas such as the insular lobe, and 2 had Grade III tumors

located in eloquent areas such as the precentral gyrus and pontine

areas. Intraoperative electrophysiological monitoring showed that fur-

ther resection of these lesions would damage specific functions, and

the operations were stopped despite the remaining fluorescence-

emitting tissues in the cavities. Notably, one patient had residual

tumors that did not fluoresce intraoperatively, leading to incomplete

tumor resection. Because GBM tumors are highly infiltrative, the fur-

ther away from the tumor core or bulk, the more infiltrative cells are

present. Thus, there may still be tumor cells present without fluores-

cence in the glial hyperplasia area, which is intraoperatively regarded

as the tumor boundary.

3.3 | Sensitivity and specificity

Eighty-nine samples were harvested at the tumor margin, including

70 fluorescence-positive and 19 fluorescence-negative samples

(Table 2). Of the 70 biopsies harvested from IRDye800-BBN fluores-

cent regions, 68 showed evidence of a GBM tumor. Of the 19 biopsies

in the nonfluorescent regions from 19 patients, 15 showed no

TABLE 1 Patient characteristics

Variables Values

No. of enrolled patients 29

Age (years)

Median 54

Range 17–70

Preoperative KPS score

Median 80

Range 70–100

Preoperative contrast-enhanced tumor volume (cm3)

Mean 34.10

Median 29.51

Range 2.75–87.76

Eloquence

Grade I (noneloquent) 8

Grade II (near-eloquent) 9

Grade III (eloquent) 12

Extent of resection

Median 100%

Range 90.6–100%

OS (months)

Median 23.1

PFS (months)

Median 14.1

IDH

Wild-type 15

Mutant 10

MGMT

Methylated 16

Unmethylated 9

Abbreviations: IDH, isocitrate dehydrogenase; KPS, Karnofsky perfor-

mance status; MGMT, methylguanine-DNA methyltransferase; OS, overall

survival; PFS, progression-free survival.
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confirmed GBM tumor. The SBR value of true positive specimens was

3.71 ± 0.39, while that of true negative specimens was 1.15 ± 0.06

(Figure 3a). The resulting sensitivity and specificity of IRDye800-BBN

for identifying GBM tumors were 94.44% (95% confidence interval

[CI] 85.65–98.21%) and 88.24% (95% CI 62.25–97.94%), respectively.

Consequently, the median gross total resection (GTR) of all GBM

patients was 100% (range, 90.6–100%). Postoperative pathological

results showed that the positive specimens had a large number of

GRPR positive cells while the negative specimens only had a few

(Figure 3b).

3.4 | Progression-free survival and OS

No serious adverse reactions associated with IRDye800-BBN use

were reported during the follow-up. Four of 29 patients, including

one patient without complete resection, refused to participate in the

follow-up study because of personal or family reasons. Of the

25 patients who were followed up, 16 exhibited MGMT promoter

methylation and 15 harbored an IDH1 mutation. The mean (±SD) pre-

operative, immediate postoperative, and 6-month postoperative KPS

scores of these patients were 77.9 ± 11.8, 71.3 ± 19.2, and 82.6

F IGURE 2 Preoperative, intraoperative, and postoperative imaging data of fluorescence-guided surgical resection of a glioblastoma
multiforme (GBM) with IRDye800-BBN. (a–c) Reprehensively preoperative enhancing brain magnetic resonance imaging (MRI) of a right frontal
GBM. (d) Preoperative contrast-enhanced tumor volume. (e) Immediately after opening the dura, the tumor (arrow) showed an obvious
fluorescence; the normal cortical area and superficial vein (arrowhead) showed no fluorescence. (f) The residual tumor (arrow) showed an obvious

fluorescence. (g) The tumor cavity did not exhibit any obvious fluorescence, indicating a complete resection. (h) The signal-to-background ratio
(SBR) values of the primary tumor, residual tumor, and tumor cavity. (i–k) Postoperative MRI confirmed a lack of residual tumor. (l) Extent of
resection in different tumor locations

TABLE 2 Pathologically confirmed
glioblastoma multiforme (GBM) and non-
GBM biopsies according to
intraoperative fluorescence

Pathology-positive Pathology-negative Total

Fluorescence-positive 68 2 70

Fluorescence-negative 4 15 19

Total 72 17 89
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± 14.7, respectively (Figure 3c). The KPS scores did not differ across

the tumor eloquence groups (p = .311), indicating that patients in

Group III had similarly good outcomes as those in Group I. In other

words, our method appeared to preserve the functional brain tissue.

The median OS was 23.1 months, and the median PFS was

14.1 months. The longest OS exceeded 36 months (Figure 3d), and

the longest PFS was 23.8 months. In contrast, the four patients who

did not achieve a complete resection had a median OS of only

11.4 months. During follow-up, 76% (19/25) of patients completed

the standard postoperative chemotherapy and radiotherapy.

4 | DISCUSSION

Our prospective clinical trial demonstrated that FGS of a GBM with

IRDye800-BBN was feasible and effective and could yield a prolonged

F IGURE 3 Pathology results and patients' Karnofsky performance status (KPS) scores and survival curve. (a) In the left subgraph, fluoresce
profile of a representative true positive specimen (arrow) and true negative specimen (arrowhead); in the right subgraph, SBR values of true
positive specimens and true negative specimens of all patients. (b) H&E, Ki-67 and GRPR IHC staining results of specimens in panel A. Scale bar,
50 μm. The positive specimen was confirmed by H&E and Ki-67 staining and had a large number of GRPR positive cells (left column), while the
negative specimen only had a few (right column). (c) Preoperative, immediate postoperative, and 6-month postoperative KPS scores. (d) Kaplan–
Meier plots of overall times stratified by extent of tumor resection
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PFS and OS. During surgery, the specific fluorescence signals emitted

by tumor tissues were strong enough for neurosurgeons to discrimi-

nate these areas from PBP, lasted long enough to complete the tumor

resection, and did not interfere with routine white-light operative

microscopy.

Regarding GBM surgery, increasing evidence indicates that max-

imal resection could improve the life expectancy of the patient.

However, it is crucial to minimize the risk of perioperative morbid-

ity, especially neurological damage.16 To circumvent the brain shift

and provide the neurosurgeon with surgical information updated

real-time, various advanced intraoperative imaging methods have

been developed, including FGS with 5-ALA or FS. However, these

fluorescent agents are neither NIRF dyes nor are actively tumor

specific. Compared with visible light, NIR light has a higher SBR

value because of the low level of autofluorescence and a greater

penetration depth because of the low levels of tissue absorption

and scattering.32 Therefore, we choose IRDye800CW,22 a widely

used NIRF dye, to be coupled with BBN for developing a new

targeted contrast agent. BBN could bind specifically to GRPR, which

is overexpressed in a variety of tumor tissues and is associated with

tumor infiltration and growth.33 Flores et al found that GRPR was

detected in 100% of the glioma samples analyzed, especially in the

24 cases of GBM. Highly expressed GRPR was also observed in

tumor endothelial cells. Although GRPR was detected in 10–50% of

neuronal cells, it was not found in glial cells from normal brain tis-

sue samples.34 Another study also showed that GRPR was not

expressed in astrocytes and microglial cells. It was important to

intraoperatively differentiate the tumor with the white matter,

where only astrocytes and microglial cells existed. Therefore, GRPR

was a good and specific target candidate for GBM imaging. In addi-

tion, because it is highly specifically targeted to the tumor and uses

an intravenous route, the IRDye800-BBN dose was much lower

than the required doses of 5-ALA and FS for FGS (1 mg per patient

vs. 20 mg/kg for 5-ALA and 5–10 mg/kg for FS).

Although there was no control group, the OS and PFS durations

found in this study were significantly higher than those found in other

studies that used traditional visible light, 5-ALA, and FS.3 For instance,

Stummer et al enrolled 322 patients and randomly assigned them to

the visible white or 5-ALA groups. After a median follow-up of

35.4 months, the respective median PFS and OS durations were 3.6

and 13.5 months in 131 patients for visible white, and 5.1 and

15.2 months in 139 patients for 5-ALA, respectively.20 Remarkably,

our study included 9 patients with Grade II tumors and 12 patients

with Grade III tumors, which accounted for 72% of the total study

population. The mean preoperative contrast-enhanced tumor volume

was 34.10 cm3. In comparison, the corresponding values were 65%

and 22.4 cm3, respectively, in a study where Acerbi and colleagues

used FS, in which the respective median PFS and OS durations were

7 months and 12 months, respectively.21 Thus, the possibility that the

tumor location and size might yield better results has likely been ruled

out, further validating out results. However, other hidden variables

may have complicated a direct comparison between the studies,

including the surgeon's level of skill and the postoperative care

provided. Therefore, these conclusions should be interpreted with sci-

entific accuracy and caution.

We acknowledge that the complete resection of a GBM tumor is

not always feasible, even when using targeted IRDye800-BBN. Exci-

sion should be avoided when a tumor has invaded the functional areas

of the brain. However, the FGS method, including 5-ALA and FS, is

not sensitive for low-grade gliomas because the BBB remains intact,

and it is therefore difficult for contrast agents to bind to tumor tis-

sues.35 In our present study, all four false negative specimens were

pathologically confirmed to be low-grade components of a secondary

GBM pathological analysis confirmed that the two false positive speci-

mens were from the reactive gliosis zone where the density of cancer

cells was very low. However, the BBB might have been partially dam-

aged. Therefore, IRDye800-BBN was found in tissues where other

fluorophores, such as 5-ALA, were also found. Moreover, we found

that patients in the IDH1 mutation subgroup had a median OS of

26.9 months, whereas those in the IDH1 wild-type subgroup had a

median OS of 13.5 months. Patients in the methylated MGMT sub-

group had a median OS of 26.9 months, compared to 12.8 months in

the unmethylated MGMT subgroup. However, our analysis revealed

no statistical effect of the MGMT promoter (p = .077) or IDH1 gene

status (p = .289) on OS, although this may be due to our small sample

size. Therefore, the main limitations of this study were the small sam-

ple size and lack of a control group with randomization. Given our cur-

rent research progress, we will perform a randomized controlled trial

of this method versus routine clinical operations using white-light

microscopy or other fluorescent dyes (e.g., 5-ALA).

5 | CONCLUSIONS

This study indicated that GBM-specific NIRF IRDye800-bombesin can

help neurosurgeons sensitively and specifically identify the tumor

boundary for complete resection, which may improve survival out-

comes. FGS with targeted contrast agents can also be applied in dif-

ferent diseases to benefit patients.
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