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Entry of PIP3-containing polyplexes 
into MDCK epithelial cells by local 
apical-basal polarity reversal
Cuifeng Wang, Edwin de Jong, Klaas A. Sjollema & Inge S. Zuhorn

The polarized architecture of epithelium presents a barrier to therapeutic drug/gene carriers, which 
is mainly due to a limited (apical) internalization of the carrier systems. The bacterium Pseudomonas 
aeruginosa invades epithelial cells by inducing production of apical phosphatidylinositol-3, 4, 
5-triphosphate (PIP3), which results in the recruitment of basolateral receptors to the apical membrane. 
Since basolateral receptors are known receptors for gene delivery vectors, apical PIP3 may improve 
the internalization of such vectors into epithelial cells. PIP3 and nucleic acids were complexed by the 
cationic polymer polyethylenimine (PEI), forming PEI/PIP3 polyplexes. PEI/PIP3 polyplexes showed 
enhanced internalization compared to PEI polyplexes in polarized MDCK cells, while basolateral 
receptors were found to redistribute and colocalize with PEI/PIP3 polyplexes at the apical membrane. 
Following their uptake via endocytosis, PEI/PIP3 polyplexes showed efficient endosomal escape. 
The effectiveness of the PIP3-containing delivery system to generate a physiological effect was 
demonstrated by an essentially complete knock down of GFP expression in 30% of GFP-expressing 
MDCK cells following anti-GFP siRNA delivery. Here, we demonstrate that polyplexes can be 
successfully modified to mimic epithelial entry mechanisms used by Pseudomonas aeruginosa. These 
findings encourage the development of pathogen-inspired drug delivery systems to improve drug/gene 
delivery into and across tissue barriers.

Gene therapy requires safe and efficient carriers that deliver the nucleic acids (DNA, RNA) into cells. In order to 
achieve this aim, a number of obstacles needs to be overcome by the gene delivery system. At the cellular level, 
multiple membranous barriers need to be passed, namely the plasma membrane, the endosomal membrane, and 
for DNA the nuclear membrane. Moreover, for in vivo applications the gene delivery system needs to be stable in 
biological fluids until it reaches the target cells. Historically, epithelia, that line the cavities and surfaces of organs, 
were considered easy targets for gene delivery, because of their direct accessibility via topical and enteral adminis-
tration. However, epithelia turn out to form huge barriers for gene delivery because they display multiple features 
that discourage the uptake of gene vectors.

Epithelial monolayers consist of polarized cells that are connected through tight junctions, that separate the 
plasma membrane of the cells into an apical and basolateral domain. The apical surface, that faces the lumen, is 
strengthened by actin filaments close to the plasma membrane. The tight junctions, together with the junctions 
that are formed between neighboring cytoskeletal networks through desmosomes, prevent the paracellular trans-
port of all molecules, with the exception of very small polar molecules1,2. This way, the epithelial cell monolayer 
forms a physical barrier, thereby preventing the penetration of harmful substances including pathogens. In addi-
tion, the innate immune system broadly protects the epithelium against the interaction with pathogens and also 
stimulates the adaptive immune response3. Despite these defense mechanisms, opportunistic pathogens like the 
bacterium Pseudomonas aeruginosa have established ways to invade the polarized epithelium. It was recently 
shown that when P.aeruginosa binds to the apical surface, basolateral proteins become recruited to the apical 
surface by activation of the PI3K/Akt pathway, leading to the formation of basolateral domains at the apical 
surface4. At the site of bacterium binding, protrusions are formed that are enriched in phosphatidylinositol-3, 4, 
5-trisphosphate, basolateral proteins, and actin. The integrity of the overall cell polarity in this process is main-
tained, which suggests that P.aeruginosa induces the movement of basolateral proteins to the apical surface via 
transcytosis rather than diffusion5.
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In mammalian cells, phosphoinositides play a key role in determining cell polarity. Phosphatidylinositol-4, 
5-bisphosphate (PIP2) primarily localizes to the apical surface, whereas phosphatidylinositol-3, 4, 5-trisphosphate 
(PIP3) is found at the basolateral membrane6. Insertion of exogenous PIP3 at the apical surface results in the rapid 
transformation of regions of the apical surface into a membrane with the composition of the basolateral surface 
by basolateral-to-apical transcytosis7. Since the basolateral membrane is prone to endocytosis of viral (e.g. Ad, 
AAV) and non-viral vectors (e.g. LF2k)8–11, the presence of basolateral domains at the apical surface may improve 
the endocytic capacity of the epithelium for gene delivery vectors that are luminally applied. Here, we hypothesize 
that local apical-basal polarity reversal in polarized epithelial cells may facilitate the entry of gene delivery vectors 
without barrier disruption.

Polyethylenimines (PEIs) are promising non-viral polymeric gene carriers, that can condense nucleic acids 
into nanoscale complexes through electrostatic interaction12. In general, negatively charged nucleic acids show 
poor uptake in cells, whereas positively charged PEI-nucleic acid complexes, i.e., PEI polyplexes, significantly 
improve nucleic acid internalization via endocytosis. PEIs with a high cationic charge density also serve to 
facilitate the endosomal escape of the nucleic acids by the so-called “proton sponge effect”13, which represents 
an important step in the gene delivery process that critically determines transfection efficiency14. In addition, 
PEI has been used for PIP3 delivery into cells15. Therefore, we investigated whether a ternary complex of PEI, 
nucleic acids, and PIP3 could be used to enhance gene delivery into polarized epithelial cells. Ternary com-
plexes of PEI, DNA and poly (α -glutamic acid) or heparin have previously been made to reduce the overall 
positive charge of the complexes in order to avoid the undesired interaction with negatively charged serum pro-
teins, which may lead to recognition and clearance by the reticuloendothelial system16,17. Here, it is investigated 
whether PIP3-containing PEI polyplexes induce the recruitment of basolateral receptors to the apical cell surface 
in MDCK cells. In addition, PEI polyplexes with and without PIP3 are compared for their cellular binding and 
uptake, intracellular trafficking, endosomal escape, and transfection efficiency.

Results and Discussion
Apical incubation of MDCK cell monolayers with PIP3/Histone recruits basolateral receptors 
to the apical surface.  The PI3-Kinase (PI3K) pathway regulates many cellular processes, including cell 
metabolism, cell survival, and apoptosis18. Phosphatidylinositol-3,4,5-trisphosphate (PIP3), the product of PI3K 
activity and a key signaling molecule, acts by recruiting proteins that contain PIP3-interacting pleckstrin-ho-
mology (PH) domains to cell membranes. In polarized epithelial cells, PIP3 is localized at the basolateral plasma 
membrane and excluded from the apical plasma membrane, while PIP2 is enriched at the apical membrane. First, 
the polarized distribution of PIP3 was verified in polarized MDCK cells that were stably transfected with the PIP3 
sensor GFP-PH-Akt, i.e., a GFP fusion protein of the PIP3-binding pleckstrin-homology domain of Akt7. GFP-
PH-Akt localized at the basolateral plasma membrane and partially in the cytoplasm, and was typically absent 
from the apical membrane (Fig. 1A; left panel). Exogenous addition of PIP3 to the apical plasma membrane 
domain, through the use of the shuttle protein Histone H1, resulted in the appearance of GFP-PH-Akt in clusters 
at the apical plasma membrane (Fig. 1A; right panel), indicative for the successful insertion of PIP3 into the apical 
plasma membrane. The clustered appearance likely reflects their presence in protrusions, as was previously shown 
by Gassama-Diagne et al.7 Besides, they showed that basolateral proteins are present within these protrusions, 
whereas apical proteins are excluded7.

In previous work we showed that β 1-integrin receptors, that normally mediate cell-cell and cell-ECM con-
tact, play a role in the internalization of non-viral gene delivery vectors by MDCK cells11. Likewise, integrins are 
exploited by viruses to attach to and infect epithelial cells19,20. Izmailyan and colleagues found that vaccinia virus 
invasion through β 1-integrin activates PI3K/Akt signaling21. We investigated whether upon the delivery of exog-
enous PIP3 to the apical plasma membrane, β 1-integrin receptors, that typically localize to the basolateral surface 
in MDCK monolayers, become exposed at the apical membrane. Figure 1B shows that in control cells β 1-integrin 
(in green) is localized at the basolateral membrane (Fig. 1B; left panel). However, after addition of PIP3/Histone 
H1 complexes, clusters of β 1-integrin were found at the apical surface, as indicated by their localization above the 
apical plane indicated by actin (Fig. 1B; right panel).

Next, the effect of exogenous PIP3 addition on syndecan-1 localization was investigated. Syndecan-1 is a 
transmembrane heparan sulfate proteoglycan (HSPG) involved in cell-cell and cell-ECM adhesion, growth fac-
tor activation, tumor growth, and microbial infection22. Like β 1-integrin, syndecans were shown to play a role 
in the binding of gene vectors23,24. Specifically, in HeLa cells gene vectors are captured by actin-rich filopodial 
extensions, while local clustering of filopodia-localized syndecans appear instrumental in their processing to the 
cell body, which is followed by cellular entry24. In control MDCK monolayers, syndecan-1 was mostly present at 
the basolateral membrane, i.e., below the tight junction (ZO-1) level, and in small apical and cytosolic domains 
(Fig. 1C; left panel). However, after treatment of MDCK cells with PIP3/histone large clusters of syndecan-1 
appeared at the apical membrane (Fig. 1C; right panel). These results demonstrate that the insertion of exogenous 
PIP3 into the apical surface of polarized MDCK cells induces the redistribution of receptors - previously impli-
cated in host-lipoplex/polyplex interactions - from the basolateral to the apical surface.

Formation and characterization of PEI/PIP3 polyplexes.  In addition to histones, other vectors 
such as cationic polymers (dendrimers and polyethylenimine (PEI)) have been used for PIP3 delivery to cells15. 
Interestingly, these vectors are also used for nucleic acid delivery, because of their ability to condense nucleic 
acids (DNA12, RNA25, oligonucleotides14) into nanoscale complexes by electrostatic interaction. Here, we investi-
gated whether PEI/PIP3 polyplexes can be used to enhance the delivery of genetic cargo into polarized epithelial 
cells through the recruitment of basolateral receptors to the apical membrane, thereby facilitating the subse-
quent uptake of the gene vector. Fluorescently labeled PEI/PIP3 complexes were spontaneously formed through 
electrostatic interactions of the negatively charged phosphate groups in DNA and PIP3, with the positively 
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Figure 1.  Apical incubation of MDCK cells with PIP3/Histone induces recruitment of basolateral 
receptors. (A) Polarized MDCK cells stably expressing GFP-PH-Akt (green) were treated with PIP3/Histone 
complex, or without treatment (control), for 30 minutes. After cell fixation, F-actin was stained with phallodin-
Alexa Fluor546 conjugate (red). (B) After apical addition of PIP3/Histone H1 complex, cells were fixed and 
stained for β 1-integrin (green), actin (red). (C) After apical addition of PIP3/Histone H1 complex, cells were 
stained for Syndecan-1(green), ZO-1(red). Scale bar is 5 μ m.
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charged amino nitrogen groups in PEI. The particle size and zeta potential of PEI/DNA/PIP3 complexes was 
253.2 ±  39.9 nm and 18.6 ±  0.5 mV, respectively (Table 1).

Upon apical incubation of MDCK monolayers with the ternary PEI/DNA/PIP3 complexes, the PEI/DNA/
PIP3 particles formed clusters of more than 20 μ m in diameter (Supplementary Figure S1B). These large aggre-
gates were not found when PEI/DNA/PIP3 complexes were incubated in cell culture medium in the absence of 
cells (Supplementary Figure S1A). This suggests that the formation of large aggregates is dependent on the inter-
action of the particles with the cells. A similar phenomenon has been described for P. aeruginosa, which formed 
large aggregates following interaction with the apical surface of epithelial cells5.

PEI/PIP3 polyplexes deliver PIP3 and recruit basolateral receptors to the apical plasma mem-
brane of MDCK cells.  To determine whether, similar to PIP3/histone (Fig. 1), PEI/PIP3 polyplexes can 
deliver PIP3 to the apical plasma membrane of polarized epithelial cells, PEI/PIP3 polyplexes were applied to 
the apical surface of MDCK cell monolayers that stably expressed the PIP3 sensor GFP-PH-Akt. The PEI/PIP3 
polyplexes were double-labeled with fluorescent PIP3-Bodipy-TMR and Cy5-pDNA, to visualize their localiza-
tion. After one hour of incubation, a clear local apical accumulation of GFP-PH-Akt was detected adjacent to 
the PIP3-Bodipy-TMR (red) signal that colocalized with the Cy5-pDNA (blue) signal, indicating the recruit-
ment of GFP-PH-Akt at the site of PEI/PIP3 polyplex binding to the apical cell surface (Fig. 2A, right panel). 
In untreated cells, GFP-PH-Akt localized exclusively at the basolateral surface (Fig. 2A, left panel). Also the 
addition of PEI polyplexes, i.e., without PIP3, to the apical surface did not result in the apical accumulation of 
GFP-PH-Akt (Fig. 2A, middle panel). In MDCK cell monolayers that were treated with PEI/PIP3 polyplex, on 
average 20% of the cells showed apical PH-Akt (PIP3) clusters and typically one cluster was observed per cell 

Particle size (nm) Zeta potential (mV)

PEI/DNA/PIP3 253.2 ±  39.9 18.6 ±  0.5

PEI/DNA 92.4 ±  1.0 18.3 ±  1.9

Table 1.  The particle size and zeta potential of PEI/DNA (N/P 10) and PEI/DNA/PIP3 (N/P 6.3).

Figure 2.  Apical incubation of MDCK cells with PEI/DNA/PIP3 polyplexes leads to PI3-Kinase activation. 
(A) Polarized MDCK cells stably expressing GFP-PH-Akt (green) were treated with PEI/DNA/PIP3 or PEI/
DNA complex, or without any treatment (control). Plasmid DNA was labeled by Cy5 (blue), PIP3 was labeled 
by BODIPY-TMR (red). Scale bar is 5 μ m. (B) The presence of apical PIP3 (PH-Akt) clusters was quantified 
from three independent experiments; per condition 80-100 cells were analyzed. Data are presented as 
mean ±  SD. Two-tailed t-test was used to determine statistical difference between each treatment group and 
control. *p =  0.006. (C) MDCK cells were treated with PEI/DNA, and PEI/DNAPIP3 complexes. Cell lysates 
were analyzed for phosphorylated Akt and total Akt expression by Western blotting. Actin served as a loading 
control. The numbers below the lanes indicate the phospho-Akt/total Akt ratio.
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(Fig. 2B). Furthermore, the addition of PEI/DNA/PIP3 complexes, but not PEI/DNA complexes, to the apical 
side stimulated the phosphorylation of Akt, which occurred in a PI3-Kinase-dependent manner (Fig. 2C). The 
latter was shown by the fact that in the presence of the PI3-Kinase inhibitor LY294002, Akt-phosphorylation was 
effectively inhibited (Fig. 2C). Moreover, LY treatment of MDCK cell monolayers resulted in the redistribution 
of GFP-PH-Akt from the basolateral membrane to the cytosol (Supplementary Figure S2A). Interestingly, sub-
sequent incubation with PEI/DNA/PIP3 complexes still led to apical accumulation of GFP-PH-Akt at the site of 
polyplex binding (Supplementary Figure S2B). These data suggest that the transfer of PIP3 from the polyplex to 
the apical membrane leads to GFP-PH-Akt recruitment and that potentially additional PIP3, arising from the 
conversion of apical PIP2 into PIP3 due to PI3-Kinase activation, does not play a role in the observed effects. 
Together, these data indicate that PEI/PIP3 polyplexes successfully deliver PIP3 to the inner leaflet of the apical 
plasma membrane of polarized MDCK cells.

The recruitment of basolateral receptors upon PIP3 delivery to the apical surface by PEI/PIP3 polyplexes 
was investigated next. In untreated cells β 1-integrin is present at the basolateral plasma membrane (Fig. 3A, 
upper row). Upon the addition of PEI polyplexes to the apical surface, a limited number of complexes bind to 
the apical surface, while β 1-integrin remains at the basolateral domain (Fig. 3A, middle row). In contrast, the 
addition of PEI/PIP3 polyplexes (DNA labeled with Cy5, blue) to the apical surface results in more extensive 
binding of complexes at the apical surface, which at least partially colocalize with β 1-integrin (Fig. 3A, bottom 
row). Similar observations were made for the syndecan-1 and transferrin receptor (TrfR). Specifically, syndecan-1 
and TrfR in untreated cells predominantly resided at the basolateral plasma membrane (upper rows in Fig. 3B,C, 
respectively). The latter is consistent with the 300:1 ratio of basolateral to apical transferrin receptors that was 
measured in polarized MDCK cells26. Addition of PEI polyplexes did not change the distribution of syndecan-1 
and transferrin receptors (middle rows in Fig. 3B,C, respectively). However, following treatment of MDCK cell 
monolayers with PEI/PIP3 polyplexes for one hour, the polyplexes were seen to partially colocalize with apical 
clusters of syndecan-1 (Fig. 3B, bottom row) and TrfR (Fig. 3C, bottom row). The apical localization of recep-
tor clusters in MDCK cell monolayers can be appreciated from their localization above the apical plane that is 
indicated by phalloidin-stained actin in the X-Z projection of the MDCK cell monolayer. MDCK cell monolay-
ers that were treated with PEI/PIP3 polyplexes showed on average 10-20 apical receptor clusters per 100 cells, 
whereas untreated monolayers and monolayers treated with PEI polyplexes showed <5 clusters/100 cells (graphs 
in Fig. 3A–C). Altogether, the data demonstrate that PEI/PIP3 polyplexes locally deliver PIP3 to the apical plasma 
membrane which, in turn, mediates the recruitment of basolateral receptors to the site where the polyplexes 
reside.

PEI/PIP3 polyplexes show enhanced internalization by MDCK cell monolayers compared 
to PEI polyplexes.  The binding and internalization of PEI and PEI/PIP3 polyplexes in MDCK cells was 
determined using fluorescently labeled polyplexes. Both types of polyplexes were fluorescently labeled through 
the complexation of Cy-3 DNA, while the apical membrane of MDCK monolayers was stained by a fluorescent 
wheat germ agglutinin conjugate (WGA-Alexa fluor 633), which selectively binds to N‑acetylglucosamine and 
N-acetylneuraminic acid (sialic acid) residues, in order to discriminate between cell-bound and internalized 
complexes. After 4 hours of incubation of MDCK cell monolayers with PEI/PIP3 polyplexes an extensive associa-
tion with the apical surface was detected, as shown by the magenta color, resulting from colocalization of the Cy-3 
(red) labeled particles and WGA (blue) (Fig. 4A, 4 hrs, lower panel). PEI polyplexes also localized at the apical 
surface, which is visible from the magenta color, although to a much lesser extent than the PIP3-containing poly-
plexes (Fig. 4A, 4 hrs, compare upper and lower panel). In addition, limited uptake of PEI polyplexes was present 
at t =  4 h, as indicated by the red fluorescence that localized underneath the apical membrane (Fig. 4A; 4hrs, 
upper panel). The fact that WGA only stained the apical membrane, and did not penetrate the monolayer to stain 
the basolateral membrane, indicates that the treatment with PEI and PEI/PIP3 polyplexes did not compromise 
monolayer integrity, i.e., create imperfections in the monolayer through which WGA could penetrate, and stain 
the basolateral surface. The non-toxic nature of the treatments was confirmed by MTT assay (Supplementary 
Figure S3A). After 72 h of incubation of MDCK cells with PEI/PIP3 polyplexes, cell areas were found that showed 
high internalization of PEI/PIP3 polyplexes (in red) (Fig. 4A; 72 hrs, lower panel). Strikingly, after 72 h of incu-
bation the internalization of PEI polyplexes was comparable to the level detected after 4 h of incubation (Fig. 4A; 
upper panels), and significantly less than that of the PEI/PIP3 polyplexes. This suggests that the uptake of PEI/
DNA reaches its maximum after 4 h of incubation, while the uptake of PEI/DNA/PIP3 occurs more slowly, but 
is of higher capacity. Quantification of the cellular internalization of PEI and PEI/PIP3 polyplexes at t =  72 h by 
FACS analysis revealed that the fluorescence intensity per cell was ~2-fold higher in cells incubated with PEI/
DNA/PIP3 compared to cells incubated with PEI/DNA (Fig. 4B). At this time point, the PEI/PIP3 polyplexes 
colocalized with markers of late endosomes (Rab9-dsRed; Fig. 5A), and lysosomes (Lamp1-GFP; Fig. 5B), indi-
cating their uptake via endocytosis. This was confirmed by electron microscopic investigation (Supplementary 
Figure S4). Electron micrographs of MDCK cell monolayers incubated with PEI/PIP3 polyplexes showed the 
presence of clusters of polyplexes at the apical membrane, indicated by the presence of microvilli (Supplementary 
Figure S4A). The morphology of the polyplexes by TEM investigation presents as a toroidal ring (donut-like 
shape) and shows an internal lamellar-like or fingerprint structure27-29. Moreover, the shape of the aggregates at 
the apical surface as determined by TEM was similar as was shown from the fluorescent images (compare Figure 
S4A and Fig. 4A). Furthermore, polyplexes were detected within endosomes (Supplementary Figure S4B,C, boxed 
areas), in lysosomal structures (Supplementary Figure S4D, boxed area), and free in the cytosol (Supplementary 
Figure S4D, white arrowheads). These data are consistent with the uptake of polyplexes via endocytosis and their 
processing toward lysosomes.
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PEI/PIP3 polyplexes show efficient endosomal escape.  The final step in the transfection process, 
i.e., the transfer of DNA into the nucleus, is dependent on the temporary absence of the nuclear membrane, that 
occurs during mitosis30. Therefore it is not expected that the uptake of DNA-containing polyplexes in MDCK 
monolayers will result in gene expression, because polarized cell monolayers show negligible cell division. Indeed, 
the chromosomal DNA in MDCK monolayers showed essentially no mitotic figures, as was revealed by DAPI 
staining (data not shown). Notably, because of low cell proliferation in epithelium (e.g. lung) in vivo and/or the 
‘hidden’ location of the proliferative cells (e.g. in stratum basale in skin epidermis, and in crypts in intestinal epi-
thelium), non-viral delivery systems, including our PIP3-containing polyplexes, are expected to be particularly 

Figure 3.  Apical incubation of MDCK cells with PEI/PIP3 polyplexes induces recruitment of basolateral 
receptors. After apical addition of PEI/DNA/PIP3 or PEI/DNA complex, cells were fixed and immunostained 
for (A) β 1-integrin at 1 hr (green). Plasmid DNA in polyplex was labelled by Cy5 (Blue); (B) syndecan-1 at 1 
hr (green); (C) transferrin receptor (TrfR) at 30 min. (green). F-actin was stained with phalloidin-Alexa Fluor 
546 (red). Cell nuclei and plasmid DNA were stained with Draq 5 (blue) in (B,C): Large round structures 
underneath apical plane, as indicated by staining for actin, represent nuclei. Irregular clusters above apical plane 
represent the complexes. Apical appearance of basolateral receptors, that colocalizes with polyplex, is indicated 
with arrowheads. Scale bar is 5 μ m. The presence of apical clusters of β 1-integrin, syndecan-1, and TrfR was 
quantified from at least two independent experiments; per condition 80–100 cells were analyzed. Data are 
presented as mean ±  SD. Two-tailed t-test was used to determine statistical difference between each treatment 
group and control. *p =  0.0003 (A) p =  0.013 (B) p =  0.02 (C). The cartoon (D) illustrates basolateral receptor 
recruitment by PEI/DNA/PIP3 in MDCK cells.
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useful for the delivery of nucleic acids that do not require cell division for their activity, such as antisense oli-
gonucleotides (ODNs) and siRNA. Following their escape from endosomes, ODNs passively diffuse into the 
nucleus where they can bind to complementary mRNA and inhibit gene expression, while siRNA mediates gene 
silencing following its binding to the RNA-induced silencing complex (RISC) that is present within the cell’s 
cytoplasm. Consequently the activity of both ODNs and siRNA is not restricted by the absence of mitotic events. 
Therefore, while fluorescently labeled DNA was useful to label our nanoparticles in order to investigate cellular 
binding and uptake of the PEI/PIP3 polyplexes, we used ODNs and siRNA in subsequent experiments to show 
the potential of our delivery system to induce a physiological effect. Because the endosomal escape of the genetic 
cargo plays a critical role in determining the eventual transfection efficiency with polyplexes, the endosomal 

Figure 4.  Binding and uptake efficiency of PEI/PIP3 and PEI polyplexes by MDCK cells after 4 hours and 
72 hours incubation. (A) MDCK cells were incubated with complexes for 4 and 72 h, after which the apical 
plasma membrane was stained with WGA-Alexa Fluor 633 conjugate (blue). Plasmid DNA was labeled by 
Cy3 (red). Pink (blue +  red) color indicates binding of complexes at the apical plasma membrane. Red color 
indicates internalization of complexes. Scale bar 10 μ m. (B) The mean fluorescence intensity of the MDCK cells, 
representing the fraction of internalized Cy3-labeled polyplexes, was quantified after 72 hours by FACS analysis. 
Two-tailed t-test was used to determine statistical difference between each treatment group and control. 
*p =  0.003.
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escape of PEI/PIP3 polyplexes was investigated first. In order to visualize the endosomal escape and dissociation 
of genetic cargo from the polyplexes, fluorescently labeled ODNs were used, because they passively accumulate 
in the nucleus after their cytosolic release, allowing for easy detection14. PEI/PIP3 polyplexes that contained 
0.1 nmol ODN (N/P 7) showed significant uptake into MDCK monolayers, but no endosomal escape, as indicated 
by the punctate fluorescence pattern consistent with the cytoplasmic distribution of endosomes/lysosomes, and 
the absence of fluorescent nuclei (Fig. 6, left; and Fig. 5A). However, an increase in the amount of ODN in PEI/
PIP3 polyplexes (resulting in a concomitant decrease in the N/P ratio), resulted in an efficient nuclear accumu-
lation of ODNs, indicating their efficient endosomal escape (Fig. 6, middle and right). For size and zeta potential 
of the different complexes, see Table 2. Polarized MDCK monolayers incubated for 4 hrs with PEI/ODN/PIP3 
complexes containing 0.3 nmol ODN (N/P ratio 5.3) and 0.6 nmol ODN (N/P ratio 3.8) showed 24.61 ±  4.24% 
and 56.21 ±  0.91% ODN-positive nuclei, respectively.

PEI/PIP3 polyplexes induce efficient RNA interference.  Finally, to demonstrate the effectiveness of 
PEI/PIP3 polyplexes to generate a physiological effect, its ability to induce RNA interference was investigated. To 
this end, polarized monolayers of MDCK cells stably transfected with GFP, were treated with PEI/PIP3 polyplexes 
containing 0.1, 0.2, and 0.3 nmol anti-GFP siRNA. Most efficient GFP knockdown was observed in cells treated 
with PEI/PIP3 polyplexes containing 0.3 nmol siRNA (N/P 3.5). Notably, this N/P ratio is similar to the N/P ratio 
of PEI/ODN/PIP3 complexes that showed most efficient endosomal escape. Furthermore, the polyplexes exhib-
ited minimal cellular toxicity (Supplementary Figure S3B). For comparison, MDCK monolayers were treated 
with PEI/anti-GFP siRNA, and PEI/control siRNA/PIP3. In untreated GFP-MDCK monolayers (control) all cells 
expressed GFP, whereas in monolayers treated with PEI/anti-GFP siRNA/PIP3 ~30% of the cells showed essen-
tially complete knockdown of GFP expression (Fig. 7A). Notably, the fluorescence micrograph of the MDCK 
monolayer that was treated with PEI/PIP3 polyplexes showed a ‘patchy’ pattern of GFP knockdown (Fig. 7B),  
that resembles the pattern of binding/uptake of PEI/PIP3 polyplexes (cf. Fig. 4A) and the pattern of their endo-
somal escape (cf. Fig. 6, right). PEI/PIP3 polyplexes with control siRNA did not lead to a decrease in GFP expres-
sion (Fig. 7A,B), which indicates that the observed knockdown is induced by an siRNA-specific effect. Moreover, 
transfection with PEI/anti-GFP siRNA resulted in less than 5% of GFP-negative cells (Fig. 7A,B), showing the 
superiority of the PIP3-containing polyplexes in inducing gene silencing.

Conclusions
Our results indicate that PEI/PIP3 polyplexes are able to insert PIP3 into the apical plasma membrane of polar-
ized MDCK cells; induce apical-basal polarity reversal in these cells; and, promote their cellular internalization, 

Figure 5.  PEI/PIP3 polyplexes localize in late endosomes/lysosomes. (A) MDCK cells that transiently 
express the fluorescent fusion protein Rab9-dsRed (late endosome), and (B) Lamp1-GFP (late endosome/
lysosome) were treated with PEI/PIP3 polyplexes for 72 hours. Polyplexes were fluorescently labeled with 
Atto495-ODN (A) and Cy5-DNA (B) in order to determine colocalization. Scale bar is 5 μ m.
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in comparison to PEI polyplexes. Moreover, PEI/PIP3 polyplexes demonstrated efficient endosomal escape and 
effectiveness in inducing RNA interference.

In conclusion, the PEI/PIP3 polyplex-triggered local apical-basal polarity reversal in epithelial cells, inspired 
by the pathogenic bacterium Pseudomonas aeruginosa, provides a promising opportunity for the entry of drug 
delivery systems into epithelium without the need for barrier disruption. The transient apical appearance of baso-
lateral receptors solely at the site of polyplex binding likely assures receptor occupancy predominantly by the 
polyplex, contributing to the safety of the system.

Methods
Antibodies, Plasmids and Reagents.  Primary antibodies were obtained from the following sources: 
mouse ZO-1 antibody and rabbit anti-GFP antibody were purchased from Life technologies; mouse β -actin was 
obtained from Sigma; rabbit Syndecan-1 antibody and mouse Transferrin Receptor antibody were obtained from 
Invitrogen; rat anti-β 1 integrin antibody (AIIB2) was obtained from the Developmental Studies Hybridoma 
Bank. Anti-mouse, anti-rabbit, and anti-rat Alexafluor®555 and Alexafluor®488 secondary antibodies were 
obtained from Life Technologies. Actin filaments were stained with phalloidin–Alexa Fluor 546 (Sigma). Nuclear 
staining reagent Draq5® was from Cell Signaling Technology and DAPI (4’,6-diamidino-2-phenylindole) from 
Life Technologies. Alexa Fluor® 633-Wheat Germ Agglutinin was purchased from Life Technologies.

Plasmid DNAs were obtained from the following sources: pEGFP-N1 was purchased from Clontech (USA); 
pRab9-dsRed, and pLAMP1-GFP were obtained from Addgene (Cambridge, MA, USA). Plasmid DNA encod-
ing the pleckstrin homology (PH) domain of Akt was a gift from dr. Mostov (UCSF/USA). Plasmid DNAs were 
isolated from transformed E.coli using GenElute TM HP Plasmid Midiprep kits (Sigma Aldrich) following the 
manufacturer’s protocol. pDNAs were fluorescently labeled with Cy5 or Cy3 using Label IT® Tracker Intracellular 
Nucleic Acid Localization Kit (Mirus, MA, USA). Branched Polyethyleneimine (PEI; M.W. 25 kDa) was pur-
chased from Sigma Aldrich. Long chain (Di-C16) synthetic phosphoinositides: PtdIns(3,4,5)P3, BODIPY®-TMR 
conjugated PtdIns(3,4,5)P3, and Histone H1 were from Echelon (Salt Lake City, UT). Atto 495-labeled and 
TAMRA-labeled fully phosphorothioated oligonucleotides (5’-ACTACTACACTAGACTAC-3’) were from 
Biomers.net GmbH (Ulm, Germany). Anti-GFP siRNA (Sense CAAGCUGACCCUGAAGUUCdTdT and 
antisense GAACUUCAGGGUCAGCUUGdTdT) was obtained from Biolegio, and negative control siRNA was 
obtained from Invitrogen.

MDCK cell culture.  MDCK cells were grown in Dulbecco’s modified Eagle’s medium (Gibco, Breda, The 
Netherlands) containing 10% fetal bovine serum, 2 mM L-glutamine (Gibco), 100 U/ml penicillin (Invitrogen), 
and 100 mg/ml streptomycin (Invitrogen), at 37 °C and 5% CO2. GFP-PH-Akt MDCK cells were generated by 
stable transfection of MDCK cells with a plasmid encoding the pleckstrin homology (PH) domain of Akt. For 

Figure 6.  PEI/PIP3 polyplexes mediate efficient endosomal escape of oligonucleotides (ODNs). MDCK 
cells were incubated for 4 h with PEI/ODN/PIP3 complexes containing 0.1, 0.3, and 0.6 nmol TAMRA-labeled 
ODNs (red). The overlays of the fluorescent images with the phase contrast images shows the completeness 
of the MDCK monolayer for each condition. The number of fluorescent nuclei in cells treated with PEI/PIP3 
containing 0.6 nmol ODN >  PEI/PIP3 containing 0.3 nmol ODN >  PEI/PIP3 containing 0.1 nmol ODN ( =  0). 
Scale bar is 20 μ m.

Particle Size (nm) Zeta potential (mV)

PEI/ODN/PIP3 (ODN 
0.1 nmol; N/P 7.0) 133.5 ±  0.8 40.3 ±  0.4

PEI/ODN/PIP3 (ODN 
0.3 nmol; N/P 5.2) 120.0 ±  0.7 37.5 ±  0.7

PEI/ODN/PIP3 (ODN 
0.6 nmol; N/P 3.8) 127.8 ±  0.8 18.7 ±  0.8

Table 2.  Particle size and zeta potential of PEI/PIP3 complexes with ODN. Different amounts of ODN 
(0.1 nmol, 0.3 nmol, 0.6 nmol) were complexed by PEI/PIP3, resulting in polyplexes with N/P ratios of 7.0, 5.2, 
and 3.8, respectively.
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Figure 7.  PEI/anti-GFP siRNA/PIP3 complexes mediate efficient gene silencing in MDCK cell monolayers 
that stably express GFP. Monolayers of GFP-expressing MDCK cells were incubated with PEI/anti-GFP 
siRNA/PIP3, PEI/anti-GFP siRNA, and PEI/control siRNA/PIP3 complexes for 96 h. (A) GFP downregulation 
was quantified as the number of GFP-negative cells in the MDCK monolayers, using fluorescence microscopy. 
Results are presented as mean ±  SD. Two-tailed t-test was used to determine statistical difference between 
each treatment group and control. *p =  0.00004 (B) Representative images of MDCK-GFP (green) monolayers 
treated with different complexes are shown, Nuclei were stained with DAPI (blue). scale bar is 30 μ m.
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experiments MDCK cells were plated at 1 ×  105 cells/well in 12-well Transwell filter plates from Costar (Corning 
Life Sciences, Acton, MA). The next day, the cell culture medium was refreshed. At day 3 after plating, cell resist-
ance was measured with a Millicell-ERS device (Millipore, Billerica, MA) and experiments were performed only 
if TEER >  178 Ω /cm2.

Phosphoinositides delivery to MDCK cells by Histone H1.  Complexes of phosphoinositides 
(PtdIns(3,4,5)P3) and Histone H1 were made according to the manufacturer’s protocol. Briefly, 10 μ L of a 300 μ M 
phosphoinositide solution (PBS, pH 7.4) was added to 10 μ L of 100 μ M histone H1 (water), gently mixed by 
pipetting, and incubated for 10 minutes at room temperature. The resulting complexes were diluted into 100 μ L 
medium and added to the apical side of the monolayer of MDCK cells and incubated for different time periods.

Preparation of PEI/DNA and PEI/DNA/PIP3 polyplexes.  Branched PEI 25 kDa is considered as one of 
the most potent synthetic gene carriers in vitro. Here it was used as the polycation in the formation of a ternary 
polyplex formulation. Phosphoinositide-containing PEI polyplexes were prepared as shown in Fig. 8. Briefly, 
10 μ L 300 μ M phosphoinositides in PBS (pH 7.4) was mixed with 1 μ g of (pEGFP-N1) DNA in 0.1 mL serum-free 
medium by gentle pipetting. Then branched PEI (200 μ g/mL) was added to the DNA/PIP3 mixture and rapidly 
mixed by pipetting, to obtain PEI/DNA/PIP3 complexes at an N/P ratio of 6.3, where N represents polymer 
amino groups and P comprises phosphate groups originating from the DNA and the phospholipids. The resulting 
mixture was incubated for 20 min at ambient temperature to yield the PEI/DNA/PIP3 ternary polyplex. PEI/DNA 
complexes were made by directly mixing PEI stock solution and DNA in serum-free medium at N/P ratio of 10, 
where N represents polymer amino groups and P represents DNA phosphate groups. The particle size and zeta 
potential were measured using a Malvern Zetasizer NS90 (Malvern Instruments, Malvern,UK). The N/P ratio of 
10 was used for PEI/DNA complexes because at this ratio optimal transfection of subconfluent MDCK cells was 
obtained with minimal toxicity. For PEI/DNA/PIP3 complexes the same amount of PIP3 was used as was shown 
to be effective in recruiting basolateral receptors when complexed with histon H1. The amount of DNA was kept 
constant between the two types of particles. PEI was added to completely complex all DNA, and yield similar 
transfection efficiency in subconfluent MDCK cells as PEI/DNA complexes.

Western blot analysis.  Polarized MDCK cell monolayers were treated with PEI/DNA and PEI/DNA/
PIP3 polyplexes for 4 h with or without prior treatment with the PI3 kinase inhibitor LY294002 (20 μ M, 
30 min). Cells on the filter were lysed in 150 μ L ice-cold 2 ×  SDS-Laemlli buffer, heated for 5 min at 95 °C, and 
subjected to SDS-PAGE and Western blotting following standard procedures. Primary antibodies used were 
rabbit anti-phospho-Akt Ser473 (Cell Signaling, 1:1000), rabbit anti-Akt (Cell Signaling, 1:1000) and mouse 
anti-β -Actin (Sigma-Aldrich, 1:2000). Alexafluor® secondary antibodies were used. The signals were detected 
using the Odyssey Infrared Imaging System (Li-Cor Biosciences, Lincoln, NE) and analyzed with Image-J soft-
ware. The experiment was repeated three times.

Transfection of MDCK cell monolayers with polyplexes.  MDCK cell monolayers were rinsed twice 
with warm phosphate buffered saline (HBSS, pH 7.4). Subsequently, 0.4 ml of serum-free medium and 0.1 ml 
of PEI/DNA/PIP3 ternary complexes or PEI/DNA complexes were added to the apical surface of the MDCK 
cells. The final DNA concentration was 1.0 μ g/well. At different time-points the cells were fixed with 4% para-
formaldehyde in PBS and processed for immunostaining, as described below. Alternatively, for quantification of 
the cellular uptake, the cells were supplied with 0.4 ml complete culture medium after transfection for 4 h. After 
72 h of incubation the cells were rinsed twice with PBS. Subsequently cells were treated with trypsin/EDTA for 

Figure 8.  Formation of PEI/DNA/PIP3 ternary complexes. N/P =  (nitrogen groups in PEI)/(phosphate 
groups in DNA and PIP3).
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8 min, collected by centrifugation, suspended in 0.4 ml PBS and kept on ice until analysis. The percentage of 
Cy5-positive cells was analyzed by flow cytometry using a FACS-Calibur Instrument (Becton-Dickinson).

Immunofluorescence staining and image analysis.  After fixation, cells were rinsed with 10 mM gly-
cine in 0.1% BSA in PBS, permeabilized with 0.1% Triton X-100 in PBS, incubated with primary antibody at 37 °C 
for 1 h, and incubated with fluorophore-conjugated secondary antibody. Filamentous actin was visualized by 
incubating samples with fluorophore-conjugated phalloidin. Cell nuclei were stained by the DNA probes Draq5® 
and DAPI. Alexa Fluor®  633-conjugated Wheat Germ Agglutinin (to stain the apical plasma membrane) was 
used according to the manufacturer’s protocol. The samples were investigated by confocal microscopy using a 
Leica SP2 AOBS Confocal microscope or a Leica SP8 Confocal microscope. Images were analyzed with Imaris 
software (Bitplane).

Cell viability assay.  To evaluate whether PEI/DNA, PEI/DNA/PIP3, and PEI/siRNA/PIP3 induced cyto-
toxicity in MDCK cells, an MTT colorimetric assay was performed. Briefly, MDCK cells were seeded in 96-well 
plates at a density of 5000 cells/well. After 72 h, when the cells had formed a monolayer, the cells were incu-
bated with the polyplexes in serum-free medium for 24 h, after which the complexes were aspirated and complete 
medium was added. After another 48 h, 20 μ l MTT in 5 mg/mL phosphate buffered saline solution was added to 
each well. After 4 h of incubation at room temperature, the supernatant was aspirated and the formazan crys-
tals were dissolved in 180 μ L DMSO. For siRNA-containing polyplexes, the cells were incubated for 96 h with 
the different siRNA complexes, and the medium was refreshed every 24 h. Absorption was measured photo-
metrically at 570 nm with a background (serum-free medium plus MTT) correction using a Bio-Tek μ Quant™  
Microplate Spectrophotometer. Values of 4 measurements were normalized to 100% for the control group (cells 
exposed to serum-free medium without complexes). The cell viability was calculated by the formula: (Absorbance 
/Absorbance (control)) ×  100%.

Transmission electron microscopy of transfected MDCK cells.  Polarized MDCK cells grown on 
transwells were incubated with PEI/DNA/PIP3 and PEI/DNA complexes for 4 h and 72 h. Cells were fixed for 
1 hour on ice in 1.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, containing 1% sucrose. After postfixation 
in 1% OsO4/1.5% K4Fe(CN)6, cells were dehydrated in graded alcohol series and embedded in Epon 812. After 
polymerization for 4 days at 45 °C, ultra-thin sections were cut and stained with 1% tannic acid and 1% urany-
lacetate. (All chemicals used for the processing of cells for investigation by transmission electron microscopy 
were from Sigma). The sections were examined using a Philips CM 100 electron microscope (Eindhoven, The 
Netherlands) operating at 60 kV, and micrographs were taken.

Endosomal escape of PEI and PEI/PIP3 polyplexes.  Polyplexes containing TAMRA-ODN were used 
to allow for direct quantification of the endosomal escape of the polyplexes, by evaluating the nuclear accumula-
tion of ODNs. MDCK monolayers were grown on Lab-TekIIchamber slides (Thermo Scientific) after which PEI/
TAMRA-ODN/PIP3 or PEI/TAMRA-ODN polyplexes, containing 0.1, 0.3, and 0.6 nmol ODN, were added to the 
apical side of the MDCK cell monolayer. After 4 h of incubation, the monolayers were rinsed with HBSS, and of 
each condition three randomly selected areas were imaged by confocal microscopy. The percentage of release was 
calculated as: TAMRA-ODN positive nuclei/ total cell nuclei.

RNA interference with PEI/PIP3 polyplexes.  PEI/anti-GFP siRNA/PIP3 complexes were prepared fol-
lowing the same protocol as for PEI/DNA/PIP3 complexes. MDCK cells stably expressing GFP were grown as a 
polarized monolayer. Cells were incubated with PEI/siRNA and PEI/siRNA/PIP3 complexes containing 0.3 nmol 
anti-GFP siRNA or negative control siRNA for 96 hrs. GFP down-regulation in the cell monolayers was quantified 
as the percentage of GFP-negative cells. GFP protein was detected by rabbit anti-GFP (Life Technologies, 1:1000), 
mouse anti-β -Actin (Sigma-Aldrich, 1:2000) was used as loading control. The experiment was repeated twice.

Statistical analysis.  Data are expressed as mean ±  standard deviation (SD) and were obtained from at least 
two independent experiments. Statistical analysis was performed using the two-tailed t-test. p <  0.05 was consid-
ered significant.
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