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Purpose: Biomedical databases combining electronic medical
records and phenotypic and genomic data constitute a powerful
resource for the personalization of treatment. To leverage the
wealth of information provided, algorithms are required that
systematically translate the contained information into treatment
recommendations based on existing genotype–phenotype associa-
tions.

Methods: We developed and tested algorithms for translation of
preexisting genotype data of over 44,000 participants of the
Estonian biobank into pharmacogenetic recommendations. We
compared the results obtained by genome sequencing, exome
sequencing, and genotyping using microarrays, and evaluated the
impact of pharmacogenetic reporting based on drug prescription
statistics in the Nordic countries and Estonia.

Results: Our most striking result was that the performance of
genotyping arrays is similar to that of genome sequencing, whereas

exome sequencing is not suitable for pharmacogenetic predictions.
Interestingly, 99.8% of all assessed individuals had a genotype
associated with increased risks to at least one medication, and
thereby the implementation of pharmacogenetic recommendations
based on genotyping affects at least 50 daily drug doses per 1000
inhabitants.

Conclusion: We find that microarrays are a cost-effective solution
for creating preemptive pharmacogenetic reports, and with slight
modifications, existing databases can be applied for automated
pharmacogenetic decision support for clinicians.
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INTRODUCTION
Genetic variation causing interindividual differences in drug
response poses major problems for pharmacological therapy
and drug development. In recent decades a plethora of
associations between genetic variants and treatment efficacy
or adverse drug reactions have been identified.1 However, the
implementation of clinical pharmacogenomics is lagging far
behind these discoveries.2 Fast, accurate, and cost-effective
genotyping of genes involved in drug response is a crucial first
step for the implementation of pharmacogenomics in clinical
care. Ideally, the genotype data should already exist in an
individual’s health record at the time when personalized
treatment is necessary. The currently most widely used
genotyping method is the array-based interrogation of
(candidate) variants. However, due to recent progress in
sequencing technologies, next-generation sequencing (NGS)-

based methods, such as exome sequencing (ES) and genome
sequencing (GS), are becoming more prevalent. The advan-
tage of the latter is that sequencing-based methods detect rare
variants, which have been estimated to account for 30–40% of
the functional variability in pharmacogenes.3 Currently,
multiple trials that evaluate the patient benefits of preemptive
pharmacogenetic genotyping using the different methodolo-
gies are being conducted.4–6

For the translation of genetic testing results into treatment
recommendations concerted efforts have led to the publica-
tion of genotype-based guidelines, for which strong evidence
links genetic polymorphisms to variability in efficacy or risk
for adverse reactions.7 To account for the effect of allelic
variation and haplotypes of genes relevant in drug response,
the “star” (*) nomenclature system is most widely used.8 For
most genes covered by guidelines from the Clinical
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Pharmacogenomics Implementation Consortium (CPIC),
comprehensive information tables have been prepared on
how to define alleles on the basis of genetic variation, which
facilitates the association of diplotypes with predicted
phenotypes and thus their functional interpretation.8,9 A
collaborative effort is underway to develop a software tool
(PharmCAT) for automated conversion of genotype informa-
tion into CPIC guideline recommendations.10

Here, we provide an overview of the challenges and
solutions for the translation of genotype and sequence data
of 11 genes into pharmacogenetic diplotypes and recommen-
dations for drug prescription. We leveraged genomic
information of 44,448 Estonian Biobank participants geno-
typed by high density microarrays, ES or GS and derived
pharmacogenetic recommendations based on preexisting
CPIC guidelines for 32 commonly prescribed medications.
We find drastic differences in the predicted outcomes across
genotyping platforms and demonstrate that GS currently does
not provide substantial additional actionable information
regarding common pharmacogenetic alleles compared with
the latest genotyping arrays. Importantly, these recommenda-
tions can be returned to biobank participants, or incorporated
into their health records for the personalization of future
treatment decisions.

MATERIALS AND METHODS
Overview of genetic data
The Estonian Biobank is a research-oriented biobank
containing longitudinal data and biological samples, including
DNA, for 5% of the adult population of Estonia. Participants
of the biobank have signed a broad informed consent that
allows the Estonian Genome Center to continuously update
their records through periodical linking to central electronic
health record databases and local hospital information
systems.11 Of the biobank participants, 8132 have been
genotyped using the HumanOmniExpress beadchip (OMNI)
and 33,157 using the Global Screening Array (GSA) from
Illumina. Furthermore, ES and GS data is available for 2445
and 2420 participants, respectively (Fig. 1a). Only 1661 of the
subjects (3.7%) have been genotyped on more than one
platform.
For genome sequencing, DNA samples were prepared using

the TruSeq PCR-free kit, and sequenced on the Illumina
HiSeq X using 150 bp paired-end reads at a mean coverage of
30×. ES samples were prepared using the Agilent SureSelect
Human All Exon V5+UTRs target capture Kit according to
the manufacturer’s recommendations, and sequenced on the
HiSeq2500 at a mean target coverage of 67×. Details regarding
the tools and parameters used for the bioinformatic analysis,
including read alignment, variant calling, genotype imputa-
tion and phasing, are provided in Note S1.
The genotype data obtained on both arrays were separately

phased using Eagle2 (v. 2.3) (ref. 12) and imputed using the
BEAGLE (v. 4.1) (ref. 13) software implementing a joint
Estonian and Finnish reference panel described in Note S1.
Imputed genotypes with probabilities lower than 90% were

filtered out. To call pharmacogenetic star alleles based on the
microarray data we used genotyped variants together with
imputed variants. In cases where the variant was both directly
genotyped and imputed, the original genotype call was
preferred. As a result of processing the genetic data, genetic
information of all samples was converted into a joint variant
call file (VCF), where variant positions were aligned against
the GRCh37/hg19 human genome reference.
The genotype data is available upon request from the

Estonian Biobank (https://www.geenivaramu.ee/en/biobank.
ee/data-access).

Pruning of allele definition tables
To detect star alleles, we initially set out to use entire gene-
specific allele definition tables prepared by the curators of
PharmGKB and CPIC (https://www.pharmgkb.org/page/
pgxGeneRef). We focused on the 11 clinically important
pharmacogenes CYP2C19, CYP2C9, CYP2D6, CYP3A5,
CYP4F2, DPYD, IFNL3, SLCO1B1, TPMT, UGT1A1, and
VKORC1. CPIC gene-specific tables of allele definitions,
functionality, phenotype, and frequency (downloaded on 17
September 2017) were used to first detect the pair of
particular alleles for each gene and sample, and then estimate
the corresponding phenotype. Of the 356 variants in the CPIC
tables used for defining the star alleles of these genes, 356
(100%), 307 (86%), 101 (28%), and 31 (9%) could potentially
be directly genotyped by the GS, ES, GSA, and OMNI
platforms, correspondingly, if the data sets contained
individuals carrying the variants. However, as the allele
definition tables are large and not accompanied with decision
trees for variant prioritization, direct uncurated application of
the existing tables would result in a high proportion of
ambiguous calls, mainly caused by haplotypes composed of
variants that match several star alleles, or no matches in cases
where the allele definition tables contained too many
irrelevant variants. Therefore, we first pruned the allele
definition tables manually based on scientific evidence for
functional effects of the variants and removed duplicate as
well as proxy alleles.
First, we removed star alleles with unknown function

or with unnecessary proxies (mostly suballeles) from
CYP2C19 (*35), CYP2D6 (68 alleles, mostly suballeles),
DPYD (*9A and *9B combined into *9), and SLCO1B1 (32
alleles with unknown function); see Table S1 for details on
reasons for variant exclusion. For CYP2C19*2, which is
defined by two variants that are in complete linkage
disequilibrium (r2= 1.0), we found that a single variant
(rs4244285) is sufficient for its detection. Finally, we
disregarded CYP2D6 star alleles requiring gene deletions
(*5) or duplications (star alleles with suffix “xN”) in the
OMNI and ES data sets, because detection of copy numbers of
CYP genes is limited on these platforms. These filtering steps
resulted in 239 variants remaining in the allele definition
tables. The final number of candidate star alleles that
remained for each gene and data source after filtering is
summarized in Table S2.
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Because there is no specific allele definition table for typing
of HLA alleles, we could not use the same pipeline for this
region. However, to provide an overview of the relevant
functional variability of the HLA region in the studied
population, we used the SNP2HLA tool in the major
histocompatibility complex region for the detection of HLA
variants among individuals with GS data.

Pipeline for star allele and phenotype detection and
analysis
For all of the samples we detected their possible star alleles by
checking each star allele given in the allele definition tables
one by one and testing for the presence of defining variants
for each allele. As this could result in several matching alleles
due to missing data at certain positions, we found it
reasonable to allow nonfunctional alleles to override other
alleles. Therefore, we first checked for the presence of variants
defining nonfunctional star alleles only, and if none of these
matched, we tested the remaining star alleles. In ideal cases,
only a single star allele matched (“single match”) (Fig. 1b). In
some complex cases, the detected variants correspond to
several star alleles (“ambiguous call”). Again, we reasoned that

if one of the matching alleles was defined as “decreased
function,” we could let this override “normal function” alleles.
Cases where an individual carried a combination of variants
that did not have any corresponding star allele in the
reference table were defined as “no match.”
For detection of CYP2D6 large deletions, large duplications,

and multiallelic copy-number variants (CNVs) in GS data we
used the Genome STRiP CNV discovery pipeline (version
2.00.1611) (ref. 14) for 2269 deeply sequenced genomes. For
detection of CNVs in the array data we used the PennCNV
software. We excluded individuals with <98% call rate,
standard deviation of log R ratio >0.3, absolute waviness
factor >0.05, and number of CNVs >100. We ended up with
CNVs for a set of 30,100 individuals that had been genotyped
on the GSA. We could not detect CNVs on the OMNI array
because it only contains four markers covering the CYP2D6
gene. We used estimated information of CYP2D6 CNVs
together with our developed pipeline for star allele detection
to assign CYP2D6 star allele diplotypes. For detected
duplications, we assumed an allele of the order *2>*1>*4 to
be duplicated, based on previous duplication frequencies in
Europeans.15
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Fig. 1 Pipeline for extracting pharmacogenetically relevant alleles from existing genotyping data. Panel (a) depicts the different data sets, their
overlap (Venn diagram), and how the data were processed. Panel (b) zooms into the detection of star alleles according to specific definition tables. ES exome
sequencing, GS genome sequencing, GSA Global Screening Array, OMNI HumanOmniExpress.
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For each sample, all possible diplotypes were constructed
based on detected star alleles. The subsequent phenotype
calling was based on PharmGKB’s diplotype-to-phenotype
mapping tables.
The described pipeline was written as a custom Python

script (available upon request). The calculation part of the
haplotype and diplotype detection was run in the High
Performance Computing Center at the University of Tartu.
The results of the allele, effect, and phenotype detection were
analyzed in R16 version 3.2.3 using the following packages:
dplyr, reshape2 and ggplot2.
Finally, we compared the obtained phenotype predictions

with previously reported allele and phenotype frequencies of
Caucasians (Europeans+North Americans). For this com-
parison, each sample was used once; GS data was preferred
over ES, GSA, and OMNI. As a result, 2420, 2356, 33,086, and
6586 samples were used from GS, ES, GSA, and OMNI data
correspondingly. The results of 1661 samples that were
sequenced/genotyped by more than a single method are
compared in Note S2. For the GS data, we also validated the
nonstructural star alleles and diplotypes of CYP2D6 using an
external tool (Astrolabe, previously called Constellation).17

Furthermore, we estimated the potential clinical impact of the
variants based on drug consumption statistics in Estonia
(Annual Statistical Reports of the State Agency of Medicines),
Finland (The Social Insurance Institution of Finland), Sweden
(The National Board of Health and Welfare of Sweden),
Denmark (Statistics on the Total Sales of Medicines in
Denmark), and Norway (Drug Consumption in Norway
2012–2016).
The study was conducted in accordance with good ethical

standards, and was approved by the Ethics Committee of the
University of Tartu (protocol number 234/T-12).

RESULTS
Comparison of allele calls across four different genotyping
platforms
We compared the pharmacogenomic predictions for biobank
participants genotyped with any of four different microarray or
sequencing platforms (Fig. 1). Using the existing data sets
combined with genotype imputation and phasing, we identified
100, 64, 61, and 43 different variants using GSA, OMNI, GS,
and ES, respectively. Note that the larger number of variants in
the microarray data is driven by more samples having been
genotyped than sequenced. We assessed the imputation
accuracy to be extremely high (99.96% matching genotype
calls), which is described in further detail in Note S2.
Overall, the proportion of calls with no matches is very low in

all data sets, ranging from 0.01% to 0.05%. Ambiguous call
frequencies ranged from 0.08% to 0.12%, mostly caused by
difficulties of distinguishing between *5/*6/*9 in DPYD.
However, as all three alleles have normal function, these
ambiguous calls did not affect the phenotype predictions. For the
remaining 99.8% of the samples, star alleles for each gene were
unambiguously detected. The most notable novel finding is in
CYP4F2, where in addition to *2 and *3 (both defined by single

variants) both variants *2+ 3 are detected on the same allele in
15.5% of the samples. Figure 2a–e and Fig. 3a–f show the
frequencies of the detected star alleles by genotyping method.
The full table of the frequencies of the detected alleles, including
ambiguous calls and no matches, is provided as Table S3.
The figures clearly illustrate that the microarray-based

methods combined with imputation produce results that are
very similar to GS. In contrast, ES does not allow the detection
of 11 star alleles that are defined by variants outside the
coding regions (see Table S2 for details). In addition,
CYP2C9*2 and CYP2D6*4 could not be detected either,
because the defining variants rs1799853 and rs3892097 did not
pass quality control (QC).
To illustrate the proportion of rare variants detected in the

11 pharmacogenes under study, we assessed the frequencies of
loss-of-function (LoF) and missense variants detected by GS
and ES in these genes (Table 1, details in Table S4). Altogether
89% (n= 198) of the variants that we identified as putatively
LoF or missense in the 11 pharmacogenes were rare with
minor allele frequency (MAF) <1%, and 52% (n= 102) of the
variants were novel.

Pharmacogenetic phenotype frequencies
Next, we used the called star alleles to derive actionable
phenotypic predictions for all 11 analyzed genes (Fig. 2f–j,
Fig. 3g–l). All diplotype frequencies are listed in Table S5
and phenotype frequencies in Table S6. As with the star
allele calling the results are very similar for the different
methods, with the exception of ES. From the perspective of
implementing pharmacogenomics in the clinic, it is most
crucial to accurately predict high-risk phenotypes, i.e.,
individuals with other than normal drug metabolizing
phenotypes and who therefore require higher or lower dosing
of a medication. Again, we observe in Fig. 2–3 and S1 that ES
data is least suitable for pharmacogenomics because a high
proportion of high-risk phenotypes remain undetected, except
for CYP4F2, DPYD, SLCO1B1, and TPMT. For CYP3A5,
ES does not interrogate the common (MAF >90% in
Europeans) intronic splice variant CYP3A5*3 (rs776746)
and thus incorrectly annotates all individuals with the high-
risk *1/*1 diplotype. Therefore, we excluded ES results
from the subsequent analyses where we evaluated the
presence of high-risk phenotypes. In the 42,092 individuals
under study, we found that nonstandard dosing information
is required based on at least one gene for 99.8% of the
individuals.
The SNP2HLA tool allowed us to call 6-digit HLA

haplotypes in the GS data set. Of the four high-risk
phenotypes of the HLA region covered with CPIC guidelines
we detected HLA-B*57:01, HLA-B*58:01, and HLA-A*31:01
alleles with carrier frequencies of 4.7%, 1.4%, and 4.7%,
respectively (Table 1). Because we were only able to call HLA
alleles in the GS data, we could not compare the results
between the different platforms.
We compared the results with frequencies reported in

PharmGKB and by Muir et al.18 (see Table S6 for details). In
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general, the frequencies of the detected alleles and phenotypes
correspond to what has been reported previously. However,
slight differences appear. For instance, there are significantly
more CYP2C19 rapid and ultrarapid metabolizers among

Estonians (30.8% and 7.3%, respectively) compared with
other Europeans (26.9% and 4.6%, respectively, p values of
one-proportion z-test 1.64 × 10−72 and 1.53 × 10−155).
Because CYP2D6 is the only gene with CNVs included in
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Fig. 2 Frequencies of predicted alleles and phenotypes by CYP gene and method. The results for OMNI and GSA are based on imputed microarray
genotype data. The decision to assign an allele a wild-type status (*1) is based upon a genotyping test that interrogates only the most common and already-
proven sites of functional variation. In human DNA, it is always possible that a new, previously undiscovered (and therefore uninterrogated) site of variation
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Screening Array, OMNI HumanOmniExpress.
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Fig. 3 Frequencies of predicted alleles and phenotypes by gene and method for non-CYP genes. The results for OMNI and GSA are based on
imputed microarray genotype data. The decision to assign an allele a wild-type status (*1) is based upon a genotyping test that interrogates only the most
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sequencing, GSA Global Screening Array, OMNI HumanOmniExpress.
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the allele definition tables in PharmGKB, we detected
CYP2D6 CNVs in the GS and GSA data (Table 1, details in
Table S4). In addition, we compared the results we obtained
for CYP2D6 using our approach with those obtained using a
published tool (Astrolabe). In 98% of the samples the detected
alleles were identical; the discrepancies were mostly caused by
CYP2D6*59, which is included in Astrolabe. We excluded this
star allele from our candidate list due to sparse information
about its suggested decreased function.15 The overview of the
comparison is illustrated in Figure S2.

Relevance of detected phenotypes
Based on the dosing guidelines of CPIC, genetic variations in
the 11 genes under study are associated with response to at
least 32 currently prescribed medications (Table S7).
CYP2C19 affects the metabolism of drugs frequently used in
the clinic,19 and CPIC dosing guidelines are currently
available for ten active substances of these drugs. For this
gene, we found that 2.2% of individuals in the studied cohort
were poor metabolizers and 30.8% and 7.3% rapid or

ultrarapid metabolizers, respectively (Table 2). Thus, in total,
40.4% of the individuals in the Estonian population may be at
risk for unwanted outcomes or may need dosing adjustments
when prescribed any of these ten drugs. As shown in Table 2,
the combined intake of medications associated with CYP2C19
ranges from 17.62 to 66.83 DDD/1000 inhabitants per day in
the Nordic countries and Estonia (data from Annual
Statistical Reports, 2016).
Further, we also investigated the number of individuals with

high-risk variants who had been prescribed drugs associated
with the specific genes. As seen in Table S7, as many as 12,254
individuals in the Estonian Biobank have actually had a
prescription of at least one drug linked to CYP2C19. Of these,
9977 were analyzed in our study (GS, GSA, and OMNI) and
40.7% of them (n= 4059) are CYP2C19 poor, rapid, or
ultrarapid metabolizers, and therefore may have needed
dosing adjustments to improve treatment outcome. Based
on the Annual Statistics of the Estonian Agency of Medicines,
on average almost 5.5% (55 DDD/1000 inhabitants/day) of
individuals in the population use at least 1 of the 32 drugs
associated with the studied genes on a daily basis. For several
Nordic countries, the numbers are even higher; the highest
being for Denmark with on average 15.8% of individuals in
the population (158.2 DDD/1000 inhabitants/day) (Table 2,
Table S7). Thus, existing data of biobank participants can be
an untapped resource for improved and more cost-effective
recommendations for drug treatment by translating existing
genotype/phenotype data of pharmacogenes into guiding
prescription recommendations. This illustrates the enormous
innovative potential of biobanks in the whole process of the
implementation of pharmacogenomics.

DISCUSSION
In this study, we assessed the systematic detection of
pharmacogenetic star alleles for Biobank participants geno-
typed on different microarray or sequencing platforms. As
most of the pharmacogenes have star alleles defined by several
variants that all need to be on the same parental allele, a
crucial step in the process was genotype phasing prior to
analysis. Although the PharmGKB tables for defining star
alleles have been thoroughly curated, prefiltering of the allele
definition tables, as described in the Methods section, was
essential for efficient detection of star alleles. Many of the
allele definitions include additional variants beyond the
variant(s) causing the functional effects, which can compro-
mise allele calling when searching for perfect matches. For
example, in the original SLCO1B1 star allele definition table,
20 of 37 alleles require the occurrence of several variants on
the same allele, but in our data set of 44,448 individuals, only
a subset of these were actually detected on the same alleles,
ruling out all possible star alleles and subsequently leading to
“no matches” without prior filtering. The same applies for
CYP2D6, where less than half of the alleles are currently of
relevance20 and including too many unvalidated alleles would
only result in unknown phenotypes. Challenges with these
definition tables have been observed by others as well with an

Table 1 The frequencies of predicted functional variants in
12 pharmacogenes (including HLA) identified in sequencing
data and frequencies of detected copy-number variants in
CYP2D6

Variation in 11 pharmacogenes detected by

sequencing n %

Loss-of-function and missense 198 n/a

Missense 188 94.95

Loss-of-function 10 5.05

Known variants 96 48.48

Novel variants 102 51.52

MAF >5% 21 10.61

1% ≤ MAF <5% 11 5.56

0.1% ≤ MAF <1% 34 17.17

MAF <0.1% 132 66.67

HLA alleles of high-risk phenotypesa detected by

genome sequencing data

n %

Individuals with data of typing HLA alleles 2243 100

Individuals with presence of at least one HLA-B*57:01

allele

105 4.68

Individuals with presence of at least one HLA-B*58:01

allele

32 1.43

Individuals with presence of at least one HLA-B*15:02

allele

0 0

Individuals with presence of at least one HLA-A*31:01

allele

109 4.86

CYP2D6 copy-number variants detected by

genome sequencing and microarray data

n %

Number of individuals 32,369 n/a

Individuals with CYP2D6 deletion 1073 3.31

Individuals with CYP2D6 duplication 257 0.79
MAF minor allele frequency.
aFour high-risk phenotypes of the HLA region covered with Clinical Pharmacoge-
netics Implementation Consortium (CPIC) guidelines.
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additional remark that the tables do not contain all of the
alleles that are common in respective populations.15,21

We found that 89% of the variants called in the genome and
exome sequencing data that are predicted to have functionally
deleterious effects are rare, with MAF <1%. The proportion of
rare variants detected in pharmacogenes has increased with
the growing numbers of NGS studies.3,22–28 Including rare
variants with unknown function in pharmacogenetic report-
ing is objectionable because their function and relevance are
generally not well validated2,9 and care must be taken when
including these in clinical implementation. However, includ-
ing rare variants in test panels and collecting data on these
variants is still valuable for further research and development
projects. In the absence of experimental characterization data,
the functional impact of variants can be predicted using
computational methods, which are getting more and more
precise with the increase in data that can be used for
validation.29,30

Our comparison of different genotyping and sequencing
platforms marks GS as the gold standard and the most
comprehensive technology for detection of both rare and
common functional alleles. It also highlights a known major
shortcoming of ES for pharmacogenetic applications. Impor-
tant alleles defined by variants in introns or promoters, such
as CYP2C19*17 or CYP3A5*3, are not interrogated by ES and
thus lead to drastically different pharmacogenetic recommen-
dations that affect 13 medications according to CPIC
guidelines. Unlike microarray data, ES data cannot be
subjected to classical imputation due to large gaps in the
data. These problems could be overcome by combining ES
with customized capture probes, or simply replacing ES with
custom panels such as PGRNseq,25 to provide a comprehen-
sive cost-effective implementation of pharmacogenomics
compared with GS.31 However, when the focus is exclusively
on predefined alleles, genotyping arrays, which are currently
at least ten times cheaper than ES or GS, are clearly a more
cost-effective alternative that can generate results surprisingly
similar to those of GS. The OMNI array used in our study
unfortunately does not allow the detection of CYP2D6 copy
number, which is the greatest but still limited drawback when
compared with GS and the GSA (Table 2). As cost-
effectiveness is still considered a major barrier for the clinical
implementation of pharmacogenetics,32 our data suggests that
current genotyping microarrays might constitute the most
cost-effective technology with acceptable accuracy. Several
studies have found preemptive pharmacogenetic testing cost
efficient, with per-patient savings ranging from USD5962 to
USD10,667 (refs. 33–35), despite the reported costs of
pharmacogenetic testing to be over USD2000 (ref. 33). Thus,
both genotyping per se and developing tools for the
translation of preexisting genome-wide genotype data into
clinical recommendations can be considered very reasonable
health-care investments.
In conclusion, as the number of sequenced and genotyped

participants in biobanks and clinical settings is growing
rapidly in several countries, we now have a large amount of

genetic information that could be translated into clinically
actionable decisions tailoring medical therapy in the near
future. By leveraging the existing genotype data of 44,448
individuals in the Estonian Biobank, we were able to
determine that microarrays with imputed variants are a
highly cost-effective tool for identifying thousands of
individuals who need dosing adjustments for commonly
prescribed drugs. In total, we found that as many as 99.8% of
the individuals have a high-risk phenotype requiring a
nonstandard dosing of a medication based on at least one
gene, which is even larger than shown before. Our approach
of trying to define all possible star alleles in the majority of
genes with CPIC guidelines allowed us to reveal the many
challenges that arise in this process. The most crucial next
steps we suggest are further revision of star allele definition
tables based on existing haplotypes in different populations,
an additional level of decision trees to prioritize variants
causing nonfunctional alleles, and restricting the inclusion of
rare alleles to functionally validated variants. We are
confident that such developments built into automated
decision support for clinicians will allow the implementation
of pharmacogenomics at the point of care in a multi-
disciplinary manner36 and with greater impact.
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