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Abstract

Extensive electrophysiology studies have shown that many V1 simple cells have nonlinear response properties to stimuli
within their classical receptive field (CRF) and receive contextual influence from stimuli outside the CRF modulating the cell’s
response. Models seeking to explain these non-classical receptive field (nCRF) effects in terms of circuit mechanisms, input-
output descriptions, or individual visual tasks provide limited insight into the functional significance of these response
properties, because they do not connect the full range of nCRF effects to optimal sensory coding strategies. The
(population) sparse coding hypothesis conjectures an optimal sensory coding approach where a neural population uses as
few active units as possible to represent a stimulus. We demonstrate that a wide variety of nCRF effects are emergent
properties of a single sparse coding model implemented in a neurally plausible network structure (requiring no parameter
tuning to produce different effects). Specifically, we replicate a wide variety of nCRF electrophysiology experiments (e.g.,
end-stopping, surround suppression, contrast invariance of orientation tuning, cross-orientation suppression, etc.) on a
dynamical system implementing sparse coding, showing that this model produces individual units that reproduce the
canonical nCRF effects. Furthermore, when the population diversity of an nCRF effect has also been reported in the
literature, we show that this model produces many of the same population characteristics. These results show that the
sparse coding hypothesis, when coupled with a biophysically plausible implementation, can provide a unified high-level
functional interpretation to many response properties that have generally been viewed through distinct mechanistic or
phenomenological models.
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Introduction

As we seek to understand how sensory nervous systems process

information about their environment, one of the most common

quantitative descriptors of neural coding has been the notion of a

classical receptive field (CRF) [1]. In general, the CRF is a

measurement of the portion of the stimulus space that causes a

change in a neuron’s response when a stimulus is presented (or

removed). For example, beginning with the pioneering work of

Hubel and Wiesel [2], simple cells in the primary visual cortex

(V1) have been characterized as feature detectors with CRFs that

are selective for location, orientation and spatial frequency.

Unfortunately, a simple linear-nonlinear model based on the

measured CRF (e.g., linear filtering with the CRF followed by

nonlinear thresholding or saturation) is insufficient to explain

many response properties of V1 cells. For example, extensive

electrophysiology studies have shown that many V1 simple cells

also receive contextual influence where stimuli not part of the CRF

can modulate the cell’s response to CRF stimuli (reviewed in [3]).

Furthermore, when driven by rich stimuli within the CRF, simple

cells exhibit complex nonlinear response properties that cannot be

captured by thresholding or saturation alone [4]. We use the term

non-classical receptive field (nCRF) effects to collectively refer to these

contextual modulations and nonlinear response properties.

Understanding nCRF effects is likely critical for understanding

the coding of natural stimuli because they arise under stimulus

conditions that are more complex and ecologically relevant than

the stimuli often used in CRF mapping experiments (e.g.,

sinusoidal gratings, white noise, sparse dots). Indeed, recent

electrophysiology experiments with natural video stimuli have

shown contextual influence in V1 responses [5–8]. Furthermore,

observed V1 nCRF effects have been related to perceptual

contextual effects such as contour integration [9].

Given the wide range of different nCRF effects reported in the

literature, it is still unclear how these effects are related or what

collective role they play in sensory coding. Many individual nCRF

effects have been successfully described in terms of potential

underlying circuit mechanisms (i.e., mechanistic models, reviewed

in [10]) or compact stimulus/response descriptions (i.e., phenom-

enological models, reviewed in [3]). While valuable, these

approaches do not fully address the functional significance of

nCRF effects or illuminate their role in sensory information

processing. In another direction, individual nCRF effects have also

been connected to potential benefits in specific tasks (e.g.,

curvature detection [11], contour integration as reviewed in

[12], figure-ground segregation as reviewed in [13]). While these

approaches are also valuable, these types of models have limited

explanatory power because they only address narrow subsets of
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biological vision (i.e., individual tasks) and they do not show that

the processing strategies represented by nCRF effects are optimal

for the given tasks. In short, models constructed for individual

effects do not connect this broad range of response properties to

the optimal sensory coding strategies that can provide a

parsimonious description in terms of fundamental system goals.

One central goal of theoretical and computational biology is to

provide functional insight into biological phenomenon by using

high-level models (often abstracting away specific experimental

detail) to generalize and explain disparate observations. Regarding

CRF properties in biological vision, one model that has had success

in this regard is the sparse coding hypothesis. Sparse coding

conjectures an optimal coding goal where a population of cells

encodes a stimulus at a given time using as few active units as

possible. Specifically, the model of interest optimizes population

sparsity, which is distinct from lifetime sparsity (a single cell being

active a small fraction of the time). In seminal results, the high-level

sparse coding model (combined with unsupervised learning using

the statistics of natural images) has been shown to be sufficient to

explain the emergence of V1 CRF shapes both qualitatively [14]

and quantitatively [15]. In addition to this success providing

functional insight into CRF properties, distributed sparse neural

codes have many potential benefits (e.g., explicit information

representation and easy decodability at higher processing stages

[16], metabolic efficiency [17], increased capacity of associative and

sequence memory models [18,19]) and are consistent with many

recent electrophysiology experiments [20].

Despite the success accounting for the emergence of CRF

properties, there has been little work showing that sparse coding

can account for response properties observed in V1 cells. There

have been several recent experimental results showing that stimuli

in the CRF surround can cause individual cell responses with

higher lifetime sparsity than expected (e.g. [5,6,8], reviewed in

[21]). While this experimental observation provides encouraging

support for the sparse coding hypothesis, it does not imply that a

sensory coding model optimizing sparsity is sufficient to account

for V1 response properties (including nCRF effects). Sparse coding

is one interpretation of the efficient coding hypothesis [22]

(conjecturing that neural coding should successively remove

stimulus redundancy), and other models related to efficient coding

have shown individual model cells that produce some nCRF

effects (reviewed in detail in the Discussion section). However, few

of these models have shown the broad spectrum of observed nCRF

effects in single cells, and none have yet demonstrated the diversity

of population response properties reported in the literature for a

single effect. Taken together, the evidence of sparsity in

experimental observations and the prior success of other related

models gives motivation for investigating the potential role of

sparse coding in producing nonclassical response properties.

In this paper we demonstrate that a wide variety of nCRF

effects are emergent properties of a sparse coding model

implemented in a neurally plausible network structure. Specifical-

ly, we use the experimental paradigms described in the literature

for a wide variety of nCRF effects (e.g., end-stopping, surround

suppression, contrast invariance of orientation tuning, cross-

orientation suppression, etc.) to replicate these electrophysiology

experiments on a dynamical system implementing optimal sparse

coding. In the first contribution of this paper, we show that this

model produces individual units that reproduce a wide variety of

canonical nCRF effects. While another recent model [23] has also

shown nearly all of these effects in a unified model along with some

increased sparsity of the responses, the present work is the first to

show that these effects can arise in a model that has only sparsity as

the coding objective. In the second contribution of this paper,

when the population diversity of an nCRF effect has been reported

in the literature (either through population statistics or multiple

individual cells with varying response properties), we also show

that this simulated population demonstrates much of the same

population heterogeneity reported in the literature. Notably, the

results we report are produced with a single set of model

parameters (i.e., parameters are not tuned to produce each

different effect), despite the system only being designed to optimize

sparsity and not constructed to produce nCRF effects. These

results show that the sparse coding hypothesis, when coupled with

a biophysically plausible implementation, can provide a unified

high-level functional interpretation to many population response

properties that have generally been viewed through distinct

models.

Results

Sparse coding and dynamical systems
The sparse coding model proposes that V1 encodes an image

patch I(x, y) with N pixels as approximately a linear superposition

of M (MwN) dictionary elements fwi(x, y)g,

I(x, y)&
XM
i~1

aiwi(x, y), ð1Þ

where the coefficients faig represent the population activity (e.g.,

average firing rates) [14]. In this model, a neural population

encoding the image I(x, y) would calculate activity levels faig that

minimize an energy function that is a weighted combination of a

data fidelity term (e.g., mean-squared error) and a sparsity penalty

(e.g., the coefficient magnitudes),

X
x, y

I(x, y){
XM
i~1

aiwi(x, y)

 !2

zl
XM
i~1

Dai D: ð2Þ

Author Summary

Simple cells in the primary visual cortex (V1) demonstrate
many response properties that are either nonlinear or
involve response modulations (i.e., stimuli that do not
cause a response in isolation alter the cell’s response to
other stimuli). These non-classical receptive field (nCRF)
effects are generally modeled individually and their
collective role in biological vision is not well understood.
Previous work has shown that classical receptive field (CRF)
properties of V1 cells (i.e., the spatial structure of the visual
field responsive to stimuli) could be explained by the
sparse coding hypothesis, which is an optimal coding
model that conjectures a neural population should use the
fewest number of cells simultaneously to represent each
stimulus. In this paper, we have performed extensive
simulated physiology experiments to show that many
nCRF response properties are simply emergent effects of a
dynamical system implementing this same sparse coding
model. These results suggest that rather than representing
disparate information processing operations themselves,
these nCRF effects could be consequences of an optimal
sensory coding strategy that attempts to represent each
stimulus most efficiently. This interpretation provides a
potentially unifying high-level functional interpretation to
many response properties that have generally been
viewed through distinct models.

V1 Nonlinear Responses Emerge from Sparse Coding
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Here l is a system parameter that controls the trade-off between

the fidelity of the representation and the sparsity of the coefficients.

The sparse coding model is a functional model that can be

implemented through many different mechanisms, including using

generic convex optimization algorithms designed for digital

computers. In this study we use a dynamical system proposed in

[24] that employs neurally plausible computational primitives.

Specifically, we implemented the sparse coding model by

simulating the dynamical system given by:

_uum(t) ~ 1
t Swm,~II(t)T{um(t){

P
i=m

Swi, wmTai(t)

� �
am(t) ~Tl(um(t)),

ð3Þ

where um is an internal state variable for each node (e.g.,

membrane potential), t is the system time constant, and S:,:T is an

inner product over the spatial dimensions. In the system dynamics,

Swm,~II(t)T captures the feedforward filtering while Swi, wmTai(t)
captures the recurrent interactions that implement competition

between cells to represent the stimulus. Note that the recurrent

interaction between those cells is inhibitory if Swi, wmTw0 and

excitatory if Swi, wmTv0 (since ai(t)w0 in our model). Tl(:) is the

soft thresholding function:

Tl(um)~

um{l umwl

0 umj jƒl

umzl umv{l

0
B@ :

The input stimulus can be changed dynamically (e.g., a drifting

sinusoidal grating), in which case the time-varying coefficients

fai(t)g will track approximate solutions, with the solution accuracy

determined by the time scale of the input changes relative to the

system dynamics. We note that recent theoretical work has

demonstrated several network architectures that can efficiently

implement other versions of sparse coding with various degrees of

biological plausibility [15,25,26]. The network architecture being

used in this study provably solves the optimization in Eq. (2) with

strong convergence guarantees [27], can implement many

variations of the sparse coding hypothesis (i.e., different sparsity-

inducing cost functions) [28], and is implementable in neuro-

morphic analog circuits [29].

In our implementation, a dictionary fwi(x, y)g optimized for

sparse coding with natural scenes was determined via unsupervised

learning under sparsity constraints using whitened natural scenes

as the training set (whitening is a first-order approximation of

retinal processing). The learned dictionary was overcomplete with

M~1024 effective dictionary elements for the 16|16 pixel image

patches used as stimuli. The training set, whitening and learning

rule were all exactly as in [14], while the sparse codes during

training (i.e., solutions to (2)) were calculated using a standard

software package [30] (for computational efficiency) with l~0:6.

We interpret these dictionary elements as the classical spatial

receptive fields (CRFs) of the simulated neurons. This interpreta-

tion is supported by our own simulated receptive field mapping

experiment (results not shown) using sparse dot stimuli, similar to

previous studies (e.g., see Fig. 4b in [14]). The results demonstrat-

ed in this study are based on the responses of 72 units in this

dictionary that had CRFs well-localized within the available image

patch (shown in Fig. 1).

The system parameters described above (i.e., membrane time

constant, sparsity level l) are kept the same for every simulation in

this paper (details given in Materials and Methods). In other

words, no attempt was made to tailor the system to reproduce each

effect individually (some interesting exceptions where parameter

changes correspond to apparently conflicting results in the

literature are shown in the Supporting Information). We interpret

the sparse coefficients am in Eq. (2) as the trial-averaged

instantaneous spike rate of neurons in the model population. To

do this, we also impose a positivity constraint am§0 and extend

the dictionary matrix by including both the original dictionary

elements and the negative of the dictionary elements (i.e., doubling

the size of the matrix to use the same effective dictionary as if there

were both positive and negative coefficients). This mirrored

receptive field structure is reminiscent of the push-pull feedforward

input structure in the visual simple cells [31].

In the following sections, we highlight several common nCRF

effects from the literature and illustrate that this sparse coding

model can largely reproduce both reported individual response

properties and much of the reported response diversity across V1

neurons. For each nCRF effect the simulation was constructed to

match as closely as possible the experimental protocol described in

the experimental procedures section of the corresponding electro-

physiology paper, including stimulus construction parameters and

data analysis (details given in Materials and Methods). We classify

the studied nCRF effects into three groups: suppressive effects that

are evoked by the presence of stimuli outside the classical receptive

field (CRF surround effects), effects where the response modula-

tion depends on the orientation of the stimulus in the surround

(CRF surround orientation effects) and effects that reflect the

nonlinearity of the CRF center (nonlinear CRF effects).

CRF surround effects
Stimuli in the region surrounding the CRF can have a

modulatory effect on a neuron’s response despite not inducing

significant response in isolation (by definition of the CRF). In

perhaps the simplest form of this suppressive modulation, it has

long been known that some V1 neurons exhibit end-stopping where

the spike rate decreases for a cell responding to an optimally-

oriented bar stimulus when the bar length is increased beyond the

CRF boundaries. An example figure depicting the end-stopping

effect as observed in cat electrophysiology recordings [32] is

reproduced in Fig. 2A. When simulating this experiment [32] on

the sparse coding model, some of the model cells (such as the

target cell shown in Fig. 2B) exhibit the same characteristic

suppression with increasing bar length. The end-stopping effect

was previously shown in [33] to emerge in the sparse coding

model. The end-stopping effect can be simply understood in terms

of the goals of sparse coding. When the bar is short, the CRF of

the target cell is the most efficient description of the stimulus and

that cell has the strongest response. However, when the bar is long

enough that it is better explained by the CRFs of other cells, the

target cell becomes suppressed by these competitors so as to

maintain a sparse representation. The Discussion section contains

a detailed look at how the network interactions supporting the

sparse coding model can produce this effect.

Similar to end-stopping, some V1 neurons also exhibit surround

suppression where their response to a sinusoidal grating patch

decreases as the patch size increases beyond the CRF. Addition-

ally, the tuning curve for patch size often exhibits receptive field

expansion at low contrast, meaning that the patch size achieving the

maximum response increases at low contrast (Fig. 3A). As

illustrated in the response of an example model cell shown in

Fig. 3B, the sparse coding model can exhibit the same basic

suppression and receptive field expansion properties observed in

electrophysiology experiments. In addition, we note that the slight

increase of response level (i.e., response rebound) at large stimulus

V1 Nonlinear Responses Emerge from Sparse Coding
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size visible in Fig. 3B is also visible in Fig. 3A and discussed

elsewhere [34].

The network interactions giving rise to surround suppression are

presumably similar to that of end-stopping, but are more difficult

to specify given the added dynamics of the drifting grating

stimulus. In particular, due to the suboptimal match of the target

CRF to the larger stimulus, competition from other cells (that

better match the larger stimulus) can suppress the target cell’s

response. This competition can also be modulated by the stimulus

contrast and may contribute to the receptive field expansion.

Specifically, at low contrast the competing cells have lower

response levels (resulting in a weaker suppressive effect on the

target cell), enabling the response of the target cell to grow with the

stimulus size.

Despite the evidence detailed above that some biological and

model V1 neurons exhibit surround suppression, a single example

cell is insufficient to quantify the prevalence of this effect in a

population encoding sensory information. While many nCRF

effects are reported as single cell response properties, some studies

have attempted to quantify how strongly an effect is expressed

across the population. In the case of surround suppression, two

metrics have been used to quantify the degree of suppression and

receptive field expansion demonstrated by a cell. One is the

suppression index (SI), calculated as the ratio between the

(suppressed) response value at large stimulus sizes and the peak

response value (indicated by arrows in Fig. 3B). The second metric

is the RF expansion ratio, calculated as the ratio of the size tuning

peak location at high contrast against that at low contrast.

In many physiological studies (both in monkeys [35] and in cats

[36]), a large proportion of cells actually show little suppression,

with relatively few cells exhibiting strong suppression. An example

SI distribution from cat V1 is shown in Fig. 3C, demonstrating a

dominant peak at zero suppression and a relatively uniform

distribution among more suppressive cells. A similar population

distribution emerges from the sparse coding model cells, as

illustrated in Fig. 3D. Another characteristic of the surround

suppression index is that it is largely invariant to the stimulus

contrast. In other words, the difference in SI at high and low

contrast is close to zero (Fig. 3E) with a mean value of 0.06 [37].

We also observed this characteristic in the sparse coding model

cells (Fig. 3F), with a mean SI difference of 0.02. We note here that

some studies (e.g. [38]) recorded unusually high percentage of cells

showing significant surround suppression, perhaps due to a

different experimental preparation. Interestingly, the sparse coding

model can qualitatively reproduce these apparently conflicting

results by using a different set of parameters to encourage more

sparsity (see Fig. S2 which is described in Supporting Information

Text S1).

A scatterplot of RF expansion ratios for V1 cells in macaque

[37] shows clearly that on average, the CRF size is larger at low

contrast than at high contrast (Fig. 4A). A scatterplot of expansion

ratios for the sparse coding model population shows the same

qualitative trend of expanding CRF size at low contrast. We note

that the mean expansion ratio in the sparse coding model cells

(1.16) is lower than typically reported values in the electrophys-

iology literature (e.g., 2.3 in [37]). This quantitative difference may

Figure 1. Subpopulation of dictionary elements (‘‘CRFs’’) studied. The 72 dictionary elements that were recorded from in the model
simulation. Dictionary elements were optimized for sparse coding under natural scenes (as described in the text) and selected for well-localized CRFs
in the image patch. The units whose single cell activities are presented in later figures are indicated by red rectangles.
doi:10.1371/journal.pcbi.1003191.g001

Figure 2. End-stopping. (A) End-stopping response in a simple cell from cat V1 responding to an optimally-oriented light bar stimulus (data
replotted from [32], Figure 1). (B) The length tuning curve of a simulated sparse coding model neuron (target) demonstrates end-stopping behavior.
doi:10.1371/journal.pcbi.1003191.g002

V1 Nonlinear Responses Emerge from Sparse Coding
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be due to variations in the RF expansion ratio definitions (e.g., the

study in [37] uses a difference of Gaussians fit rather than tuning

curve peaks), the lack of contrast saturation in the present model

(see Discussions), or biased sampling of neurons in the electro-

physiology literature [39]. The possibility that the true expansion

ratio might be lower than previously reported is corroborated by a

recent study reporting that as many as 40% of cat V1 neurons

show length tuning peaks that are invariant to contrast changes

[40].

CRF surround orientation effects
The modulatory effects seen from surround stimulation can

depend on a number of stimulus properties, including contrast,

spatial extent (relative to the CRF), and stimulus orientation in the

surround. In particular, modulation is often most suppressive

when the surrounding stimuli are at orientations parallel to the

preferred CRF orientation (iso-oriented), and less suppressive (or

even facilitatory) when the stimuli are perpendicular to the

preferred CRF orientation (ortho-oriented). For example, when

stimulating a cell with an optimally oriented sinusoidal grating just

covering the CRF (i.e., the orientation eliciting the strongest

response), a grating in the annulus surrounding the CRF often

suppresses the cell when it is iso-oriented and has little effect when

it is ortho-oriented. An example of this surround orientation tuning in

macaque V1 cells [41] is shown in Fig. 5A. The sparse coding

model cells can also demonstrate the same type of surround

orientation tuning, as illustrated by the model cell response shown

in Fig. 5B. This tuning behavior in the model is likely due to the

difference in the strength of competition with different stimulus

surround orientations. In particular, the competing cells stimulated

by iso-oriented surrounds are likely to have stronger CRF overlaps

with the target cell and therefore induce more competition than

the cells stimulated by ortho-oriented surround stimuli.

Orientation tuned surround effects can have substantial

variations, even with minor changes in the stimulus. For example,

the modulatory effect can be facilitatory at some surround

orientations, causing a net increase in the response of the cell to

CRF stimulation alone. This facilitatory effect is often seen when

using a center stimulus slightly larger than the optimal size [41], as

shown in Fig. 5C for the same cell as in Fig. 5A. Interestingly,

increasing the size of the center stimulus for a model cell can

Figure 3. Surround suppression and RF expansion. (A) A plot illustrating that cortical neurons show surround suppression and expansion of
CRF size at low contrast (reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience, Figure 1a from [37]). (B) The size tuning curve
of a simulated sparse coding model neuron at various contrast levels (‘‘c’’ stands for contrast, with lighter curves representing lower contrast). The
model neuron exhibits two characteristic behaviors reported in the electrophysiology literature: suppression with increasing stimulus size and an
increase in the optimal stimulus size with lower contrast. The maximum of each tuning curve is marked by an arrow. (C) Physiologically measured
distribution of surround suppression index (SI) in cat V1 (data replotted from [36], Figure 2A), illustrating that most cells do not exhibit significant
surround suppression and the SI distribution is relatively uniform among suppressive cells. (D) The SI distribution for the model cells, illustrating the
same qualitative properties as the distribution in (C). (E) Distribution of the SI difference (DSI) between low and high contrast levels in macaque V1
(reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience, Figure 6b from [37]). The mean difference is 0.06, demonstrating that
on average the SI for a cell is contrast invariant. (F) The distribution of DSI for the sparse coding model cells. The mean difference is 0.02, also
demonstrating contrast invariance in SI.
doi:10.1371/journal.pcbi.1003191.g003

V1 Nonlinear Responses Emerge from Sparse Coding
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likewise induce facilitation when the surround stimulus is close to

ortho-oriented (shown in Fig. 5D for the same cell as in Fig. 5B).

As with surround suppression, a single example of facilitation in

the surround orientation tuning does not characterize the

prevalence of this effect in a population of V1 cells encoding a

stimulus. The degree of facilitation expressed by a neuron can be

characterized by measuring the ratio between the maximum of the

surround orientation tuning (the maximum of the solid line in

Fig. 5B) and the response to the center at the optimal orientation

with no surrounding stimulus (the maximum of the dashed line in

Fig. 5B). In macaque V1 [42], the median of the facilitation ratio

across the measured population was found to be 1.44 at high

contrast and 1.71 at low contrast. The sparse coding model cells

show a similar dependency on contrast levels, with the median

facilitation ratio ranging from 1.15 at high contrast and 1.31 at low

contrast.

Figure 4. Size tuning peak at high vs. low contrast. (A) RF expansion of macaque V1 cells (reprinted by permission from Macmillan Publishers
Ltd: Nature Neuroscience, Figure 3a from [37]). (B) RF expansion of sparse coding model cells. Most points lie above the diagonal, indicating that (on
average) the optimal stimulus size is larger at lower contrasts and the cell demonstrates RF expansion.
doi:10.1371/journal.pcbi.1003191.g004

Figure 5. Orientation tunings for surround suppression and facilitation. (A) Center and surround tunings with the optimal stimulus center
size in macaque V1 (data replotted from [41], Figure 2A). The center orientation tuning curve (dashed line) shows the cell’s response to a CRF
sinusoidal grating. With the CRF stimulus fixed to an optimally-oriented grating, the surround orientation tuning curve (solid line) shows the cell’s
response to a sinusoidal grating in the annular surround at various orientations. (B) A sparse coding model cell demonstrating similar surround
orientation tuning properties, with highest levels of suppression at iso-oriented surround stimuli and almost no suppression for ortho-oriented
surround stimuli. (C) Center and surround orientation tunings of the same cell as in (A) with the stimulus center size increased beyond the CRF and
the width of the surround annulus unchanged (data replotted from [41], Figure 2B). (D) The same sparse coding model cell as in (B) demonstrates the
facilitatory effects at ortho-oriented stimuli seen in (C).
doi:10.1371/journal.pcbi.1003191.g005

V1 Nonlinear Responses Emerge from Sparse Coding
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The surround orientation tuning properties described above can

be substantially influenced by the contrast difference between the

center and the surround. For example, if the center contrast is

fixed and the surround contrast is varied, the most significant

suppression in individual macaque neurons was observed with the

iso-orientated stimuli at high surround contrast (see Fig. 6A) [35].

Similarly, when plotting the responses as a function of center

contrast for various surround settings (e.g., no surround, iso-

oriented, and ortho-oriented), the suppressive effects in macaque

were most pronounced with the iso-oriented stimuli at high center

contrast (see Fig. 6C) [43]. Both of these dependencies on contrast

can also be observed in the sparse coding model cells, as shown in

Fig. 6D and Fig. 6B. Again we note that in some physiological

studies an apparently conflicting result is reported where cat V1

neurons show facilitation with iso-oriented surround stimuli at low

CRF contrast [44] (Fig. S3A which is described in Supporting

Information Text S1). Interestingly, the sparse coding model can

also reproduce this behavior when using a different set of

parameters (see Fig. S3B which is described in Supporting

Information Text S1).

Nonlinear CRF effects
Even when the stimulation is confined to the CRF with no

involvement of the surround, cells in V1 exhibit several nonlinear

effects that cannot be explained by a canonical linear-nonlinear

model [4]. One example of such an effect is the contrast invariance of

orientation tuning for V1 cells. In a linear-nonlinear model based on

CRFs, higher contrast stimuli evoke stronger responses that more

readily exceed the spiking threshold, thus broadening the

orientation tuning curve for higher contrast stimuli (the ‘‘iceberg

effect’’ [45]). However, as reported in the cat physiology literature,

the orientation tuning width is largely contrast invariant [46] as

demonstrated in Fig. 7A. Cells from the sparse coding model can

also display this contrast invariance in the width of their

orientation tuning curves, as shown in Fig. 7B. This invariance

can potentially be attributed to recurrent inhibition from

competing cells at orientations where the target cell is not the

most efficient description (e.g., ortho-oriented stimuli). Even

though these competing cells may not have large overlap with

the CRF of the target cell, as the contrast increases they will

become more active and induce stronger inhibition, thereby

narrowing the tuning width of the target cell compared to the low-

contrast response. Indeed, compared to the predictions of a linear-

nonlinear model (not shown), the tuning width from our model is

much narrower.

The degree to which the width of the orientation tuning curve

changes for a cell can be quantitatively measured by calculating

the half-width at half-height of the Gaussian fit to the tuning curve

for various contrast levels [47]. The population statistics can be

plotted as a histogram tabulating the slope of the best linear fit to

the width expansion with contrast for each cell. An example of this

measure from ferret V1 demonstrating that the tuning curve width

Figure 6. The effect of contrast on surround influences. (A) Surround contrast tunings with fixed center contrast in macaque V1 and varying
surround stimuli (reprinted by permission from the Society for Neuroscience: The Journal of Neuroscience, Figure 6B from [35]). The gray markers
correspond to responses to a uniform surround at different contrast. (B) Surround contrast tunings with fixed center contrast in the sparse coding
model. As with the neuron responses in (A), the model cell is most suppressed for iso-oriented surround stimuli at high contrast. (C) Center contrast
tunings with fixed surround contrast in macaque V1 simple cells with varying surround orientations (data replotted from [43], Figure 5A). (D) Center
contrast tunings with fixed surround contrast in the sparse coding model. As with the neuron responses in (C), the model cell shows that (especially
at high contrast) an iso-oriented surround (asterisk markers) is more effective than an orthogonal surround (cross markers) at suppressing the
response to the center alone (white circle markers). As mentioned in the text (see Discussions), the lack of contrast saturation in the present sparse
coding model is evident in this figure by the model response at high contrast.
doi:10.1371/journal.pcbi.1003191.g006

V1 Nonlinear Responses Emerge from Sparse Coding

PLOS Computational Biology | www.ploscompbiol.org 7 August 2013 | Volume 9 | Issue 8 | e1003191



is almost constant with contrast is shown in Fig. 7C [47]. In this

same measure, the sparse coding model also exhibits strong contrast

invariance properties across the population, as shown in Fig. 7D.

Both the ferret V1 population and the sparse coding model have a

slope tightly concentrated around zero in these histograms, with

mean values of 0.002 and 0.032 respectively. The mean values of

the half-width at high contrast measured in physiology (16:1+1:10)

[47] and the model (13:87+5:840) are also similar.

An example of a nonlinear CRF effect using a more complex

stimulus is cross orientation suppression, where a plaid (i.e., an ortho-

oriented mask grating superimposed on an iso-oriented test

grating) suppresses the response of the cell to the test alone.

Fig. 8A and Fig. 8B show examples of this suppressive tuning

property from cat V1 [48], as well as from a single cell in the

sparse coding model. This kind of facilitatory effect may be due to

a number of factors, including excitatory connections between cells

(i.e., other cells in the population encouraging the target cell to

represent the stimulus when they are unable to do so) or dis-

inhibition, where a distant cell inhibits an intermediate cell that

subsequently releases an inhibitory effect on the target cell [49].

The degree of cross orientation suppression depends on other

factors beyond the orientation of the mask stimulus, including the

contrast levels of the test stimulus. This contrast dependency was

observed in cat V1 (shown in Fig. 8C) [50], and is also visible in the

sparse coding model neurons as shown in Fig. 8D. Note that while

the qualitative trends in the contrast dependency are the same in the

model and in physiology, the lack of contrast saturation in the

present model is evident in this figure (see Discussions).

The degree of cross orientation suppression expressed in a

population of cells can be characterized by comparing the

response to the plaid with the response to the test alone. A scatter

plot of the normalized spike rate of cat V1 cells shown in Fig. 8E

for the test versus plaid stimuli demonstrates that most cells have a

suppressive response to the plaid (as depicted in the single cell

response in Fig. 8A) [51]. Furthermore, the scatter plot indicates

that the suppression is more pronounced for lower test contrasts.

As shown in Fig. 8F, the sparse coding model population exhibits

the same qualitative properties, with most cells exhibiting plaid

suppression that increases with lower test contrast. Quantitatively,

the mean cross orientation suppression ratio between the test and

plaid responses for cat V1 was measured at 0.11 for low test

contrast and 0.71 for high test contrast [51]. The sparse coding

model cells have mean cross orientation suppression ratios of 0.59

and 0.95 for low and high test contrasts (respectively). While the

model shows the same qualitative trend and overlaps in range, the

specific values for these ratios are slightly higher than the reported

experimental values. This small quantitative discrepancy might be

due to the presence of contrast saturation in the physiology (visible

in Fig. 8C) and its absence in the sparse coding model (Fig. 8D;

(see Discussions).

Discussion

Electrophysiology research in V1 has revealed a wide variety of

nCRF effects that may appear to be due to many different aspects

of neural coding or cortical processing. The functional interpre-

Figure 7. Contrast invariant orientation tuning. (A) Contrast invariance of orientation tuning curves recorded in cat V1 (data replotted from
[46], Figure 3A). Note that the width of the orientation tuning curve does not change with contrast. (B) Sparse coding model neuron that
demonstrates the same invariance property. Lighter curves correspond to lower contrast (‘‘c’’ denotes contrast level). (C) Distribution of the slope of
tuning curve half-width vs. the contrast in ferret V1 (data replotted from [47], Figure 3B). The sharp distribution around 0 indicates that the tuning
curve half-width is contrast invariant (mean value is 0.002). (D) Distribution of the half-width vs. the contrast slope in the sparse coding model cells
(mean value is 0.032). The model cells clearly demonstrate contrast invariance of the tuning curve half-width, and an even tighter peak around zero
slope than shown in (C).
doi:10.1371/journal.pcbi.1003191.g007
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tation of these effects is especially complex given the heterogeneity

of the responses exhibited across populations of cells reported in

the literature. We have demonstrated for a wide variety of nCRF

effects that both the canonical individual cell response properties

and a substantial diversity of population response properties are

emergent characteristics of a simple dynamical system implement-

ing a sparse coding model. This model appears to produce a very

good qualitative match to many measures of population response

statistics, and in many cases produces quantitative measures of

these statistics that are in a similar range to reports in the

physiology literature. By demonstrating a coding model that can

account for these response properties, these results provide a

potential functional insight into the role of nCRF effects in optimal

sensory coding. While not mutually exclusive of other functional

models that may also play a role in neural coding, the sparse

coding model is one of the few models (along with [52]) able to

substantially reproduce some nCRF effects as well as account for

the emergence of localized, oriented, and frequency-selective

CRFs [14]. In particular, despite not being constructed to produce

nCRF effects, the present model appears able to capture

population properties of nCRF effects that have been difficult

for other functional models to produce (e.g. the contrast invariance

of surround suppression index in Fig. 3F, as discussed in [53]).

There are several existing results that share a similar goal of

providing high-level functional interpretation of nCRF effects.

Perhaps most closely related to the present study is the PC/BC

model [23,52,54–56], which has also been able to reproduce most

of the nCRF effects demonstrated in this paper [23]. It is

Figure 8. Cross orientation suppression. (A) A cat V1 simple cell demonstrates cross orientation suppression by responding with lower firing
levels to an iso-oriented test grating if an ortho-oriented grating (mask) is superimposed (data replotted from [48], Figure 3(A)). The dashed line is the
response to the iso-oriented test grating with no mask stimulus. (B) Cross orientation suppression exhibited by a sparse coding model neuron. Note
the same dependence on the orientation of the mask that is seen in (A). (C) Contrast tuning curves of the test at different fixed mask contrast levels
for a cat simple cell (data replotted from [50], Figure 2A). (D) Contrast tuning curves of the test for the same sparse coding model cell as in (B). Note
again the same response modulation as in physiology despite the lack of contrast saturation in the model (see Discussions). (E) Measurement of
modulation (F1) component of the response to a test grating alone vs. that with a superimposed orthogonal grating from a population of visual
cortical neurons in cat (reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience, Figure 2b from [51]). The unity line represents
where there is no suppression. The response at low test contrast is further away from the diagonal, suggesting more suppression in this regime. (F)
Measurement of F1 response to a test grating alone vs. that with a superimposed orthogonal grating from the sparse coding model population. Note
that just as in the physiology data, the model has the same general suppressive behavior, with increased suppression with lower test contrast.
doi:10.1371/journal.pcbi.1003191.g008
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interesting to note that although it has other functional goals, the

PC/BC model does exhibit high sparsity [52] and has accounted

for classic CRF tuning properties [52]. While there is significant

overlap in the demonstrated nCRF effects, the present work is

unique in exhibiting the sufficiency of a model derived from sparse

coding to produce the observed effects and to reproduce the

population diversity seen in physiology (which the PC/BC model

has yet to demonstrate). Given the similar behavior of the PC/BC

model and the present model, it is possible that there is a deeper

underlying relationship between the PC/BC model and sparse

coding than is presently understood. Other example related works

include the basic predictive coding model [57], where a

subpopulation of model neurons communicating prediction errors

exhibits some of the single cell nCRF effects documented in the

present study. Another example is the divisive normalization

model [58], where contextual effects emerge from a population

interaction that modulates the gain in an attempt to maximize the

independence of neighboring units. While both of these models

account for some individual effects, they are not currently known

to reproduce the population diversity seen in physiology or to

alone be sufficient to also account for the emergence of known

CRF properties (without an added sparsity constraint). More

recent models capture the center-surround homogeneity (e.g.

orientation co-alignment) in the natural scenes through a

generalized form of divisive normalization [59] or capture the

covariance structure between pixels in natural scenes [60]. While

each of these models demonstrates some individual nCRF effects,

these models are also not currently known to reproduce the

population diversity seen in physiology (in particular, [59]

simulates responses using a single generic unit and not a diverse

population) and neither model currently has a fully specified

implementation in a biologically plausible circuit (although an

approximate form of the model in [60] may enable such an

implementation). Another related model was described in [61],

which demonstrated that a spiking input targeted divisive

inhibition mechanism gives rise to competition among sensory

feature detectors and non-classical-like effects. While this model

have some interesting features that the present model does not

have (e.g., biologically realistic spiking behavior), the stimuli and

CRF representations were 1D idealized functions and it’s not clear

how the results extend to 2D images.

An important feature of the present work is that the same model

(with the same parameters) is used to produce all of the presented

results (i.e., parameters were tuned once and fixed for all

experiments in the main text). The qualitative and quantitative

matches observed in this paper rely on these parameter settings

combined with the dynamical system implementation of the sparse

coding rule. For example, changes in the system that would

actually encourage responses with higher sparsity (e.g., increasing

l, solving Eq. (2) using a conventional digital algorithm, running

the dynamical system implementation with more integration time

steps/faster non-biological time constants) would often generate

similar single cell nCRF effects [62] as presented here (results not

shown), but those effects would be too strong to be a quantitative

match to the population properties (e.g., a far higher percentage of

model cells would show strong surround suppression than is

reported in physiology; see Fig. S1 which is described in

Supporting Information Text S1). The Supporting Information

demonstrates some instances where simple parameter changes in

the model can actually account for apparently conflicting reports

regarding nCRF effects in the experimental literature. We

speculate that different settings of l in the model may reflect

differences in experimental preparations, such as different species

and various levels of anesthesia. Indeed, anesthesia is known to

influence the sparsity level in sensory systems [63,64], and some

perceptual contextual effects only occur in awake animals [65].

These observations about changes in the results with varying

sparsity levels indicates that the sparse coding objective appears to

be sufficient to produce the nCRF modulations, but the dynamical

system implementation (with biophysical time constants) is

required to produce the heterogeneity necessary to be a good

quantitative fit. We also note that the role the dynamical system

plays in the present work is similar to recent work [15] showing

that learned dictionaries can be a much better quantitative match

with measured macaque CRFs when the sparse coding model is

implemented in a neurally-plausible network model. It is presently

unclear if a different dynamical system minimizing the sparse

coding objective would also result in the heterogeneity necessary to

still be a good quantitative fit to physiology. Similar variations in

the quantitative fits (especially to population data) are expected

when using other sparsity penalties beyond the ‘1 norm used here

[28], or when using sparse coding implementations that encourage

more ‘‘hard’’ sparsity (i.e., more elements that are exactly zero)

[15]. In a similar vein, the present study uses a four-times

overcomplete dictionary optimized for sparsity under natural

scenes, and this model component is also likely important to the

presented results. Though investigating the role of the dictionary

would be an interesting avenue of further exploration, we expect

that larger dictionaries may enable more sparse responses which

also may demonstrate more suppression than what is seen in the

current model.

The recurrent interactions between cells in the sparse coding

model implement a rich nonlinear response where cells compete to

represent stimulus features. While it has been noted that stimuli in

the CRF surround can produce sparse responses [5,6,8], the

surprising finding of this work is that the particular form of

inhibition and excitation necessary to implement a sparse coding

model is sufficient to explain so many individual and population

nCRF properties. At a high level, these effects likely arise from the

present model because the observed responses produce a more

efficient representation of the stimulus than alternative population

responses. While a detailed investigation of how the network

interactions give rise to the response properties is an interesting

open question for future investigation, in general this is difficult to

determine due to the interactions between the network dynamics

and the stimulus dynamics (i.e., the response properties arise from

the average response over a drifting grating, in addition to being

influenced by network dynamics). In the case of end-stopping, the

stimuli is not drifting and we can see more explicitly how this effect

arises from the principles of sparse coding. In response to a given

fixed stimuli, the steady-state network response is composed of a

combination of feedforward excitation, recurrent excitation and

recurrent inhibition. When plotting these three components of the

steady-state response as a function of the bar length (Fig. 9A), it is

evident that the overall response is mostly driven by the

feedforward component and the recurrent inhibition. The

feedforward excitation saturates as a result of the stimulus growing

out of the CRF, but the recurrent inhibition keeps growing with

increased bar length. To see the spatial extent of the recurrent

influence, Fig. 9B shows the CRF locations and orientations of the

cells influencing the target cell. As expected, inhibition mostly

comes from cells with overlapping and co-linear CRFs that

represent a more efficient description of the stimulus as the bar

length increases.

There has been a long history of debate over the mechanisms

underlying various nCRF effects [3], with each effect generally

having a substantial literature attempting to answer questions

about the detailed aspects underlying the modulatory response

V1 Nonlinear Responses Emerge from Sparse Coding
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properties (e.g., the relative role of intra-cortical connections

versus feedforward projections from thalamus in contrast invariant

orientation tuning [66], as well as the role of feedback connections

[67]). The implementation used in this work (see Materials and

Methods) would appear to suggest that these contextual effects can

emerge from recurrent network structure in the absence of

nonlinearities in the thalamic input or feedback from higher

cortical areas. However, mechanistic interpretation of functional

models must be cautious as there are often many possible

mappings of the model to circuitry and biophysical mechanisms.

For example, past work has shown that it is possible to have

mappings of functional models onto circuitry that are very

different from their original intuitive mappings (e.g., divisive

normalization [68] and predictive coding [54]). The sparse coding

dynamical system used in this study is open to the same variety of

mechanistic interpretations. For example, the recurrent inhibitory

influences could be implemented [69] via local inhibitory

interneurons receiving convergent inputs from local excitatory

neurons [70] and having dense (many-to-one) output connections

with these excitatory neurons [71]. Alternately, it is possible that

these inhibitory influences could be implemented via a mechanism

based on long term depression of synaptic connections between

excitatory cells in cortical layer 4 [72] and global inhibition [73].

For another example, as demonstrated in [68], it might be possible

to achieve similar computational goals through nonlinearities in

the feed-forward thalamocortical circuit, rather than a recurrent

network. For yet another example, the recurrent competition

could be implemented through subtraction as in our model, or

through division as in [23]. It remains an open question to

determine the most biophysically appropriate mapping of the

present model onto a circuit implementation.

While the mechanisms underlying individual nCRF effects is an

interesting area of investigation, another related question of

interest is to determine which aspects of the model are responsible

for the observed population variability. In the present model, the

dictionary serves to define both the activity driving each cell

through the CRF, as well as determining the synaptic weights that

define the recurrent influences in the network dynamics. Because

the present dictionary was learned from the sparse coding

objective on natural images, it is optimal for this coding strategy

and demonstrates significant variability as observed in biological

CRFs. While a detailed investigation of how the model gives rise to

the response diversity is also a challenging and interesting open

question for future investigation, one interesting preliminary

question is what role the variability in the dictionary plays in the

observed nCRF response variability. As a specific example, we

have found the surround suppression index to be significantly anti-

correlated with the CRF size (Fig. 10; correlation coefficient

~{0:89; pv0:001). While we are unaware of studies investigat-

ing this relation in the physiology literature, there are several

studies that do suggest this type of anti-correlation. One piece of

evidence [74] shows that cortical layers with larger CRFs also tend

to have lower SIs and vice versa. Another corroborating study [75]

shows that suppressive V1 cells have smaller CRFs compared to

plateaued and facilitative cells. This anti-correlation may be

present simply because there are fewer cells with larger CRF size

in the model (visible in Fig. 10) and in V1 [76], making these cells

more likely to be used in an efficient coding model whenever the

stimulus grows past a certain size. It is also possible that the limited

stimulus sizes used in the current model and many physiology

studies (e.g. [77]) could be producing a boundary effect that

contributes to some of these observations. It is presently unclear if

the inherent variability in the dictionary is alone sufficient to

produce the response variability observed in biology (i.e., if

another coding model could produce this same variability when

using CRFs from this same type of learned dictionary) or if

significant response heterogeneity requires the interaction of a

learned dictionary with a dynamical system implementing sparse

coding.

Some contextual effects, especially ones that involve perception

such as perceptual pop-out, figure ground segregation [13], and

contour integration [12] operate over a larger range (e.g. over 8

times the CRF size in [78]) and are likely to be mediated by long-

range lateral connections [79]. The present study did not test the

emergence of these types of effects in the sparse coding model due

to the limited size of the dictionary elements. The sparse coding

model simulated here used a substantially overcomplete dictionary

(see Materials and Methods), thus the size of the visual field we

Figure 9. Decomposition of the recurrent inputs contributing to the end-stopping effect. (A) Overall decomposition of the response into
recurrent excitatory, inhibitory, and feedforward components; (B) Locations and orientations of the CRFs of cells contributing to the recurrent
excitatory and inhibitory signals at different bar lengths. Only CRFs with significant influences are displayed (i.e., DSwi, wmTDai(t)w0:1 at steady state).
The warmer color (yellow) represents the location and orientation of the CRFs for cells contributing to recurrent excitation, the cooler color (blue and
cyan) represents the CRFs for cells contributing to recurrent inhibition. Higher contrast in the color indicates a stronger excitatory or inhibitory effect
on the target cell. The black bar represents the target cell CRF. Note that as the bar length increases, the suppressive effect is mostly due to recurrent
inhibition from cells that are a better description of the new stimulus (and therefore would be a more efficient stimulus description according to the
sparse coding model).
doi:10.1371/journal.pcbi.1003191.g009
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were able to simulate is limited by the current computational

complexity of learning large scale dictionaries from the statistics of

natural images. While it may seem unlikely that long-range effects

could emerge from the present model when the only direct

influences are between cells with overlapping receptive fields (see

Materials and Methods), it is conceivable that second order effects

(e.g., dis-inhibition, where a distant cell inhibits an intermediate

cell that subsequently releases an inhibitory effect on the target

cell) may play a central role that would only be discovered in a

study using larger visual fields. An alternative is to incorporate

long-range lateral connections explicitly into a sparse coding

model [80].

Despite the wide variety of nonlinear properties observed in

the sparse coding model, this model alone is unable to

reproduce some nCRF effects because it lacks the stereotypical

saturating contrast response function [81]. While this contrast

saturation would be a simple addition to the model, the present

study focuses on the basic sparse coding model to isolate the

response properties due to the nonlinear interactions required to

achieve sparsity. It is interesting to note that the model can still

reproduce several contrast dependent contextual effects even

without an explicit contrast saturation mechanism. Indeed, it

has been previously suggested that some of these contrast

dependent effects may be independent of the response satura-

tion [42]. Nevertheless, we expect that including some type of

contrast saturation in the model may improve the quantitative

fit of the current model to some nCRF effects. For example,

introducing contrast saturation in the surround suppression

simulation (Fig. 3) may further restrict the size tuning curve

peak at high contrast and lead to a closer match to the

expansion ratios reported in the physiology literature. Contrast

saturation could be included in this model through several

mechanisms, including modifying the cost function to encourage

saturating spike rates (although by itself this mechanism may not

accurately capture saturating membrane potentials [82]),

including LGN saturation [54], modifying the network imple-

mentation to include contrast-dependent shunting inhibition

[4], or coupling the sparse coding model with a model such as

the previously reported divisive normalization [58].

Materials and Methods

To implement sparse coding in a neurally plausible network

architecture, we solve the dynamical system in equation (3) using a

first order Euler method with an integration time step of

D~1:2ms, 25 integration time steps per stimulus (i.e., correspond-

ing to a stimulus presentation of approximately 1/30 second per

frame of a video), a sparsity level of l~0:5 and a membrane time

constant of t~12ms (within the range of physiological values

between 10 ms and 100 ms [83]). In simulations using static

stimuli we measured the response after 1000 integration time steps

to assure full convergence.

Stimuli such as bars and sinusoid gratings were generated as

16|16 pixel image patches, whitened (to mimic retinal process-

ing), and overlaid on a gray background with the same mean as

the gratings. Finally, for all stimuli we used a contrast (defined as

the range of the intensity values of the sinusoid grating or bar) of

0.3 unless otherwise noted.

As in physiological experiments studying nCRF effects (e.g.

[36]), we first picked an arbitrary ‘‘target’’ neuron from the

population that we would ‘‘record’’ from, pinpointed the center of

its CRF ON-region by hand (interpreting the dictionary element

as approximating the CRF), and searched for an optimal circular

sinusoidal static grating patch stimulus (i.e., having the size,

orientation, spatial frequency, and phase that gave rise to the

maximal response of the target neuron in the model). We

performed this search by a two-step exhaustive search over the

parameter space using the following ranges: size of the grating was

between 1 pixel and 16 pixels in diameter using 0.5 pixel

increments; orientation was between 0 and 175 degrees using 5

degree increments; spatial frequency was between 0.5 to 2

radians/pixel using 0.25 radians/pixel increments; phase was

between 0 to 2p using p=6 radian increments. We used this

approach to map the optimal stimuli for a total of 72 simulated

cells (each with CRFs well-localized within the limited visual field

used in the simulation).

In most experiments we used drifting sinusoid gratings as stimuli

(as described in the experimental literature for each effect). We

simulated a drifting grating in discrete time by a series of static

gratings at progressive phases. We fixed the temporal frequency of

the grating to be about 3 Hz, which is typical of the preferred

frequency of cortical neurons [83]. To simulate the dynamic effect

of the neural response, we simulated the dynamical system in

equation (3) through the entire experiment with the driving input

switched at the appropriate time to match the drift speed of the

grating. We measured the response to a full cycle of the grating

presentation by the mean or F1 (first harmonic) component,

depending on the measure used in physiology literature for the

particular effect under consideration.

In the end-stopping experiment we found an optimal static bar

stimulus for the target neuron by fixing the bar width to 2 pixels, the

orientation to be the same as the optimal sinusoid grating

orientation, and the bar length to be the same as the optimal

grating size. We then found the optimal bar location by translating

the bar around a 5-pixel neighborhood of the grating center and

searching for the maximal model response for that cell. After the

optimal bar stimulus location was found, we increased its length from

1 to 16 pixels and recorded the steady-state response from the model.

Figure 10. Surround suppression index is anti-correlated with
the CRF size. Cells with larger CRFs tend to be less suppressed by a
surround stimulus (correlation coefficient ~{0:89; pv0:001). The level
of suppression is measured by the suppression index (SI) at high
stimulus contrast.
doi:10.1371/journal.pcbi.1003191.g010
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In the surround suppression simulation, we varied the contrast

of the sinusoid grating stimuli from 0.05 to 0.5 with increments of

0.1, and we varied the size from 1 to 16 pixels in diameter with an

increment of 1 pixel (other parameters were fixed). We measured

the spike rate in response to the drifting grating by the F1

component. We defined the surround suppression index as

1{amin=apeak, where apeak represents the peak response across

all stimulus sizes at a certain contrast, and amin represents the

minimum response at a radius larger than the peak. Response to

high contrast was measured at 0.5 and low contrast at 0.05.

In all orientation tuning studies, we stepped the orientation of

the stimulus from 0 to 180 degrees in increments of 5 degrees. We

measured the mean spiking response to the drifting grating. When

studying the contrast invariance property, we stepped the contrast

from 0.1 to 0.5 in increments of 0.1. In the population study of the

tuning width, we measured tuning curve half-width at half-height

by 1.17 times the standard deviation of the Gaussian fit to the

orientation tuning curves. When measuring the slope of half-width

vs. contrast, we normalized the contrast to 100 [47]. Five neurons

in the simulated population had small unipolar CRFs and

therefore showed very little orientation tunings. We could not fit

Gaussians successfully to the tuning curves for these neurons, and

therefore did not include their orientation tuning properties in the

population study.

In the center surround orientation tuning experiment, the

surround annulus grating had a thickness of 2 pixels and the center

and the surround were phase-locked. When measuring the surround

orientation tuning, we fixed the center orientation at the optimal

orientation and measured the response to the center alone as well as

the center plus the surround. We measured the response

measurement for two different center radii: the optimal and the

optimal plus one pixel. In the experiment that studied the contrast’s

effect on the center surround orientation tuning, the center contrast

took on values on a logarithmic scale (0, 0.03, 0.06, 0.12, 0.25, 0.5)

and we kept the surround contrast constant at 0.5. Similar to the

observation in physiology (Fig. 8E), there are many cells with weak

response at low contrast in the simulation. Due to the present

simulation having more cells than the study in [48], this clustering

around zero made the low contrast responses difficult to read when

plotted. To better visualize the suppression effect of the plaid for

weakly responsive neurons, we plotted the low-contrast population

responses with the maximum response normalized to 1 (effectively

spreading the points out over the full range to better see their

position above or below the diagonal line). High-contrast responses

were similarly normalized to plot on the same scale.

Supporting Information

Figure S1 Surround suppression index distribution
under a different parameter setting. Related to Fig. 3

in the main text and discussed in Supporting Information

Text S1. With steady-state response of the model and

otherwise default parameters, the surround suppression index

distribution shows physiologically unrealistic large percentage

of cells with complete suppression.

(TIF)

Figure S2 Surround suppression index distribution
under another parameter setting. Related to Fig. 3 in

the main text and discussed in Supporting Information Text

S1. (A) Physiologically measured index from an experiment

on macaque monkeys (N = 105); data replotted from [38],

Figure 2C; (B) Simulation of the surround suppression index

distribution with lower sparsity and longer convergence

times (l~0:05 and 1000 integration time steps). Note that

the majority of neurons are surround suppressive in this

case.

(TIF)

Figure S3 Facilitatory influence. Related to Fig. 6 in the

main text and discussed in Supporting Information Text S1. (A)

Facilitatory influence from the iso-surround at low center contrast

observed in cats; data replotted from [44], Figure 5; (B) A

simulated neuron demonstrates a similar effect when the tradeoff

parameter is set to l~0:1.

(TIF)

Figure S4 Spatial organization of surround orientation
tuning. Discussed in Supporting Information Text S1. Orienta-

tion tuning with ‘‘gap’’ in between center and surround. (A)

Physiology without gap; data replotted from [41], Figure 4D; (B)

Simulation without gap; (C) Physiology with gap; data replotted

from [41], Figure 4E; (D) Simulation with gap. Parameters same as

in Fig. 5 in the main text.

(TIF)

Text S1 Effects of changing simulation parameters and
miscellaneous nCRF effects.

(PDF)
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