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Abstract: The major component of the Solenocera crassicornis head protein hydrolysates-fraction 1
(SCHPs-F1) are low molecular weight peptides (MW < 1 kDa). In this study, we investigated the
potential renoprotective effects of SCHPs-F1 in a cyclophosphamide (CTX) toxicity mouse model.
In brief, 40 male mice were randomly divided into 5 groups and received either saline or 80 mg/kg body
weight (BW) CTX by intraperitoneal injection for 5 days, followed by either saline or SCHPs-F1 (100,
200, and 400 mg/kg BW) by intragastric administration for 15 days. SCHPs-F1 treatment significantly
reversed the CTX-induced decreases in the levels of blood urea nitrogen (BUN), creatinine (CRE),
and cytochrome P450 (CYP450), as well as the renal histological lesions. Furthermore, the results
indicated that SCHPs-F1 potentially alleviated CTX-induced nephrotoxicity through mitigating
inflammatory responses, oxidative stress, and apoptosis status of the kidneys, as evidenced by
decreased levels of malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α,
and interferon (IFN)-γ and increased levels of total antioxidant capacity (T-AOC), catalase (CAT),
superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Moreover, overexpression of
pro-apoptotic proteins pair B-cell lymphoma-2 (Bcl-2)-associated X (Bax)/Bcl-2, cysteinyl aspartate
specific proteinase (caspase)-3 and caspase-9 in renal tissues were suppressed by treatment with
SCHPs-F1. In addition, the protein levels of the antioxidant factor nuclear factor erythroid-2 related
factor 2 (Nrf2) and the expression levels of its downstream target genes heme-oxygenase (HO-1),
glutamate-cysteine ligase modifier subunit (GCLM) and NAD(P)H dehydrogenase (quinone) 1
(NQO-1) were stimulated by treatment with SCHPs-F1 in the CTX-induced renal injury model.
Taken together, our data suggested that SCHPs-F1 could provide a novel potential strategy in
mitigating the nephrotoxicity caused by CTX.

Keywords: apoptosis; cyclophosphamide; inflammation; oxidative stress; peptides; Solenocera
crassicornis

1. Introduction

Cyclophosphamide (CTX) is the most extensively used drug in clinical cancer chemotherapy,
with a high therapeutic index and broad-spectrum anti-cancer effect. As a prodrug, CTX needs
to be converted into active metabolites to properly function in vivo [1]. However, the multiple
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organ toxicity caused by its metabolites has seriously limited the role of CTX in the comprehensive
treatment of cancer [2]. The mechanism underlying the multiple organ toxicity of CTX has been
examined in numerous studies, and it has been found to correlate with oxidative stress, inflammation,
and apoptosis [3–5]. CTX exposure perturbs the redox balance and exhausts the antioxidant defense
system of the kidneys, resulting in oxidative damage to the renal tissue. In addition, inflammatory
cascades were subsequently activated and involved in the up-regulation of apoptosis, leading to
nephrocyte necrosis and apoptosis, disorganization of renal tissue, and renal dysfunction [6–9].
Therefore, alleviating oxidative stress, inflammation, and the apoptosis status of renal tissue may serve
as a therapeutic strategy for CTX-induced nephrotoxicity.

Solenocera crassicornis is a marine animal with abundant resources, and its great economic value is
reflected in the shrimp meat that is rich in protein and minerals [10]. The tails are destined to become
shelled shrimp, whereas plenty of shrimp heads are discarded as processing leftovers. It has previously
been reported that the waste of shrimp heads produced in commercial development accounts for
roughly 40% of the shrimp body weight, which is a potential protein source that can be used for
producing bioactive functional components [11]. Several studies have been executed to prepare
protein hydrolysates and bioactive peptides of varying sizes using industrial waste from various
shrimp processing leftovers [11–13]. To further assess commercial high-value applications of Solenocera
crassicornis shrimp heads, we prepared low molecular weight peptides (MW less than 1 kDa, SCHPs-F1)
and found they could effectively alleviate CTX-induced hepatotoxicity in mice [14]. Based on the
toxicological and metabolic mechanism of action of CTX that involves the induction of multiple organ
toxicity [8], we speculated that SCHPs-F1 supplementation may also have the potential to alleviate
CTX-induced nephrotoxicity.

Therefore, we investigated the potential protective effect of SCHPs-F1 through the intervention
of SCHPs-F1 in a mouse model of CTX-induced renal injury, evaluated renal function markers,
and performed histopathology analyses. In addition, we investigated the relationship between
oxidative stress, inflammation, and apoptosis in renal cells and the improvement of renal injury and
renal function. The results indicate that SCHPs-F1 has the potential to alleviate CTX-induced renal
injury in mice and that the possible underlying molecular mechanism involves the up-regulation of
the Nrf2 antioxidant signaling pathway.

2. Materials and Methods

2.1. Chemicals and Reagents

Solenocera crassicornis was purchased from the Zhoushan International Aquatic Center
(Zhoushan, Zhejiang, China). Pepsin, trypsin, 2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH•), 1,
10-Phenanthroline, Nitrotetrazolium Blue chloride, Nicotinamide adenine dinucleotide hydrate, and
Phenazine methosulfate were purchased from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China).
CTX was purchased from Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Hematoxylin
and Eosin (H & E) staining kit and Modified Masson trichrome staining kit were provided by Nanjing
SenBeiJia Biological Technology Co., Ltd. (Nanjing, China). Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) apoptosis detection kit (Alexa Fluor 640) was purchased from Yeasen
Biotech Co. Ltd. (Shanghai, China). Antibodies directed against Bcl-2 (CST3498S, 1:2000) and Bax
(CST14796S, 1:2000) were purchased from Cell Signaling Technology (Danvers, MA, USA); antibodies
against Nrf2 (AF7623, 1:1000), Keap1 (AF7335, 1:1000), NQO-1 (AF7614, 1:1000), HO-1 (AF1333, 1:1000),
GCLM (AF6972, 1:1000), and β-actin (AF5001, 1:1000) were purchased from Beyotime Biotechnology
(Shanghai, China); and caspase-3 (K003262P, 1:1000), caspase-9 (K008077P, 1:1000), goat anti-rabbit
IgG/HRP antibody (SE134, 1:1000), and goat anti-mouse IgG/HRP antibody (SE131, 1:1000) were
purchased from Solarbio Sci-technology Co. Ltd. (Beijing, China). Ultrapure water was obtained using
a Milli-Q water purification system from Millipore (Bedford, MA, USA). Other chemical reagents were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
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2.2. Preparation of SCPHs-F1

SCHPs-F1 was prepared according to the process described in our previous report [14]. In brief,
defatted shrimp heads were homogenized and allowed to react in a pH-adjusted (pH = 3.0)
pepsin-containing aqueous solution (2500 U/g, m/m = 1:10) for 4 h. Then, the pH was adjusted
to 8.0 under optimal trypsin conditions (2500 U/g) in a reaction system for 4 h. The solution was heated
to inactivate the enzyme, and the supernatant was collected (CF16RN high-speed microcentrifuge,
Himac, Tokyo, Japan), filtered through a microfilter (0.22 µm), and ultrafiltered using a 1 kDa
membrane. The supernatant (<1 kDa) obtained by ultrafiltration (GM-18 roll film separation system,
Bona Biotechnology Co., Ltd., Jinan, China) was freeze-dried (Christ Alpha 1–4 LD plus Laboratory
freeze dryer, Marin Christ, Osterode, Germany) to prepare SCHPs-F1 for future studies.

2.3. Antioxidants Activity of SCHPs-F1

2.3.1. Free Radical Scavenging

The protocols of DPPH•, •OH, and O2
•− radical scavenging assays were executed as described in

our previous reports [15,16]. The concentration for 50% of maximal radical scavenging (EC50) was
calculated with the “Quest Graph™EC50 Calculator” [17]. In the positive control group, the SCPHs-F1
samples were substituted with reduced-glutathione (GSH).

• DPPH• Scavenging Activity: SCPHs-F1 samples at indicated concentrations (0.1, 0.25, 0.5, 1, 2,
4, and 8 mg/mL) were prepared in ultrapure water (water only for the control sample). Next,
0.2 mM DPPH (prepared by ethanol) work solution was added to the above solutions (ethanol
only for the blank control). All mixtures were reacted at room temperature in the dark for 30 min,
and the absorbance (A) of solutions was recorded with UV-vis spectra (SpectraMax M2, Molecular
Devices Co., San Jose, CA, USA) at 517 nm. The DPPH• scavenging activity of each sample was
computed with the following equation:

DPPH• radical scavenging activity (%) = (A Control + A Blank control − A Sample)/A Control × 100 (1)

•
•OH Scavenging Activity: The above samples were mixed with 1, 10-Phenanthroline work
solution (1.0 mL, 1.865 mM), FeSO4·7H2O (1.0 mL, 1.865 mM), and H2O2 (1.0 mL, 0.03%, v/v)
respectively (control without samples, blank control without H2O2). After reaction at 37 ◦C for
1 h, the absorbance of solutions was recorded with UV-vis spectra at 536 nm. The •OH scavenging
activity of each sample was computed with the following equation:

•OH radical scavenging activity (%) = (A Sample − A Control)/(A Blank control − A Control) × 100 (2)

• O2
•− Scavenging Activity: The above samples were mixed with Nitrotetrazolium Blue chloride

(1.0 mL, 2.52 mM), Nicotinamide adenine dinucleotide (1.0 mL, 624 mM), and Phenazine
methosulphate (1.0 mL, 120 µM), respectively (control without samples). After reaction at room
temperature in the dark for 5 min, the absorbance of solutions was recorded with UV-vis spectra at
560 nm. The O2

•− scavenging activity of each sample was computed with the following equation:

O2
•− radical scavenging activity (%) = (A Control − A Sample)/A Control × 100 (3)

2.3.2. Reducing Power

The reducing power assay was performed according to our laboratory standard protocol [18].
The above samples were mixed with potassium hexacyanoferrate (2.5 mL, 1%, m/v) and reacted at
50 ◦C for 30 min. Then, trichloroacetic acid (1.5 mL, 10%, v/v) was added to mixtures, and 2.0 mL of the
upper layer of mixtures was mixed with ultrapure water (2.0 mL) and FeCl3 (0.5 mL, 0.1%, m/v). Next,
the absorbance of each solution was recorded with UV-vis spectra at 700 nm.
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2.4. Renoprotective Effects on CTX-Induced Mice

2.4.1. Animals and Experimental Plan

Male ICR mice (6 weeks old; weight, 18–22 g; n = 40) were purchased from the Zhejiang
Lab-animal Public Service Platform (specific pathogen-free (SPF) Grade, Certificate No. SCXK-ZHE
2014-0001, Hangzhou, China) and acclimated for 1 week in an SPF environment that was maintained
at a temperature of 22 ± 2 ◦C and relative humidity of 50–60%. Mice were fed commercial mouse
chow and sterile water in a 12:12 h day and night cycle. Experimental procedures were approved
by the Animal Ethics Committee of the Committee for Research Ethics and Integrity of Zhejiang
Ocean University (Zhoushan, Zhejiang, China, No. SCXK ZHE 2019-0031) and complied with the
regulations on all ethical and legal requirements of experimental animals in the guidelines for the care
and use of experimental animals published by the National Institutes of Health (Bethesda, MD, USA).
After habituation, mice were randomly assigned to five groups (n = 8) and treated as indicated in
Figure 1.
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The body weight (BW) of all animals was recorded and the renal index (organ weight/body weight)
was calculated. During the entire course of the experiment, the mortality rate was zero.

2.4.2. Sample Collection

After the last SCHPs-F1 treatment, all mice were euthanized by cervical dislocation. Blood was
collected through retro-orbital bleeding and used for analyzing biochemical parameters in serum
(centrifugation at 500× g for 10 min). The kidneys were rapidly excised, rinsed in cold 0.1 M PBS
(pH = 7.4), and weighed. Part of the renal tissue was pre-cooled in 0.1 M PBS (w/v, 1:9), homogenized
(D-500 homogenizer, Dragon Lab, Beijing, China), and centrifuged to obtained supernatant for
evaluating the renal function and inflammatory and oxidative parameters. In addition, for each group
of mice, parts of renal tissue were combined and powdered under liquid nitrogen, and then lysed with
radioimmunoprecipitation assay (RIPA) lysis buffer (Beyotime Institute of Biotechnology, Shanghai,
China) on ice. The lysate’s supernatant was collected and total protein concentration was estimated
using bicinchoninic acid (BCA) protein assay kit (Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China).

2.4.3. Biochemistry Assays

Renal function parameters: Serum was prepared from the blood that was obtained through
retro-orbital bleeding to measure the renal function markers blood urea nitrogen (BUN) and creatinine
(CRE) (Nanjing Jiancheng Bioengineering Institute, China). The supernatant of renal homogenates was
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used for the detection of cytochrome P450 (CYP450) by an Enzyme-Linked Immunosorbent Assay
(ELISA) kit (Nanjing SenBeiJia Biological Technology Co., Ltd., Nanjing, China).

Oxidative parameters: The activities of catalase (CAT), total antioxidant capacity (T-AOC),
superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in renal
tissue homogenates were determined using diagnostic kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

Inflammatory parameters: The levels of pro-inflammatory cytokines interleukin (IL)-1β, IL-6,
tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in renal homogenates were analyzed by ELISA
kits (Boster Biological Technology Co., Ltd., Wuhan, China).

All assays were read on a SpectraMax M2 multi-wavelength strip reader (Molecular Devices,
San Jose, CA, USA) following the manufacturer’s guidelines.

2.4.4. Histopathological Examination

A portion of the renal tissue was collected and fixed in 4% paraformaldehyde. Paraffin blocks
were prepared, 4-µm paraffin sections were cut, and conventional dewaxing to water was performed
(xylene dewaxing twice for 5 min; gradual rehydration with 100%, 90%, 80%, 70% gradient alcohol
and distilled water for 3 min [19]). H&E staining and Masson trichrome staining were performed as
described in the commercial kit instructions. Micrographs were obtained using a Biological microscope
CX31 (Olympus, Tokyo, Japan).

For the TUNEL assay, paraffin sections of kidney tissue were immersed in xylene twice for
5 min and paraffin was removed completely. Then, the sections were soaked in gradient ethanol
(100, 90, 80, 70%) for 3 min at room temperature. Residual alcohol was removed by PBS, and the contour
of sample distribution was drawn with a crayon pen. Finally, the TUNEL staining was performed
according to the manufacturer’s instructions (Yeasen Biotech Co. Ltd., Shanghai, China). Micrographs
were obtained using an Axio Imager A2 fluorescence microscope (Carl Zeiss, Oberkochen, Germany).

2.4.5. Western Blot Analysis

Western blot analysis was performed according to routine laboratory methods [20]. In brief, non-fat
powdered milk was used to block non-specific antigens on PVDF membranes. Then, membranes
were incubated with primary antibodies (Keap1, Nrf2, HO-1, GCLM, NQO-1, Bax, Bcl-2, caspase-3,
caspase-9, and β-actin) at 4 ◦C overnight. After binding with primary antibodies, membranes were
washed three times and then incubated with an HRP-labeled secondary antibody at room temperature
for 1 h. For visualization, chemiluminescence (Enhanced chemiluminescence western lightning kit,
Beyotime Institute of Biotechnology, Shanghai, China), imaging (FluorChem FC3 gel imaging analysis
system, ProteinSimple, Silicon Valley, CA, USA) and quantification (AlphaView software, version 3.4.0,
ProteinSimple) were employed.

2.4.6. Statistical Analysis

Numerical results were expressed as the mean ± standard deviation. Statistically significant
differences between groups were conducted using the analysis of variance (ANOVA) function of the
Statistical Product and Service Solutions software, version 24.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Radical Scavenging Activity of SCHPs-F1

To investigate the antioxidant activity of SCHPs-F1 in vitro, the free radical scavenging and
ferric ion-reducing power assays were performed. Within the concentration range of 0.1–8 mg/mL,
the co-incubation of increasing concentrations of SCHPs-F1 caused a general trend of increasing radical
scavenging ratio. The EC50 values of SCHPs-F1 were 5.16 mg/mL, 2.17 mg/mL, and 0.37 mg/mL for
scavenging DPPH•, •OH, and O2

•−, respectively (Figure 2A–C). The results of ferric ion-reducing
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antioxidant power assay are shown in Figure 2D, the increasing absorbance values of the reaction
system corresponded to the reducing power of SCHPs-F1. There is a positive correlation between
SCHPs-F1 concentrations and the absorbance values, wherein SCHPs-F1 reduced more Fe (III) to Fe (II),
and further formed Prussian blue with ferric chloride.
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3.2. SCHPs-F1 Treatment Modulates Renal Function in Mice Exposed to CTX

As shown in Figure 3A, the renal index of CTX-treated mice was dramatically increased compared
with the control group (p < 0.01). However, treatment with SCHPs-F1 significantly restored the
CTX-induced increase of the renal index, and mice post-treated with 400 mg/kg SCHPs-F1 presented
similar levels to the control group (p > 0.05).

The effect of SCHPs-F1 treatment on renal function parameters is presented in Figure 3B–D.
CTX caused renal dysfunction, which was reflected in renal function parameters, such as an increase in
the most sensitive parameters as compared with the control group, including serum BUN and CRE for
assessment of the function of glomerular filtration. The abnormal increase of BUN (14.27± 0.46 mmol/L)
and CRE (22.86 ± 1.13 µmol/L) caused by CTX was fully suppressed after treatment with 400 mg/kg
SCHPs-F1 (9.02 ± 0.25 mmol/L and 17.73 ± 0.67 µmol/L, respectively, p < 0.01).

Furthermore, the renal metabolic system CYP450 was significantly reduced in response to CTX.
Mice treated with 100 mg/kg, 200 mg/kg and 400 mg/kg SCHPs-F1 had significantly increase in
CYP450 concentrations (79.41 ± 2.64 pmol/L, 82.22 ± 2.75 pmol/L and 85.26 ± 2.27 pmol/L, respectively)
compared to CTX-treated mice (73.99 ± 2.36 pmol/L). No significant differences were observed between
mice treated with 400 mg/kg SCHPs-F1 and the control group (p > 0.05).
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3.3. SCHPs-F1 Treatment Relieves CTX-Induced Renal Oxidative Stress

Next, we investigated the effect of SCHPs-F1 on the lipid peroxidation indicator MDA,
the antioxidant activities of GSH-Px, SOD, and CAT, as well as T-AOC levels in renal homogenates of
CTX-treated mice. As shown in Table 1, CTX caused oxidative stress in the kidneys by significantly
increasing the MDA content and by decreasing antioxidant enzyme activities (p < 0.01 vs. control).
In contrast, post-treatment with SCHPs-F1 for 15 consecutive days significantly increased the activities
of antioxidant enzymes and reduced the MDA content in renal tissue. The high levels of MDA
(20.88 ± 0.85 nmol/mg prot) and the low activities of antioxidant enzymes (CAT, 36.63 ± 1.23 U/mg prot;
SOD, 10.60 ± 0.81 U/mg prot; GSH-Px, 10.07 ± 0.24 U/mg prot; T-AOC, 1.83 ± 0.11 U/mg prot) were
ameliorated in mice treated with SCHPs-F1 400 mg/kg, showing a significant difference compared
with the CTX-only group (p < 0.01). The levels of MDA and SOD almost returned to normal levels in
mice treated with SCHPs-F1 400 mg/kg (p > 0.05 vs. control).
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Table 1. The effects of SCHPs-F1 on MDA, CAT, SOD, GSH-Px, and T-AOC levels in renal homogenates
o CTX-induced mice.

MDA
(nmol/mg Prot)

CAT
(U/mg Prot)

SOD
(U/mg Prot)

GSH-Px
(U/mg Prot)

T-AOC
(U/mg Prot)

Control 18.67 ± 1.31 39.28 ± 1.18 11.31 ± 0.25 11.15 ± 0.33 2.08 ± 0.09
Model 34.01 ± 2.23 ** 30.65 ± 1.29 ** 7.62 ± 0.63 ** 8.44 ± 0.43 ** 1.16 ± 0.05 **

SCHPs-F1 100 28.92 ± 1.36 **,++ 32.52 ± 2.20 ** 8.37 ± 0.19 ** 8.66 ± 0.42 ** 1.35 ± 0.09 **,+
SCHPs-F1 200 26.64 ± 1.29 **,++ 35.25 ± 2.45 *,++ 8.83 ± 0.64 **,+ 8.79 ± 0.11 ** 1.54 ± 0.04 **,++
SCHPs-F1 400 20.88 ± 0.85 ++ 36.63 ± 1.23 **,++ 10.60 ± 0.81 ++ 10.07 ± 0.24 **,++ 1.83 ± 0.11 **,++

* p < 0.05, ** p < 0.01, vs. control group; + p < 0.05, ++ p < 0.01, vs. model group.

3.4. SCHPs-F1 Treatment Mitigates CTX-Induced Renal Inflammation

The effect of SCHPs-F1 on nephritis was investigated by ELISA assays. The pro-inflammatory
cytokine levels in mice following CTX induction showed a significant increase in IL-1β, IL-6, TNF-α,
and IFN-γ in renal homogenates when compared to control mice (Figure 4). However, these negative
changes caused by CTX were significantly attenuated by SCHPs-F1 treatment in a dose-dependent
manner. As shown in Figure 4, the levels of IL-1β, IL-6, IFN-γ, and TNF-α (2517.14 ± 34.67,
1551.43 ± 71.56, 1750.65 ± 99.06 and 840.44 ± 40.28 pg/mL, respectively) were decreased at a SCHPs-F1
dose of 400 mg/kg (p < 0.01).
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++ p < 0.01, vs. model group; # p < 0.05, ## p < 0.01 indicate significant differences between different
SCHPs-F1 dose groups.
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3.5. SCHPs-F1 Reverses Bax/Bcl-2 Imbalance in CTX-Exposed Kidney

CTX-induced inflammatory responses and oxidative stress are the main causes of nephrocyte
apoptosis and renal function impairment [6,9]. To evaluate the effect of SCHPs-F1 on nephrocyte
apoptosis in CTX-induced mice, we determined the expression of caspase-3 and caspase-9, and the ratio
between the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 by Western blot analysis
(Figure 5). Similar to inflammation and oxidative stress, the Bax/Bcl-2 ratio was significantly perturbed
CTX-exposed renal tissue. Additionally, CTX treatment increased the expression of the apoptosis
effector caspase-3 and apoptosis initiator caspase-9 in kidney tissue. On the other hand, post-treatment
with SCHPs-F1 increased the expression of Bcl-2 and limited the overexpression of Bax, caspase-3,
and caspase-9.Antioxidants 2020, 9, x FOR PEER REVIEW 10 of 16 
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We further examined the effect of SCHPs-F1 on nephrocyte apoptosis in CTX-treated mice using
the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In accordance with
the results of Western blot analysis, there were more TUNEL-positive cells in CTX-treated kidneys
(Figure 6). This massive renal cell apoptosis was substantially alleviated by SCHPs-F1 treatment,
indicating that SCHPs-F1 had an inhibitory effect on CTX-induced renal apoptosis.
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Figure 6. Effects of SCHPs-F1 on apoptosis in kidney tissues of CTX-treated mice assessed by TUNEL
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3.6. SCHPs-F1 Treatment Ameliorates Pathomorphology in CTX-Exposed Kidney

To evaluate the effect of SCHPs-F1 on renal histopathology in CTX-treated mice, H&E staining was
performed (Figure 7). In the control group, renal sections showed intact architectures of the glomerulus,
proximal convoluted tubules, and distal convoluted tubules, and no inflammatory infiltrates were
detected. In CTX-treated mice, the extensive and severe renal injury was observed, including mesangial
matrix dilation, tubular necrosis and degeneration, and infiltration by inflammatory cells. However,
these histopathological lesions were effectively ameliorated following treatment with SCHPs-F1.
Further, Masson trichrome staining was used to observe the effect of CTX and SCHPs-F1 treatment on
the severity of renal fibrosis in mice. Compared with control mice, CTX-treated mice showed extensive
blue collagen fibrous connective tissue, with a severe degree of renal fibrosis. When mice were treated
with SCHPs-F1, the area of blue-stained collagen fibers decreased, indicating that the severity of renal
fibrosis was reduced.

3.7. SCHPs-F1 Elevate Nrf2 Related Protein Expression in CTX-Induced Kidney

The effect of SCHPs-F1 on the expression of Nrf2 pathway-related proteins in the kidneys of
CTX-induced mice was investigated by Western blot analysis (Figure 8). The data demonstrated that
the expression of repressor protein Keap1 was increased with CTX treatment when compared with
the Control group (p < 0.01). SCHPs-F1 treatment significantly decreased Keap1 protein expression
and up-regulated Nrf2 protein levels in CTX-induced mice. In addition, the downstream antioxidant
proteins HO-1, GCLM, and NQO-1, which are associated with Nrf2 protein expression, were also notably
up-regulated compared with mice that were treated with SCHPs-F1 only. Together, these results
revealed that SCHPs-F1 were able to mitigate renal oxidative stress following CTX-induction by
increased Nrf2 expression and by up-regulating the activities of HO-1, GCLM, and NQO-1.
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4. Discussion

The kidneys are important metabolic organs in mammals; they excrete metabolic waste
and chemical metabolites by filtering urine and maintain homeostasis and normal physiological
activities [21]. Several studies have shown that the nephrotoxicity of CTX metabolites is a serious
limitation in cancer chemotherapy [9,22]. In this study, SCHPs-F1 presented antioxidant activity
in vitro including radical scavenging and reducing power. Interestingly, it has been reported that
SCHPs-F1 ameliorated hepatotoxicity by reducing the oxidative stress status of liver in CTX-induced
mice [14]. In the present study, we investigated the effect of SCHPs-F1 on CTX-induced nephrotoxicity
in a mouse model. The results indicate that treatment with SCHPs-F1 after exposure to CTX
ameliorated inflammation responses and reduced oxidative stress and apoptotic markers in renal
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tissue. This attenuating effect of SCHPs-F1 may be related to the activation of the Nrf2 antioxidant
signaling pathway.

In the present study, the observed increase in the renal index, BUN, and CRE levels and the
decrease in CYP450 content suggested CTX-induced renal function impairment and renal damage,
as demonstrated in previous studies [23–25]. BUN and CRE are excreted through glomerular filtration.
Decreased glomerular filtration leads to increased BUN and CRE levels, which are measures of the
glomerular filtration rate, and thus of renal function [26,27]. Moreover, renal function can also be
interpreted by assessing CYP450 content [24,28]. Acrolein, a toxic metabolite of CTX, which combines
with free sulfhydryl groups to inactivate the CYP450 metabolizing enzyme, results in a decrease of
total CYP450 content [1,29]. Histopathological findings confirmed these results, including severe
renal structural damage, such as necrosis and exfoliation of endothelial cells and basement membrane
epithelial cells, infiltration by inflammatory cells, and interstitial hemorrhage. Moreover, Masson’s
trichrome staining suggested that CTX caused severe fibrosis in renal tissue. Notably, CTX-induced
renal dysfunction and pathological changes in renal tissue were attenuated after post-treatment with
SCHPs-F1, as supported by the observed trends in BUN, CRE, and CYP450 levels that recovered to
normal levels.

The present data thus indicate that SCHPs-F1 treatment significantly relieved CTX-induced
renal oxidative stress, inflammatory responses, and apoptosis in mice, likely by enhancing the
antioxidant protective system comprising GSH-Px, SOD, CAT, and T-AOC, and by suppressing the
lipid peroxidation product MDA, the pro-inflammatory cytokines IL-1β, IL-6, TNF-α and IFN-γ,
and the pro-apoptotic Bax/Bcl-2 ratio. It is known that acrolein has a severe adverse effect on the
kidneys, which results in the robust activation of oxidative stress responses and further aggravation of
renal injury [1,30,31]. GSH-Px, SOD, CAT, and T-AOC are critical indicators for evaluating the capacity
of the cellular antioxidant defense system [32,33]. An imbalance in oxidative stress defense leads to
insufficient antioxidant responses and lipid peroxidation to generate MDA [31,34]. As mentioned,
SCHPs-F1 increased the antioxidant defense parameters GSH-Px, SOD, CAT, and T-AOC and decreased
levels of the lipid peroxidation marker MDA, thereby potentially alleviating oxidative stress of
CTX-exposed kidneys. A similar mechanism to enhance the endogenous antioxidant defense to
alleviate CTX-induced renal injury was reported for aminoguanidine [35], Olea europaea leaf extract [6],
and plasma protein from Tachypleus tridentatu [21].

Oxidative stress signaling cascades are closely related to inflammatory responses and apoptosis
in the kidneys [36–38]. The increase in pro-inflammatory cytokines may relate to the damage
of renal cell structure caused by oxidative stress and lipid peroxidation. Consistently, previous
studies revealed that CTX-induced nephrotoxicity resulted in the enhancement of pro-inflammatory
cytokines [7,26,39]. However, numerous studies supported that inflammatory factor inhibition plays
an indispensable role in the prevention of CTX-mediated renal injury [6,37]. In the present study,
treatment with SCHPs-F1 reversed the CTX-induced increases in the kidney’s levels of IL-1β, IL-6,
TNF-α, and IFN-γ. The mitochondrial-dependent apoptotic pathway induces apoptosis by perturbing
the balance between apoptotic protein Bax and anti-apoptotic protein Bcl-2 and inducing the expression
of caspase proteins [36,40]. Consistent with previous reports on renal cell apoptosis [21,41], our results
showed that the increase in the Bax/Bcl-2 ratio, and the activation of caspase-3 and caspase-9 in
the kidney were suppressed by treatment with SCHPs-F1 after exposure to CTX. The results of the
TUNEL assay showed that SCHPs-F1 treatment had a certain protective effect on renal apoptosis in
CTX-induced mice.

The Keap1-Nrf2-antioxidant response element (ARE) signaling pathway is an oxidative
stress-sensitive defensive response system [42,43]. Upon exposure to adverse environmental pressure,
including many exogenous chemicals, the transcription factor Nrf2 escapes inhibition by the specific
repressor Keap1 in the cytoplasm and associates with AREs in the nucleus where it activates the
expression of multiple antioxidant enzymes and cytoprotective proteins that contribute to the defense
against oxidative stress and alleviate cell damage [6,44]. Therefore, the expression of Nrf2 and
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its downstream antioxidant-related gene products HO-1, GCLM, and NQO-1 were investigated by
means of Western blot analysis. Our results suggest that SCHPs-F1 treatment after CTX exposure
had a de-repressive effect on the Keap1-Nrf2-ARE pathway. SCHPs-F1 restored the CTX-suppressed
expression of HO-1, GCLM, and NQO-1, indicating that activation of the Keap1-Nrf2 signaling pathway
may be involved in SCHPs-F1-mediated amelioration of CTX-induced oxidative stress, inflammation,
apoptosis, and renal injury.

5. Conclusions

In the present study, we demonstrated that post-treatment with SCHPs-F1 efficiently attenuated
CTX-induced renal injury and this correlated with decreased oxidative stress, inflammatory responses,
and cell apoptosis, which may be mediated by activation of Nrf2 antioxidant signaling. Our results
indicate that treatment with SCHPs-F1 alleviated renal injury and renal dysfunction caused by
CTX, as manifested by a decrease in the renal index, an amelioration of pathological morphology,
and restoration of BUN, CRE, and CYP450 levels. In addition, SCHPs-F1 induced a decrease in
oxidative stress, inflammatory responses, and apoptosis markers. Taken together, these findings
suggest that of SCHPs-F1 (and active substances contained therein) hold promise for the restoration of
renal dysfunction induced by CTX.
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