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Abstract

Rivers worldwide are now acting as major transport pathways for plastic pollution and dis-

charge large quantities of waste into the ocean. Previous oceanographic modelling and

current drifter data have been used to predict the movement and accumulation of plastic pol-

lution in the marine environment, but our understanding of the transport and fate through

riparian systems is still largely unknown. Here we undertook a proof of concept study by

applying open source tracking technology (both GPS (Global Positing System) cellular

networks and satellite technology), which have been successfully used in many animal

movement studies, to track the movements of individual plastic litter items (500 ml PET

(polyethylene terephthalate) drinks bottles) through the Ganges River system (known as the

Ganga in India and the Padma and Meghna in Bangladesh, hereafter known as the Ganges)

and the Bay of Bengal. Deployed tags were successfully tracked through the Ganges river

system and into the Bay of Bengal marine system. The “bottle tags” were designed and built

(e.g. shape, size, buoyancy) to replicate true movement patterns of a plastic bottle. The

maximum distance tracked to date is 2845 km over a period of 94 days. We discuss lessons

learnt from the development of these plastic litter tags, and outline how the potential wide-

spread use of this open source technology has the ability to significantly increase under-

standing of the location of accumulation areas and the timing of large inputs of plastic

pollution into the aquatic system. Furthermore, “bottle tags” may act as a powerful tool for

stimulating social behaviour change, informing science-based policy, and as valuable edu-

cational outreach tools for public awareness.

Introduction

Plastic debris is a complex, persistent pollutant of increasing concern within the environment

[1–3]. Plastics make up to 12% of the global waste stream but poor waste governance and its
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persistence in the environment leads to significant environmental pollution [4]. This is

increasingly recognised as a threat to biodiversity, habitat quality, human health and liveli-

hoods [4–13]. A substantial amount of marine plastic debris is thought to originate from

inland sources, with rivers acting as major transport pathways; however, currently there are

large variations in estimates of riparian inputs of plastic waste to the ocean between studies

using modelling [14, 15]. Recent studies estimate that plastic pollution transported via rivers

could account for up to 70–80% of plastics present in the marine environment, especially as

they are associated with areas of high anthropogenic influence, such as urban centres [1, 16,

17].

The understanding of spatial and temporal patterns and rates of transport via riparian path-

ways is limited, especially in large catchments [3, 14]. The development of solution-based pre-

vention strategies is reliant on filling this knowledge gap [2]. Historically, understanding of

how objects move within the ocean has been garnered from releasing drift cards; for example

those released off the South Africa coast between 1964 and 1970 helped inform understanding

of circulation rates in the Indian Ocean [18, 19]. More recently, oceanographic modelling and

current drifter data have been used to predict the movement and accumulations of plastic pol-

lution from localised coastal areas to a global oceanic scale; integrating information from proj-

ects such as The Global Ocean Observing System (GOOS) [20–23]. The distribution of marine

debris is thought to be largely governed by surface currents and circulation patterns [18].

Empirical data would greatly complement the existing models, especially those aiming to link

inland freshwater inputs into marine systems. Other experimental studies have used artificial

streams, observing the movements of replicate plastic bags [24].

Technological advancements in animal tracking have allowed for observations in challeng-

ing environments, such as aquatic habitats, where animals are inherently difficult to monitor

due to logistical challenges i.e. their dynamic nature and spatial extent [25, 26]. This has

allowed movement ecology to rapidly develop in recent years, increasing the understanding of

long-term, wide-ranging movements of species, with access to spatio-temporal data crucial for

aiding animal conservation [27–32]. The plastic pollution research community can look to ani-

mal tracking studies and technology to inform how to approach tracking plastics in aquatic

systems, over watersheds and within the ocean.

Recently there have been novel efforts of utilising technology in the tracking of plastic litter.

Other projects have focused on ghost gear tracking; the goal of the “GhostNet” was the detec-

tion of derelict nets in the Gulf of Alaska [33]. This program (July–August 2003) used numer-

ous examples of technology such as oceanic models, drifter buoys, satellite imagery and

remote sensing instruments to locate potential convergence areas where nets were likely to

accumulate. Over 100 pieces of individual debris of anthropogenic origin were located using

these techniques [33].

The Consortium for Advanced Research on Transport of Hydrocarbon in the Environment

(CARTHE) at the University of Miami Rosenstiel School of Marine and Atmospheric Science

(RSMAS) released and recorded trackers off the coast of Miami [34]. More recently, an initia-

tive by PAME (Protection of the Artic Marine Environment), “Plastic in a bottle” released a

trial tracker (2019) offshore of Iceland to simulate how debris moves into and out of Artic

waters [35]. Other studies have been working towards satellite imagery to observe areas of

floating plastics [36–38]. Applications of novel technology could therefore aid in understand-

ing plastic movements through rivers to marine habitats, including giving insights into the

timescale of transit and the quantities that move from inland sources to eventually polluting

the open-ocean marine environments [2, 14, 16].

Single-use plastic beverage bottles are now a common and easily identifiable source of

marine plastic pollution and make up high proportions of marine litter. In over 25 years (1985
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and 2010) of annual coastal clean-ups, plastic beverage bottles were the 5th most reported lit-

tered item reported by the International Coastal Cleanup [39] and in 2018, plastic beverage

bottles were the 4th most reported item in Bangladesh and the 5th in India during the Interna-

tional Coastal Cleanups [40].

Polyethylene terephthalate (PET) comprises a large majority of the plastic production for

the packaging sector and is commonly used for beverage bottles [41]. Baselines are lacking for

specific products, however rapid studies of waste composition performed on landfill sites in

developing countries found that PET bottles are a large fraction of plastic waste [4, 42]. In this

study, modified 500 ml PET bottles were used to house a satellite tag device [43, 44].

Aims

The Ganges River (known as the Ganga in India and the Padma and Meghna in Bangladesh,

hereafter known as the Ganges) is one of the largest river systems in the world with the sur-

rounding basin having a population of several hundred million people. It holds enormous cul-

tural, religious and industrial significance [16]. Rapid population growth in the Ganges basin

has resulted in wide-spread agricultural development, urbanisation and industrialisation along

the river [45]. India and Bangladesh are rapidly developing countries and the use of plastic

materials is increasing exponentially [2, 4]. Recent estimates of global riverine plastic emissions

consider the Ganges the second largest contributing river to ocean plastic pollution (after the

Yangtze River) with a computed input of 0.12 (range 0.10–0.17) million tonnes per year [15].

However, field data are limited and an understanding of the movement of plastic pollution

through the Ganges is a major knowledge gap [16, 46]. During the National Geographic Sea to

Source Ganges Expedition (hereafter the Sea to Source Expedition), we undertook a proof of

concept study by applying open source tracking technology (previously used on marine verte-

brates) aiming to; 1) Use GPS and satellite technology to track and map the movement of plas-

tic litter items (bottles) through aquatic systems; 2) Develop an understanding of the fine-scale

movement of plastic pollution through riverine and marine systems, including differences

between movement and displacement; 3) Document lessons learnt from applying open source

tracking technology to plastic pollution.

Methods

Study area

The Ganges is the world’s third largest freshwater outlet to the ocean; exceeded only by the

Amazon and the Congo river systems [47]. The Ganges originates in the Himalayas at the end

of the Gangotri Glacier in the Uttarkashi district of Uttarakhand where it is known as the Bha-

girathi River. Once this joins the Alaknanda River in the valleys below, it becomes the Ganges.

Further tributaries and rainfall feed the main channel, which flows southeast through the

mountainous areas and floodplains of northern India (Fig 1). Numerous urban settlements are

located along the river; major population centres include the cities of Kanpur, Varanasi and

Patna. The total population within the basin is estimated to be over 474 million [48]. The main

channel of the Ganges enters Bangladesh through the Chapai Nawagbganj district where it

joins the Brahmaputra and Meghna Rivers and eventually empties into the Bay of Bengal [45,

49]. The Ganges is highly influenced by monsoon weather patterns which result in high pre-

cipitation from July to October and tropical cyclones that originate in the Bay of Bengal. The

delta region, especially, experiences strong cyclonic storms, both before and after the monsoon

season [50]. Due to these weather patterns, the Ganges river basin often experiences flooding,

sometimes with severe impacts [51].
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Custom design bottle tags to achieve close to “real world” plastic item

To replicate the flow and movement of a standard 500 ml plastic water bottle in open water

(end floatation design based on a half full 500 ml bottle with 50% of the bottle below the water

line), it was necessary to design and develop custom electronics and an enclosure that would

fit inside the bottle itself, retaining the bottle’s original shape and size, while allowing electron-

ics and batteries to be inserted inside. To achieve this, a computer aided design (CAD) model

was built suitable for Computer Numerical Control (CNC) milling, a process where rotary

cutting tools are utilized to remove material from a stock unit. The shape and profile were

matched to a “real-life” plastic bottle, forming a lid and base that would be sealed using self-

tapping screws and a rubber O-ring to protect the electronics inside from water ingress.

To factor in the use of regionally appropriate branded plastic bottles manufactured and

sold throughout the Ganges catchment, 500 ml plastic bottles were reclaimed locally during an

initial scoping trip. In cases where plastic was released for data collection, a system where a

subsequent clean-up that removed more plastic than was deployed was implemented during

Fig 1. Maps of bottle tag movements a) Expedition site map of the 10 sites in the Sea to Source Expedition; the first three sites in

Bangladesh ((1) Bhola, (2) Chandpur and (3) Rajbari) and 7 remaining in India ((4) Sahibganj, (5) Patna, (6) Varanasi, (7) Kannauj, (8)

Anupshahar, (9) Rishikesh, (10) Harsil) b) Phase A bottle A7 (pink) deployed in (8) Anupshahar c) Phase B bottle B9 (blue) deployed in

(2) Chandpur d) Phase B bottle tags deployed at sea in the Bay of Bengal (B1 (red), B2 (orange)) and (1) Bhola (B4 (yellow)).

Star = deployment location, Black diamond = end location, Green triangle = expedition site location. Maps throughout this research article were

created using ArcGIS1 software by Esri. ArcGIS1 and ArcMap™ are the intellectual property of Esri and are used herein under license.

Copyright © Esri. All rights reserved. For more information about Esri1 software, please visit www.esri.com. Contains information from

OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database License.

https://doi.org/10.1371/journal.pone.0242459.g001

PLOS ONE Open source technology tracking movement of plastic pollution

PLOS ONE | https://doi.org/10.1371/journal.pone.0242459 December 2, 2020 4 / 19

http://www.esri.com
https://doi.org/10.1371/journal.pone.0242459.g001
https://doi.org/10.1371/journal.pone.0242459


the Sea to Source Expedition. The bottles had bespoke aesthetic curvature to distinguish the

individual brands, particularly on the bottle neck, restricting space inside to seat a cylindrical

payload. We selected the bottle shape with standard straight wall design and adequate internal

cavity space to fit our electrical payload and batteries (Fig 2a).

A two-part internal insert was designed to fit inside a reclaimed 500 ml plastic water bottle,

with the addition of an aperture for an ARGOS satellite transmitter on the lid to allow for a 15

cm 1/4 wave antenna to protrude, sealed using a 2-part Araldite epoxy. The cellular antenna

was flexible and internal. The lid and base were then screwed together to secure and seal the

electronics and batteries inside. We selected a recyclable Acrylonitrile Butadiene Styrene

(ABS) thermoplastic as the material and opted for a black / blue finish to conceal the bottle

when on open water (S1a Fig). The base of the bottle was then cut to allow the internal enclo-

sure to be inserted inside. The insert’s neck terminated within the water bottle’s screw cap area

and a small circular disk was screwed into the bottle cap and then screwed into the insert’s

neck to allow the original bottle lid to be connected (S1b Fig).

The internal cavity of the enclosure contained 11 mounting holes to seat an Arribada Hori-

zon GPS printed circuit board (PCB), an Arribada ARGOS ARTIC R2 transmitter and a bat-

tery board (https://arribada.org/). Since the bottle itself was cut, and therefore not watertight,

we had to ensure the water could move freely around that internal space to maintain balance

(S1c Fig). Two larger holes on the neck of the bottle were inserted to help prevent water being

trapped in certain sections of the bottle and thereby causing it to float at an angle. The Horizon

tracker was installed with the ceramic GPS antenna pointing upwards. A picoblade connector

allowed the ARGOS transmitter to be interfaced with the Horizon board using a cable assem-

bly. Next, the ARGOS transmitter was installed under the antenna aperture, with the antenna

connected via antennae U.F.L. connector on the ARGOS board and fed upwards into an

antenna tube that was sealed using Araldyte epoxy. The cellular tags we deployed switched the

ARGOS transmitter PCB for an Arribada Horizon cellular transmitter. The cellular installation

process remained the same (S1d Fig). A cable assembly was plugged in to connect the two

boards and power supplied by plugging the battery board JST connector into the Horizon

board. Power was provided to the ARGOS transmitter via the cable assembly (S1e Fig). Two

aluminium strips were then attached to the Printed Circuit Board mount points on each board

and screwed in to connect the two Printed Circuit Boards. This extended the ground plane of

the antenna and enhanced performance (S1f Fig).

The base of the internal enclosure incorporated an O-ring seal and groove to accept a rub-

ber 2.5mm O-ring. The groove was 1.87mm deep, allowing 75% of the O-ring to be seated and

25% compressed by the flat surface of the lid that was screwed on to seal the unit. Marine-

grade lubricant was added to the O-ring before placement to seat it correctly within the groove

(S1g Fig). An AA battery holder Printed Circuit Board was then fitted, capable of seating six

batteries (base) and three batteries (top), with each battery supported by a groove to hold them

securely in place, preventing movement after deployment. A complete unit could therefore

hold nine AA batteries in total (S1h Fig). The battery board was screwed into the four mount-

ing holes in the base and six AA lithium batteries installed under the board (S1i Fig).

Once the O-ring seal was installed and seated, the lid was aligned and screwed into place

using self-tapping screws. As the lid was sealed, the O-ring was continuously assessed to ensure

it remained in the groove and was flush with the lid and base. We inspected the front, rear and

sides of the enclosure to ensure that all of the screws were tight. Once sealed, Araldite epoxy

was added to the base of the antenna aperture ready for the unit to be inserted inside the plastic

bottle and the plastic bottle’s base re-attached (S2 Fig).

After the insertion of the internal enclosure, the plastic bottle’s base was replaced and

screwed on to the base of the internal insert to secure it in place and to retain the original
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Fig 2. The shape and profile of the bottle tag. a) A transparent schematic showing the seating of batteries and

placement of electronics inside the bottle’s enclosure; a = Horizon GPS board, b = Cellular antenna, c = Cellular or

Argos satellite board, d = CNC-milled enclosure, e = Battery board, f = O-ring seal. b) Transparent top, side, bottom

view and orientation of batteries inside the bottle’s internal cavity; g = Positioning of AA lithium batteries c) Phase A

GSM bottle tags d) observed PET bottles in river bank Ganges River e) Phase B satellite bottle tag after deployment.

https://doi.org/10.1371/journal.pone.0242459.g002
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shape and profile of the water bottle. A waterproof sticker was appended on the internal

insert’s lid with the tag’s identification code and contact information if found to ready the bot-

tles for deployment (S1j Fig).

To successfully receive a GPS fix, the GPS ceramic antenna must be above the waterline and

exposed to the sky. In addition, the ARGOS satellite antenna must also be above water and ori-

entated upright, so as close to 90 degrees as possible for optimum results. The design of the bot-

tle took this into account by locating the GPS antenna on the roof of the internal enclosure, with

a 15 mm gap between the enclosure wall and Printed Circuit Board. To keep the bottle upright

when floating, care was taken to weight the bottle correctly and ensure the centre of gravity

would keep the bottle upright when exposed to waves or if capsized. To achieve this, we placed

the batteries as low down as possible and spaced them in sets of three within the centre of the

bottle. When tested, the bottle successfully righted itself when forcibly capsized, re-positioning

the antenna as required if it were immersed by a wave or temporarily submerged (S3 Fig).

To ensure that bottles retained their buoyancy after the addition of electronics and batteries,

a programme of work was undertaken to test that the positioning of batteries within the bot-

tle’s cavity achieved the desired centre of gravity and that the increase in weight did not affect

the flow of bottles when in the water. To test each bottle, a water tank was used to float and val-

idate various bottle designs until the positioning of the batteries centred the bottle’s gravity

and positioned both the cellular and satellite antennas correctly. Modifications were made to

the CNC-milled enclosure as necessary and results validated in the test tank.

As it was imperative that the cellular antenna remained above the surface of the water post-

deployment for successful transmission, care was taken to weight the bottles. We discovered

that the optimum battery capacity was six AA lithium batteries. Each battery added 15 g in

weight, resulting in a total weight of 130 g with the addition of the electronics which was suffi-

cient to keep the antenna above the water’s surface but avoid additional drag. When loaded with

a maximum capacity of batteries (nine AA Lithium batteries) we found that the additional 45

grams in weight lowered the bottle too much, creating drag and potentially covering the cellular

antenna, hence selecting six batteries for the deployment. Two bottle tag configurations were

deployed in two different phases (A and B, detailed in Deployments section below). Phase A bot-

tles (GSM tags) were configured to wake every 10,800 seconds (3 hours) and acquire a GPS fix.

Each bottle would try to acquire a fix for a maximum of 30 seconds. If successful, the GPS loca-

tion would be encoded, and a cellular connection made to Amazon Web Services where the

data were stored and processed. Phase A bottles had a high idle power consumption (9mA) in

comparison to Phase B and so an estimated total life of eight weeks. A second engineering pro-

cess reduced that to 38uA (9+ years in idle with six AA batteries) for the Phase B deployment.

Phase B bottles were configured to wake up every four hours and would spend up to 30 sec-

onds acquiring a GPS position before returning to a resting state until a satellite passed over.

Using a satellite pass prediction algorithm, each bottle would wake and transmit the last GPS

location received and a battery status whenever a passing satellite was available with a mini-

mum angle elevation of 40 degrees to maximise the chance of a successful transmission. Data

received were then downloaded from the Argos Web Services platform. To keep a constant

time, the bottles were programmed to synchronise their internal clocks each time a GPS fix

was obtained.

Deployments

On the Sea to Source Expedition 2019 (which consisted of 10 sampling sites along the length of

the Ganges) Phase A (pre-monsoon; May-July 2020) ten GSM (Global System for Mobile) bot-

tle tags were deployed in India; two in Varanasi (site 6), four in Kannauj (site 7), one in
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Anupshahar (site 8), two in Rishikesh (site 9) and one in Harsil (site 10) (Table 1; Fig 1). Fif-

teen satellite bottles were deployed in Bangladesh during Phase B (post-monsoon; October-

December 2020); four in Bhola (site 1), three in Chandpur (site 2), four in Rajbari (site 3), one

in between site 2–3. Three further bottles were released at sea (Bay of Bengal: B1 21.665850˚

91.172595˚; B2 21.595981˚; B3 21.913120˚ 90.777901˚) to better understand the movements of

plastic litter items once they enter the marine environment (Table 1; Fig 1). A number of per-

mits were obtained to conduct this work these included; Bangladesh National Government

Approval, India National Government Approval, Bangladesh District Approval, India District

Approval. In addition, The University of Dhaka & National Geographic Society (NGS) signed

a Memorandum of Understanding (MOU) agreement (effective April 30, 2019 expiring June

30, 2020) and the Wildlife Institute of India signed an MOU (effective March 6, 2019 expiring

August 1, 2020). These agreements cover all research activities to be conducted, including the

ones detailed in this study.

Track reconstruction

Phase A data collection ceased on 07/08/2019. The last downloaded data for Phase B tags were

on 02/02/2020 in order to begin analysis and mapping of results of data. All data analyses for

Table 1. Tracking information.

No. Site Date Duration (d) Track (km) D (km) D rate (km/day) Fate

A1 6 11/06/19 6 8.8 0.8 0.1 FBP

A2 6 11/06/19 4 2.8 1.1 0.3 FBP

A3 7 12/06/19 34 36.9 18.2 0.5 UNK

A4 7 28/06/19 1 0.8 0.3 NA NCC

A5 7 12/06/19 31 110 20.8 0.7 UNK

A6 7 17/06/19 25 133.1 0.2 0 UNK

A7 8 17/06/19 51 610 255.3 5 UNK

A8 9 21/06/19 24 167 5.6 0.2 FBP

A9 9 21/06/19 5 8.7 6.2 1.2 UNK

A10 10 25/06/19 NA NA NA NA NCC

B1 Sea 31/10/19 25 780 514.1 20.6 STR

B2 Sea 31/10/19 94 2845 590.3 6.3 UNK

B3 Sea 31/10/19 6 10.2 7.7 1.3 UNK

B4 1 31/10/19 45 941 133.9 3 UNK

B5 1 30/10/19 1 28.6 28.6 NA UNK

B6 1 30/10/19 3 4.6 0.52 0.2 UNK

B7 1 30/10/19 93 31.7 21.2 0.2 STR

B8 2 01/11/19 1 45.1 39.3 NA UNK

B9 2 04/11/19 43 55.7 34.7 0.8 UNK

B10 2 02/11/19 21 54.6 47.3 2.3 UNK

B11 2 & 3 04/11/19 4 0.5 0.2 0.1 WIN

B12 3 08/11/19 22 19.2 7.7 0.4 UNK

B13 3 08/11/19 1 0.3 0.0 NA ADA

B14 3 06/11/19 NA NA NA NA ADA

B15 3 07/11/19 NA NA NA NA ADA

Phase A tags (n = 10) and Phase B tags (n = 15). Tag number, site = expedition site number, duration = number of days tracked, release date, track = total track length

(km), D = Displacement (km), D rate = Displacement per day, Fate; release sites, numbers of days tracked and total track length (km). Fate; FBP = found by public,

NCC = no cellular connectivity, WIN = Water Ingress, ADA = Antenna Damage, STR = Still transmitted, UNK = Unknown.

https://doi.org/10.1371/journal.pone.0242459.t001
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track length construction was performed in R 3.6.2 (packages “sf”) [52]. The geospatial data

recorded for the tags were organised and quality checked in Excel and the location coordinates

imported into ArcMap 10.7. Points for each tag location were generated and displayed in

WGS GCS 1984 coordinate system. Finally, tag paths shown in Fig 1 were created using the

Points to Line tool supplied as part of the ArcMap 10.7 package.

Results

Phase A deployments

Phase A GSM bottle tags (n = 10) deployed in pre-monsoon season were tracked for an aver-

age of 20.1 ± 5.7 (mean ± SE; range 1–51) days (n = 9; bottle A10 had no communication after

deployment) (Table 1; Fig 1). Total track length obtained was on average 119.5 ± 64.7 km

(mean ± SE; range 0.8–609.9 km) (n = 9). These tags had an average displacement of

34.3 ± 27.7 km (mean ± SE; range 0.2–255.3 km) (n = 9) and mean displacement rate of

1.0 ± 0.6 km/day (mean ± SE; range 0.00–5.0 km/day) (n = 8; A4 only tracked for 1 day); all

Phase A tags displayed a “stepwise” displacement over the period of tracking (Fig 3). The lon-

gest track was from bottle A7 with total length of 609.9 km. This tag was released in site 8

(Anupshahar) and travelled down the main Ganges channel before moving into a constructed

Fig 3. Displacement plots; bottle straight distance displacement movements over time tracked. Star = release.

Bottle = tracking finished. a), b), c) & d) river deployments and e) & f) at sea deployments.

https://doi.org/10.1371/journal.pone.0242459.g003
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side channel, eventually becoming entrapped in a weir or dam (Table 1). A number of the

Phase A tags, such as A5, initially moved down the river but then transmitted repeatedly from

locations very close together suggesting they were entrapped. Tag A8 was known to have been

found shortly after deployment as the SIM card was removed and used in a mobile phone.

Phase B deployments

River. Phase B satellite bottle tags (n = 12) deployed in the river in the post-monsoon sea-

son were tracked for an average of 23.1 ± 9.3 (mean ± SE; range 0–92) days (n = 10; B14 and

B15 which had no communication once deployed) (Table 1; Fig 1). The total track length

obtained was on average 111.9 ± 92.3 km (mean ± SE; range 0.3–941.3 km) (n = 10). These

tags had an average displacement 25.4 ± 12.9 km (mean ± SE; range 0.02–133.9 km) (n = 10)

and a mean displacement rate of 0.7 ± 0.4 (km/day) (mean ± SE; range 0.0–2.9 km/day)

(n = 7). Similarly to Phase A bottles, Phase B river deployed bottles displayed a “stepwise” dis-

placement over the period of tracking (Fig 3). Tags deployed further up the river (site 2 & 3)

travelled at varying distances in differing areas of the delta; for example tag B9 travelled down

one of the tributaries of the main channel and was tracked for a period 43 days travelling

55.7km before ceasing to transmit for number of possible reasons described below.

At sea. Three Phase B bottles were released at sea (Bay of Bengal) to capture the move-

ments of plastic items once they enter the marine environment. These were tracked for an

average of 41.6 ± 26.7 (mean ± SE; range 6–94) days (n = 3), with the total track length

obtained on average 1,211.7 ± 846.2 km (mean ± SE; range 10.2–2844.6 km) (n = 3). These

tags had the largest average displacement 370.7 ± 182.8 km (mean ± SE; range 7.7–590.3 km)

(n = 3) and a mean displacement rate of 5.8 ± 9.4 (km/day) (mean ± SE; range 1.3–20.6 km/

day) (n = 3). Unlike Phase A and Phase B river-deployed bottles, these bottle tags displayed a

continual, consistent displacement over the period of tracking (Fig 3). B2 recorded the longest

track of 2,844.6 km (B2) and was tracked for the longest time- period of 94 days; this tag trav-

elled in a westward direction close to the east Indian coastline (Table 1; Fig 1). Tags showed

signs of possible water ingress, possibly due to the epoxy solution used to stop the antenna

aperture degrading over time. Corrections have been made to address this in preparation for

future deployments.

Discussion

Satellite-tracking technologies are well suited to track small plastic objects without

compromising their profile, primarily due to the low-weight and small footprint of transmit-

ters. In this study, we successfully developed a proof of concept method using open source

tracking technology to help understand the transport of plastic waste through aquatic systems

(both riverine and marine). This work demonstrates a key step forward by moving from obser-

vations to tracking movement in “real time” [24]. The bottle tags were carefully designed and

built (e.g. shape, size, buoyancy) to replicate true movement patterns of plastic items.

In the South Asian region, 75.3% of waste generated is disposed of via open dumping, fol-

lowing by 15.7% going to sanitary landfills [4]. This means that plastic items (e.g., beverage

bottles) are frequently found on the ground or in informal dumping sites as mismanaged plas-

tic waste and make their way into aquatic systems. In coastal fishing communities in India,

once plastic bottles are no longer functional (for reuse) they are often discarded on the beaches

[53]. Here we see that individual plastic items discarded in this way have the potential to travel

large distances (+1,000 km) and move from riverine to open ocean marine systems. Indeed

one of PAME’s “Plastic in a Bottle” was recently recovered in Scotland after being tracked

across the whole North Atlantic basin (approximately 7,000km over 207 days) [35]. The
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development of this method offers potential in understanding movements of plastic, as well as

locations of potential accumulation, as plastic debris has the ability to persist in the environ-

ment for extremely long periods [44]. In a recent study of plastic bottles and containers sam-

pled in the South Atlantic, some were made in the 1970s [44].

The bottle tags deployed in this study displayed differing movement patterns depending on

their site of deployment, with 40% of all bottles appearing to become trapped or beached on

the riverbank after deployment (after traveling an average of 72.2 km). This observation partic-

ularly occurred in Phase A GSM bottle tags in the pre-monsoon season, when water levels

were lowest and flows further reduced by damming and abstraction for agriculture [50, 54].

Inter-seasonal riverbank erosion and deposition dynamics play an important role in the move-

ment of plastic waste in riverine systems. Between the pre- and post-monsoon seasons there

are significant differences in the water level in the whole river system and river bank height/

width, especially in places of relative lower elevation, due to the climatic (sub-tropical mon-

soon) condition e.g. rainfall [55]. However, many of our tags did not transmit for long enough

(reasons discussed below) to monitor large movements in the heaviest periods of the monsoon

rain and largest influxes of water into the river. This will be an important consideration in

future deployment of such technology.

The three satellite bottle tags deployed at sea all took similar courses once they entered the

Bay of Bengal; moving in a westward direction close to the East Indian coastline. The conti-

nental shelf in the head of the Bay of Bengal is approximately 160 km wide and narrows to the

south [56]. The East India Coastal Current (EICC) is the seasonally reversing western-bound-

ary current of the Bay of Bengal; it flows poleward during February-August and flows equator-

ward during October- December [57]. The direction of the EICC changes along the coast in

January and September, which may explain the movement of B2 that showed an initial equa-

torward movement before switching to a poleward flow. After this, the bottle potentially

entered a cross-shore current and an eddy system, which are also prominent features of the

oceanography of the Bay of Bengal region [58]. Taken together, our initial results highlight the

potential for this technology to become part of an integrative approach to oceanographic

modelling of plastic debris movements in marine systems [21, 59].

The adoption of open source hardware and software allows others to freely replicate, mod-

ify, or enhance an existing design by openly sharing the schematics, source code and bill of

materials (BOM) necessary to manufacture and repurpose an existing solution. Although

leveraging open hardware to drive forward conservation action has been used to great effort

across multiple disciplines [60], the publication of open source satellite-based tracking hard-

ware has been limited to date, with the first open source ARGOS transmitter reference design

only published in Dec 2019 [61]. Additionally, to negate risk, tried and tested commercial off-

the-shelf solutions are often selected over emerging open source solutions that have not yet

reached maturity, or have not yet been deployed and used for extended periods of time, limit-

ing uptake [62]. By utilizing the open source Arribada Horizon biologging hardware platform

(https://arribada.org), we were able to incorporate Arribada’s low-cost, open source Horizon

hardware platform, utilising an Arribada GPS logger, Arribada Cellular Modem and ARGOS

transmitter reference design to create the custom bottle tag.

In the future, leveraging both satellite and cellular modems within a single tracker could

also enable the use of terrestrial wireless networks to track objects within urban environments

where cellular connectivity is available. Dual connectivity helps to reduce overall data costs, as

cellular data are cheaper than satellite data and allow for more data to be transmitted from a

device, due to the availability of bandwidth in comparison to satellite payloads. By leveraging

the ARGOS satellite constellation’s global coverage and roaming cellular connectivity where

available, it is possible to monitor the movement of plastic pollution over vast spatial scales,
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encompassing the open ocean and multiple countries and negating transboundary issues [25,

63], which is essential for issues such as plastic pollution. However, cost remains a major limi-

tation of tracking technology, hence the movement towards lower cost, open source software

[60, 64, 65].

Lessons learnt from deployment

Due to the nature of this proof of concept study, many lessons were learnt from the deploy-

ment of both Phase A and B tags.

Phase A. Cellular connectivity. Phase A GSM bottles tags were released in India, using cel-

lular phone networks to transmit information on location of each bottle obtained via the on-

board GPS receiver. Instantaneous GPS cell phone telemetry has been used to record move-

ment data of raccoon dogs (Nyctereutes procyonoides) in Japan, allowing description of their

habitat use in cities and revealing various spatial and temporal behavioural patterns [66, 67].

However, these studies took place in highly urbanised areas where cellular phone signal

remains strong and reliable over the study area, therefore yielding consistent data. A major

limitation occurs when countries that have not adopted a GSM system for their mobile net-

work; even so, data recovery is limited to the immediate neighbourhood of communication

towers [66, 68]. The reliability of receiving data from the Phase A tags in India was highly vari-

able, primarily due to certain networks providing poor coverage. The best performing bottle

tag was switched to use a different cellular network, which resulted in far greater transmissions

due to improved network coverage. When the tags were not in urban or suburban areas with

dense mobile phone coverage, reception of location data was poor. Therefore, future studies

should consider the use of roaming SIMs able to connect to multiple cellular providers and not

rely on a single provider regardless of their stated coverage. However, an advantage of GSM

tags compared with satellite tags is that there is a much lower cost for ongoing data collection.

Furthermore, the use of GSM tags may be a necessity if there are restrictions forbidding satel-

lite transmitters in certain areas or countries.

Human interference. For bottle tags that were deployed in highly urbanised areas, there was

a particular issue of them being removed from the river system due to human interaction (e.g.,

a SIM used in bottle tag was found to be used in a mobile device to log into a social media plat-

form). This may be due to their shape, durability and inherent value for reuse or recycling. For

instance, at Panambur Beach in Mangaluru, India, PET bottles are reused as floats for fishing

nets [53]. PET bottles are a common item captured in the waste stream by the informal waste

sector, with one of the highest resale value for waste plastics as opposed to less valuable plastics

like straws or plastics bags [69]. Collected PET bottles are typically bailed, sold, reprocessed or

traded for recycling; PET and PP (polypropylene) are the most commonly traded scrap plastic

with 131 million metric tonnes having been traded between 1988 and 2016 [70]. It is likely that

the bottle tags were seen by the public and collected for their value, therefore a less conspicu-

ous design was employed for Phase B.

Phase B. Fisheries pressure. A major issue arose following the deployment of tags during

periods of high fishing pressure; tags became entangled and trapped in active fishing gear, and

tags deployed within the river had smaller track lengths and a higher likelihood of discovery

and human interference. Bangladesh has a total inland water area of 4.3 million ha. of which

94% is used as open water capture fisheries. These resources play a significant role in the econ-

omy and culture, with multiple different types of craft, gears and traps used [71]. Maximum

catches (for many of the main composites of the fishery) are obtained during the months from

July to December [72]. This means during the period of deployment (October–November) the

density of fishers and gear in the river was very high. A 22-day ban had been brought in from
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9th October 2019 on fishing in significant spawning events during peak breeding periods for

the main commercial fishery for hilsa (Tenualosa ilisha) [73]. Unfortunately, the end of the

ban coincided with the deployment of the tags in more inland locations resulting in high inter-

actions with fisheries, which resulted in a loss of those tags through collection or destruction.

Severe weather. During the period immediately after deployment of the Phase B tags, a

severe cyclonic storm (Bulbul) made landfall in Bangladesh on 9th November 2019. The maxi-

mum sustained wind speed of 100 kph rising to 120 kph in gusts/squalls and coastal areas

received heavy rainfall prior to the cyclone arrival which continued as the cyclone passed [74].

This extreme weather condition could have caused damaged to the tag antennae, which may

explain the loss of communication during this period.

Mechanical issues. A number of the Phase B tags lost transmission soon after deployment,

despite transmitting prior to deployment during self-tests. This indicates an event occurred

after deployment that affected transmission. It is possible that these issues are mechanical in

certain situations, perhaps due to interactions with fisheries and severe weather. It is possible

that the tags were then susceptible to water ingress, perhaps due to issues with the antenna or

O-ring seal. For example, tag B10 showed high success with communication but had been

stranded in a reed bed for several months so was sheltered. However, the majority of bottles

released into open water appeared to stop transmitting for durations of between a few days

and over two months. Software issues are unlikely as tags that were constructed and activated

at the same time / dates, then stored for future deployments, were still actively transmitting

when brought out of storage. This indicates that a mechanical issue post deployment affected

tags. To remedy this moving forward, the encapsulation of the bottle’s cavity will prevent any

degradation of the O-ring seal or epoxy solution, improving upon the current mechanical

design and strengthening bottle tags further.

Future research

The scope for the use of satellite technology has a significant ability to increase our knowledge

of plastic debris movements. Electronic devices are constantly evolving; becoming increasingly

miniaturised, more affordable and able to provide even more detailed information on move-

ments in space and time [25]. With smaller devices, it will be possible to track smaller, more

lightweight litter items, which are commonly seen polluting both the freshwater and marine

environment. Modern tags are also capable of being built with additional sensors that can doc-

ument the ambient conditions, therefore it might be possible to remotely monitor metrics like

water quality in dense areas of plastic debris accumulations [75]. However, the possibility of

tracking more plastic litter items comes with ethical considerations about releasing more plas-

tic items into the environment.

Tracking technology in conjunction with mapping tools has increased knowledge of habitat

associations for many species of fauna [63]. For plastic pollution, this could be very useful in

identifying habitats associated with accumulations of plastic debris and therefore those that

are most vulnerable to degradation. For example, Sargassum and mangroves, which serve as

nurseries for juvenile fish and critical habitat for other taxa, have been hypothesised to be

potential sinks for plastic pollution [76]. Long term tracking programmes can also reveal pat-

terns of phenology or weather; the input of plastic pollution from the Ganges into marine sys-

tems is likely to be largely influenced by weather patterns, such as monsoon rains [63].

Tracking other litter items from the land could provide a better understanding of if, and when,

large inputs of plastic debris into the system occur. If tracking data from vulnerable species,

such as sea turtles, cetaceans and elasmobranchs, can be integrated with tracks from plastic

item tags, it will help to pinpoint potential hotspot zones of interaction, such as entanglement
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and/or ingestion [10]. This would help guide plastic input management and clean-up efforts

[10, 77].

Information gathered from movement ecology research can inform science-based policy

processes [78]. To apply this method successfully for plastic pollution, individual tracking of

litter items should be used in conjunction with other technologies, such as drifters, to piece

together the movement and environmental processes influencing plastic debris distribution

and abundance [18]. These plastic pollution tracking tools also have the ability to be used as

valuable educational outreach tools for public awareness of the issue and feed into citizen sci-

ence initiatives. For example, PAME’s “Plastic in a bottle” devices GPS transmitters send a sig-

nal every day, allowing website visitors to follow the journey of the bottles in real time on an

online map [35]. They can be shown live tracked online and could be a tractable example for

members of the public to understand the capacity for plastic pollution to move in riverine

and marine systems. There is evidence that social marketing using tools such as these can be

enablers of sustained engagement and behaviour change [79]. For example, the first tagged

whale shark in the NW Atlantic @WhaleSharkRocky has 16.1K followers on Twitter [80]. Like-

wise, the data collected by these tags will also create leverage for stakeholders to inform policy

and government regulations. Open source data collection approaches to support conservation

links with one of the key objectives of the The UN Decade of Ocean Science for Sustainable

Development (2021–2030) [81].

Conclusion

Rivers connect most of the terrestrial surface of Earth to the marine environment and there-

fore play a critical role in the movement of plastic waste [14]. Tracking plastic litter is an

opportunity to expand the use of movement ecology to aid in understanding its abundance,

distribution and sources [25]. Here we have presented a low cost, open source methodology

piloted in the Ganges and the Bay of Bengal to track the movement of plastic litter items in

order to better understand the journey of plastic pollution in aquatic systems. The develop-

ment of novel technology and the application to the global issue of plastic pollution has the

potential to significantly aid in the acquisition of knowledge and be a powerful tool for stimu-

lating social behaviour change.

Supporting information

S1 Fig. Bottle tag design and construction: a) top view showing the shape and profile of the

internal bottle insert’s lid b) Side view of plastic water bottle showing the cut location c)

top view showing mounting hole locations d) top down view showing placement of Arri-

bada Horizon GPS tracker board and ARGOS R2 transmitter inside the internal enclosure

e) top down view showing cable assembly positioning f) top down view showing antenna

ground plane extension tabs connecting the two PCBs together g) top down view of base

showing location of o-ring seal h) perspective view of base enclosure showing 6 x AA bat-

tery insert positions i) top down view showing placement of battery board in the base of

the enclosure j) Side view of plastic water bottle showing internal insert positioned inside.

The ARGOS antenna is not shown.

(JPG)

S2 Fig. Internal enclosure: The top, front and rear view of the internal enclosure with the

self-tapping screw holes visible.

(JPG)
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S3 Fig. Orientation of batteries inside the bottles internal cavity.

(JPG)
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assessing effects of ship traffic on distributions and movements of seabirds. J Environ Manage. 2019;

251:109511. https://doi.org/10.1016/j.jenvman.2019.109511 PMID: 31539703

32. Gonzalez-Socoloske D, Reid JP, Kherson CE-M, Ruiz E, Glander KE, Gonzalez-Socoloske D, et al.

First Successful Capture and Satellite Tracking of a West Indian Manatee (Trichechus manatus) in Pan-

ama: Feasibility of Capture and Telemetry Techniques Recommended Citation. Lat Am J Aquat Mamm

[Internet]. 2015 [cited 2020 Apr 8]; 10(1):52–7. Available from: http://dx.doi.org/10.5597/lajam00194

33. Pichel WG, Veenstra TS, Churnside JH, Arabini E, Friedman KS, Foley DG, et al. GhostNet marine

debris survey in the Gulf of Alaska—Satellite guidance and aircraft observations. Mar Pollut Bull. 2012

Jan 1; 65(1–3):28–41. https://doi.org/10.1016/j.marpolbul.2011.10.009 PMID: 22088492

34. Carthe. Bay Drift «CARTHE: Consortium for Advanced Research on Transport of Hydrocarbon in the

Environment [Internet]. 2016 [cited 2020 Jun 16]. http://carthe.org/baydrift/

35. PAME. Plastic in a bottle: Live map [Internet]. [cited 2020 Jun 10]. https://www.pame.is/projects/arctic-

marine-pollution/plastic-in-a-bottle-live-map

36. Topouzelis K, Papakonstantinou A, Garaba SP. Detection of floating plastics from satellite and

unmanned aerial systems (Plastic Litter Project 2018). Int J Appl Earth Obs Geoinf. 2019 Jul 1; 79:175–

83.

37. Maximenko N, Corradi P, Law KL, Van Sebille E, Garaba SP, Lampitt RS, et al. Towards the integrated

marine debris observing system. Front Mar Sci. 2019 Aug 28; 6(JUL):447.

38. Biermann L, Clewley D, Martinez-Vicente V, Topouzelis K. Finding Plastic Patches in Coastal Waters

using Optical Satellite Data. Sci Rep. 2020 Dec 1; 10(1):1–10. https://doi.org/10.1038/s41598-019-

56847-4 PMID: 31913322

39. International Coastal Cleanup. Tracking Trash: 25 Years of Action for the Ocean [Internet]. 2011 [cited

2020 Aug 4]. https://oceanconservancy.org/wp-content/uploads/2017/04/2011-Ocean-Conservancy-

ICC-Report.pdf

40. International Coastal Cleanup. The Beach and Beyond. 2019.

41. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017 Jul 5;

3(7):e1700782. https://doi.org/10.1126/sciadv.1700782 PMID: 28776036

42. Krause MJ, Townsend TG. Rapid Waste Composition Studies for the Assessment of Solid Waste Man-

agement Systems in Developing Countries. Int J Waste Resour. 2014; 04(02).

43. Nelms S, Coombes C, Foster L, Galloway T, Godley B, Lindeque P, et al. Marine anthropogenic litter on

British beaches: A 10-year nationwide assessment using citizen science data. Sci Total Environ [Inter-

net]. 2017 Feb 1 [cited 2018 May 10]; 579:1399–409. Available from: https://www.sciencedirect.com/

science/article/pii/S0048969716325918 PMID: 27913017

PLOS ONE Open source technology tracking movement of plastic pollution

PLOS ONE | https://doi.org/10.1371/journal.pone.0242459 December 2, 2020 17 / 19

http://www.tandfonline.com/doi/full/10.1080/1755876X.2015.1049883
http://www.tandfonline.com/doi/full/10.1080/1755876X.2015.1049883
https://dx.plos.org/10.1371/journal.pone.0098485
http://www.ncbi.nlm.nih.gov/pubmed/24955768
https://doi.org/10.1126/science.1255642
https://doi.org/10.1126/science.1255642
http://www.ncbi.nlm.nih.gov/pubmed/26068859
https://doi.org/10.1038/nature10082
https://doi.org/10.1038/nature10082
http://www.ncbi.nlm.nih.gov/pubmed/21697831
https://www.sciencedirect.com/science/article/pii/S0006320716301690
https://www.sciencedirect.com/science/article/pii/S0006320716301690
https://doi.org/10.1038/s41598-016-0028-x
http://www.ncbi.nlm.nih.gov/pubmed/28127051
https://www.researchgate.net/publication/324784114
https://doi.org/10.1016/j.jenvman.2019.109511
http://www.ncbi.nlm.nih.gov/pubmed/31539703
http://dx.doi.org/10.5597/lajam00194
https://doi.org/10.1016/j.marpolbul.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22088492
http://carthe.org/baydrift/
https://www.pame.is/projects/arctic-marine-pollution/plastic-in-a-bottle-live-map
https://www.pame.is/projects/arctic-marine-pollution/plastic-in-a-bottle-live-map
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1038/s41598-019-56847-4
http://www.ncbi.nlm.nih.gov/pubmed/31913322
https://oceanconservancy.org/wp-content/uploads/2017/04/2011-Ocean-Conservancy-ICC-Report.pdf
https://oceanconservancy.org/wp-content/uploads/2017/04/2011-Ocean-Conservancy-ICC-Report.pdf
https://doi.org/10.1126/sciadv.1700782
http://www.ncbi.nlm.nih.gov/pubmed/28776036
https://www.sciencedirect.com/science/article/pii/S0048969716325918
https://www.sciencedirect.com/science/article/pii/S0048969716325918
http://www.ncbi.nlm.nih.gov/pubmed/27913017
https://doi.org/10.1371/journal.pone.0242459


44. Ryan PG, Dilley BJ, Ronconi RA, Connan M. Rapid increase in Asian bottles in the South Atlantic

Ocean indicates major debris inputs from ships. Proc Natl Acad Sci U S A. 2019 Oct 15; 116

(42):20892–7. https://doi.org/10.1073/pnas.1909816116 PMID: 31570571

45. Whitehead PG, Sarkar S, Jin L, Futter MN, Caesar J, Barbour E, et al. Dynamic modeling of the Ganga

river system: Impacts of future climate and socio-economic change on flows and nitrogen fluxes in India

and Bangladesh. Environ Sci Process Impacts. 2015 Jun 1; 17(6):1082–97. https://doi.org/10.1039/

c4em00616j PMID: 25692851

46. Blettler MCM, Abrial E, Khan FR, Sivri N, Espinola LA. Freshwater plastic pollution: Recognizing

research biases and identifying knowledge gaps. Water Res. 2018 Oct 15; 143:416–24. https://doi.org/

10.1016/j.watres.2018.06.015 PMID: 29986250

47. Chowdhury MR, Ward N. Hydro-meteorological variability in the greater Ganges-Brahmaputra-Meghna

basins. Int J Climatol [Internet]. 2004 Oct 1 [cited 2020 Apr 8]; 24(12):1495–508. Available from: http://

doi.wiley.com/10.1002/joc.1076

48. CPCD. Overview of Plastic Waste Management. Central Pollution Control Board. Ministry of Environ-

ment and Forests. Government of India. 2013.

49. Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK. Assessment of heavy metal contamination in soils

at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard

Mater. 2010 Feb 15; 174(1–3):113–21. https://doi.org/10.1016/j.jhazmat.2009.09.024 PMID: 19837511

50. Goodbred SL, Kuehl SA. Enormous Ganges-Brahmaputra sediment discharge during strengthened

early Holocene monsoon. Geology. 2000 Dec 1; 28(12):1083–6.

51. FAO. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). 2016.

52. Package “sf” [Internet]. 2020 [cited 2020 May 27]. https://orcid.org/0000-0003-2392-6140

53. Sulochanan B, Veena S, Ratheesh L, Padua S, Rohit P, Kaladharan P, et al. Temporal and spatial vari-

ability of beach litter in Mangaluru, India. Mar Pollut Bull. 2019 Dec 1; 149:110541. https://doi.org/10.

1016/j.marpolbul.2019.110541 PMID: 31543482

54. Dudgeon D. Large-Scale Hydrological Changes in Tropical Asia: Prospects for Riverine BiodiversityThe

construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their asso-

ciated wetlands. Bioscience. 2000 Sep 1; 50(9):793–806.

55. Shalini TA. Groundwater Level and Rainfall Variability Trend Analysis using GIS in parts of Jharkhand

state (India) for Sustainable Management of Water Resources. 2012.

56. LaFond EC. Oceanographic studies in the Bay of Bengal. Proc Indian Acad Sci—Sect B. 1957 Jul; 46

(1):1–46.

57. Mukherjee A, Shankar D, Fernando V, Amol P, Aparna SG, Fernandes R, et al. Observed seasonal and

intraseasonal variability of the east india coastal current on the continental slope. J Earth Syst Sci. 2014

Aug 1; 123(6):1197–232.

58. Durand F, Shankar D, Birol F, Shenoi SSC. Spatiotemporal structure of the East India Coastal Current

from satellite altimetry. J Geophys Res Ocean. 2009; 114(2):1–18.

59. van Sebille E, Griffies SM, Abernathey R, Adams TP, Berloff P, Biastoch A, et al. Lagrangian ocean

analysis: Fundamentals and practices. Ocean Model [Internet]. 2018 Jan 1 [cited 2018 Sep 3]; 121:49–

75. Available from: https://www.sciencedirect.com/science/article/pii/S1463500317301853?via%

3Dihub

60. Hill AP, Davies A, Prince P, Snaddon JL, Doncaster CP, Rogers A. Leveraging conservation action with

open-source hardware. Conserv Lett. 2019 Sep 1; 12(5).

61. CLS. ARTIC Chipset—CLS Telemetry [Internet]. [cited 2020 Jun 10]. https://www.cls-telemetry.com/

argos-solutions/argos-products/modems/artic-chipset/#1575449009767-35469d83-0ab9

62. Dedrick J, Dedrick J, West J. Why Firms Adopt Open Source Platforms: A Grounded Theory Of Innova-

tion And Standards Adoption [Internet]. 2003 [cited 2020 May 20]. http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.5.2634

63. Fraser KC, Davies KTA, Davy CM, Ford AT, Flockhart DTT, Martins EG. Tracking the Conservation

Promise of Movement Ecology. Front Ecol Evol [Internet]. 2018 Oct 1 [cited 2020 Feb 10]; 6(OCT):150.

Available from: https://www.frontiersin.org/article/10.3389/fevo.2018.00150/full

64. Hill AP, Prince P, Piña Covarrubias E, Doncaster CP, Snaddon JL, Rogers A. AudioMoth: Evaluation of

a smart open acoustic device for monitoring biodiversity and the environment. Isaac N, editor. Methods

Ecol Evol [Internet]. 2018 May 15 [cited 2020 Apr 9]; 9(5):1199–211. Available from: https://

onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12955

65. Straw AD, Branson K, Neumann TR, Dickinson MH. Multi-camera real-time three-dimensional tracking

of multiple flying animals. J R Soc Interface [Internet]. 2011 Mar 6 [cited 2020 Apr 9]; 8(56):395–409.

Available from: https://royalsocietypublishing.org/doi/10.1098/rsif.2010.0230 PMID: 20630879

PLOS ONE Open source technology tracking movement of plastic pollution

PLOS ONE | https://doi.org/10.1371/journal.pone.0242459 December 2, 2020 18 / 19

https://doi.org/10.1073/pnas.1909816116
http://www.ncbi.nlm.nih.gov/pubmed/31570571
https://doi.org/10.1039/c4em00616j
https://doi.org/10.1039/c4em00616j
http://www.ncbi.nlm.nih.gov/pubmed/25692851
https://doi.org/10.1016/j.watres.2018.06.015
https://doi.org/10.1016/j.watres.2018.06.015
http://www.ncbi.nlm.nih.gov/pubmed/29986250
http://doi.wiley.com/10.1002/joc.1076
http://doi.wiley.com/10.1002/joc.1076
https://doi.org/10.1016/j.jhazmat.2009.09.024
http://www.ncbi.nlm.nih.gov/pubmed/19837511
https://orcid.org/0000-0003-2392-6140
https://doi.org/10.1016/j.marpolbul.2019.110541
https://doi.org/10.1016/j.marpolbul.2019.110541
http://www.ncbi.nlm.nih.gov/pubmed/31543482
https://www.sciencedirect.com/science/article/pii/S1463500317301853?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1463500317301853?via%3Dihub
https://www.cls-telemetry.com/argos-solutions/argos-products/modems/artic-chipset/#1575449009767-35469d83-0ab9
https://www.cls-telemetry.com/argos-solutions/argos-products/modems/artic-chipset/#1575449009767-35469d83-0ab9
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.2634
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.2634
https://www.frontiersin.org/article/10.3389/fevo.2018.00150/full
https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12955
https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12955
https://royalsocietypublishing.org/doi/10.1098/rsif.2010.0230
http://www.ncbi.nlm.nih.gov/pubmed/20630879
https://doi.org/10.1371/journal.pone.0242459


66. Ishii H, Yamazaki K, Noonan MJ, Buesching CD, Newman C, Kaneko Y. Testing cellular phone-

enhanced GPS tracking technology for urban carnivores. Anim Biotelemetry [Internet]. 2019 [cited 2020

Mar 6]; 7:19. Available from: https://doi.org/10.1186/s40317-019-0180-8

67. Takeuchi T, Matsuki R, Nashimoto M. GPS cell phone tracking in the Greater Tokyo Area: A field test

on raccoon dogs. Urban Ecosyst. 2011; 15:181–93.

68. Clark P, Johnson D, Kniep M, Jermann P, Huttash B, Wood A, et al. An Advanced, Low-Cost, GPS-

Based Animal Tracking System. Rangelands. 2016 Jun 24; 59(3).

69. Moss E, Eidson AJ, Jambeck JR. Sea of Opportunity Supply Chain Investment Opportunities to

Address Marine Plastic Pollution. 2017.

70. Brooks AL, Wang S, Jambeck JR. The Chinese import ban and its impact on global plastic waste trade.

Sci Adv. 2018 Jun 20; 4(6):eaat0131. https://doi.org/10.1126/sciadv.aat0131 PMID: 29938223

71. Ghulam Kibria M, Ahmed KKU. Diversity of selective and non-selective fishing gear and their impact on

inland fisheries in Bangladesh. 2005.

72. Mia S, Yeasmin F, Kafi FH, Miah I, Haq MS. Assessment and monitoring fish biodiversity of Meghna

river in Bangladesh. Int J Nat Soc Sci [Internet]. 2015 [cited 2020 Mar 10]; 2:13–20. Available from:

www.ijnss.org

73. Islam MM, Mohammed EY, Ali L. Economic incentives for sustainable hilsa fishing in Bangladesh: An

analysis of the legal and institutional framework. Mar Policy. 2016 Jun 1; 68:8–22.

74. Rahman S. Southern Bangladesh Cyclone Bulbul Crisis Impact Overview.

75. Costa DP, Breed GA, Robinson PW. New Insights into Pelagic Migrations: Implications for Ecology and

Conservation. Annu Rev Ecol Evol Syst [Internet]. 2012 Dec 5 [cited 2020 Mar 17]; 43(1):73–96. Avail-

able from: http://www.annualreviews.org/doi/10.1146/annurev-ecolsys-102710-145045

76. Ivar do Sul JA, Costa MF, Silva-Cavalcanti JS, Araújo MCB. Plastic debris retention and exportation by
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