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Abstract

Limited evidence exists on the link between inflammation and epigenetic aging. We aimed to (a) assess the cross-sectional and prospective 
associations of 22 inflammation-related plasma markers and a signature of inflammaging with epigenetic aging and (b) determine whether 
epigenetic aging and inflammaging are independently associated with mortality. Blood samples from 940 participants in the Melbourne 
Collaborative Cohort Study collected at baseline (1990–1994) and follow-up (2003–2007) were assayed for DNA methylation and 22 
inflammation-related markers, including well-established markers (eg, interleukins and C-reactive protein) and metabolites of the tryptophan–
kynurenine pathway. Four measures of epigenetic aging (PhenoAge, GrimAge, DunedinPoAm, and Zhang) and a signature of inflammaging 
were considered, adjusted for age, and transformed to Z scores. Associations were assessed using linear regression, and mortality hazard ratios 
(HR) and 95% confidence intervals (95% CI) were estimated using Cox regression. Cross-sectionally, most inflammation-related markers 
were associated with epigenetic aging measures, although with generally modest effect sizes (regression coefficients per SD ≤ 0.26) and 
explaining altogether between 1% and 11% of their variation. Prospectively, baseline inflammation-related markers were not, or only weakly, 
associated with epigenetic aging after 11 years of follow-up. Epigenetic aging and inflammaging were strongly and independently associated 
with mortality, for example, inflammaging: HR = 1.41, 95% CI = 1.27–1.56, p = 2 × 10−10, which was only slightly attenuated after adjustment 
for 4 epigenetic aging measures: HR  =  1.35, 95% CI  =  1.22–1.51, p  =  7  ×  10−9). Although cross-sectionally associated with epigenetic 
aging, inflammation-related markers accounted for a modest proportion of its variation. Inflammaging and epigenetic aging are essentially 
nonoverlapping markers of biological aging and may be used jointly to predict mortality.
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The physiological processes of biological aging, the progressive de-
cline in integrity of cells and organs with age, have been a major 
focus of gerontological research (1). Although substantial progress 
has been made in identifying and characterizing several of the 
phenotypic “hallmarks” of biological aging (2), such as inflamma-
tory, transcriptomic, and epigenetic cellular changes, investigation 
of the interplay between them remains notably deficient (1). Recent 
candidate biological aging markers such as measures of epigenetic 

aging and of inflammation and “inflammaging” provide promising 
avenues for investigating these relationships (3).

Potentially the most promising of the candidate markers of bio-
logical aging are those based on DNA methylation (ie, epigenetic 
aging) (4–6). Epigenetic aging measures are developed by combining 
the DNA methylation values (variation in which is highly sensitive to 
age-related physiological changes) at cytosine-guanine-dinucleotides 
(CpGs) across the genome into a weighted average. These measures 

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-7828-8188
https://orcid.org/0000-0003-3017-0871
https://orcid.org/0000-0003-2736-3023
mailto:pierre-antoine.dugue@monash.edu?subject=


tend to be highly correlated with chronological age, and the phe-
nomenon by which an individual’s epigenetic age differs from their 
chronological age is commonly referred to as epigenetic “age acceler-
ation” (AgeAccel) in the epigenetic field. Positive AgeAccel has been 
found to be associated with increased risk of several chronic diseases 
and earlier mortality (4,7).

Another feature of biological aging is the increasingly inflamma-
tory phenotype that tends to occur with age. This phenotype is often 
referred to as “inflammaging” and is recognized as an important risk 
factor for age-related morbidity and mortality (3). Most diseases of 
aging have an important inflammatory component (8). A related set 
of markers are those of the tryptophan–kynurenine (TK) pathway, 
the metabolic pathway that is the starting point for production of 
nicotinamide adenine dinucleotide (NAD+). The TK pathway is in-
creasingly recognized as playing an important role in inflammation 
(9). Recently, we combined 10 age-associated inflammatory and TK 
pathway markers into a novel candidate marker of biological aging 
and a signature of inflammaging (10). This inflammaging signature 
was found to be strongly associated with mortality in the Melbourne 
Collaborative Cohort Study (MCCS) and the Hordaland Health 
Study (10).

To quantify the association between epigenetic aging and inflam-
mation/inflammaging, we considered 4 “second generation” measures 
of epigenetic aging: PhenoAge (11), GrimAge (12), Zhang (13), and 
DunedinPoAm (14) (note that we use the term “epigenetic aging” in 
the broad sense—inclusive of the Zhang measure that is not explicitly 
related to aging). PhenoAge is an epigenetic surrogate of a composite 
clinical measure of “phenotypic age,” which incorporates chrono-
logical age and nine physiological health markers (11). GrimAge is an 
epigenetic marker of lifespan formed as a weighted combination of 
chronological age, sex, and epigenetic signatures of plasma proteins 
and smoking pack years (12). The Zhang measure is an epigenetic 
score based on the methylation values of 10 CpGs whose methyla-
tion values strongly predicted mortality over 15 years of follow-up 
(13). Finally, DunedinPoAm (Dunedin pace of aging methylation) is 
an epigenetic signature that aims to measure the speed of biological 
aging, based on the longitudinal trajectory of several blood markers 
measured in 3 successive waves of the Dunedin Study (14).

Of previous studies investigating the association between epi-
genetic aging and inflammation, Levine et al. (11) found that posi-
tive PhenoAgeAccel was cross-sectionally associated with increased 
C-reactive protein (CRP) and increased transcription of inflamma-
tory genes (such as tumor necrosis factor-mediated signaling path-
ways). Positive GrimAgeAccel has similarly been associated with 
increased CRP (12). Irvin et al. (15) found that “extrinsic AgeAccel,” 
related to the first-generation Hannum epigenetic age measure (16), 
was associated with interleukin-6 (IL-6), CRP, and tumor necrosis 
factor-alpha (TNF-α), albeit with modest effect sizes. Stevenson et al. 
(17), using longitudinal data from the Lothian Birth Cohort, found 
a positive cross-sectional association of extrinsic AgeAccel with CRP 
and IL-6, but little evidence of a prospective relationship.

Although preliminary evidence suggests some association be-
tween epigenetic aging and inflammation, most previous studies 
were limited to a few inflammatory markers (essentially CRP and 
IL-6). No study to date has assessed the association between TK 
pathway markers and epigenetic aging, nor has any study investi-
gated the association between epigenetic aging and a recently de-
veloped signature of inflammaging (10). Addressing these gaps in 
the research may provide insight into the complexity of biological 
aging by identifying the degree to which markers of these distinct 
systems contain independent (or overlapping) information (3). This 

may have implications for the utility of these 2 sets of markers in 
predicting adverse health outcomes when used in combination. 
This study therefore had 2 aims: (a) to quantify the association of 
a panel of inflammatory and TK pathway markers, and a signature 
of inflammaging, with 4 measures of epigenetic aging and (b) to de-
termine to what extent epigenetic aging and inflammaging are inde-
pendently associated with all-cause mortality.

Method

Study Sample
The Melbourne Collaborative Cohort Study (MCCS) is a prospective 
cohort study that recruited 41 513 participants between 1990 and 
1994 and was designed to investigate prospectively the role of diet 
and other lifestyle factors as risk factors for cancer and other chronic 
diseases (18). Participants were recruited via the electoral roll (regis-
tration to vote is obligatory in Australia) and via local media and 
community advertisements. The majority (99%) of MCCS partici-
pants were aged between 40 and 69 years and were free of cancer at 
baseline. Blood samples were taken at baseline and follow-up (wave 
2), years 1990–1994 and 2003–2007, respectively, for 99% and 
64% of participants, respectively.

DNA methylation was measured in Guthrie card samples taken 
at baseline and follow-up for 1  100 participants selected as con-
trols in a series of nested case–control studies of DNA methylation 
and cancer risk within the MCCS, a subset of which (N = 976) had 
markers of inflammation and the kynurenine pathway also meas-
ured at baseline (1990–1994) and follow-up (2003–2007) (10,19). 
Control participants were matched to cancer cases based on sex, age 
at blood draw, and smoking status (the latter in the lung cancer study 
only) (20,21). A flowchart describing the sample selection from the 
MCCS cohort to the final study sample is shown in Supplementary 
Figure 1.

The study was approved by the Cancer Council Victoria’s Human 
Research Ethics Committee (IEC 9001), Melbourne, VIC, Australia, 
and all participants provided informed consent in accordance with 
the Declaration of Helsinki.

Demographic, Anthropometric, and Health Data
At baseline, participants completed detailed questionnaires on demo-
graphic variables, lifestyle and medical history. The socioeconomic 
index for areas (SEIFA), a postcode-based metric of socioeconomic 
status created by the Australian Bureau of Statistics, was used as a proxy 
for socioeconomic status (pseudocontinuous variable ranging from 1 to 
10 according to deciles). Smoking was assessed as smoking status (cur-
rent, former, never), and smoking pack years. Alcohol intake (grams/
day) was estimated based on the frequency, alcohol content and volume 
consumed by type of drink over the past week (at baseline) or over 
the past 12 months (at follow-up) (22). Trained personnel additionally 
measured height (baseline only) and weight. Body mass index (BMI) 
in kg/m2 was calculated. Vital status is obtained through yearly record 
linkage to the Victorian Registry of Births, Deaths, and Marriages (via 
the Victorian Cancer Registry) and the Australian National Death Index 
(Australian Institute of Health and Welfare). Vital status information 
was considered to be virtually complete up to October 31, 2019.

DNA Methylation Measurement and Calculation of 
Epigenetic Age
The methods relating to DNA extraction and bisulfite conversion, 
and processing of DNA methylation data have been described 

Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 12� 2379

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac147#supplementary-data
http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac147#supplementary-data


previously (23). In brief, for all samples included in this study, DNA 
was extracted from dried blood spots and the Illumina Infininum 
HumanMethylation450K Beadchip array, which targets 485  577 
CpGs across the genome, was used to measure DNA methylation. 
Data normalization steps followed a well-established pipeline that 
has been described in detail previously (24). Data from a total of 946 
participants were available after quality control of methylation data.

PhenoAge and GrimAge were calculated using Horvath’s online 
calculator at https://dnamage.genetics.ucla.edu/ (25). Zhang and 
DunedinPoAm were calculated using the weights provided in the 
respective original publications (13,14). Each epigenetic age vari-
able was regressed on chronological age with the resulting residuals 
retained as AgeAccel estimates. As a sensitivity analysis, we con-
sidered that the relationship between epigenetic and chronological 
age could be nonlinear and fitted penalized cubic splines on each 
epigenetic age variable, showing associations were all virtually linear 
(Supplementary Figure 3).

Inflammation Marker Measurement
Plasma samples were collected at the same time-point as dried 
blood spots used for DNA methylation measurement and stored 
in liquid nitrogen at −180°C until transportation for laboratory 
analysis. Measurement of TK pathway markers was performed 
at Bevital laboratories in Bergen, Norway http://www.bevital.
no/. TK pathway markers included tryptophan, kynurenine, 
3-hydroxykynurenine, kynurenic acid, xanthurenic acid, anthranilic 
acid, 3-hydroxyanthranilic acid, picolinic acid, and quinolinic acid 
and were assayed using liquid chromatography–tandem mass spec-
trometry (LC–MC) (26). Neopterin was also assayed using LC–MC. 
The inflammatory markers CRP, serum amyloid A, calprotectin, 
and cystatin C were assayed using matrix assisted laser desorption 
ionization-time of flight mass spectrometry (MALDI–TOF MS), also 
at Bevital laboratories. The remaining inflammatory markers inter-
leukin-6 (IL-6), IL8, IL-10, interferon-gamma (IFN-γ), and TNF-α 
were analyzed separately at the International Agency for Research 
on Cancer (IARC) laboratories in Lyon, France, using Meso Scale 
Discovery 6-Plex kits. Several derived markers related to trypto-
phan metabolism were calculated. These included the kynurenine 
to tryptophan ratio, a surrogate for the activity of the indoleamine 
2,3-dioxygenase enzyme and reflective of immune activity (27); the 
ratio of pyridoxal 5′-phosphate to (pyridoxal + pyridoxic acid; PAr 
index), an index of vitamin B6 catabolism during inflammation (28); 
and the ratio of 3-hydroxykynurenine to xanthurenic acid (HK:XA) 
as a marker of vitamin B6 status (29).

The inflammaging signature was calculated as a linear combin-
ation of the log concentration of 10 inflammatory markers with 
weights obtained from the original publication (see Supplementary 
Table S1) (10). It was also regressed on age to obtain an age-adjusted 
measure (AAinflammaging).

Confounders
In regression models assessing the association between inflamma-
tory/TK pathway markers and AgeAccel, we adjusted for confounder 
variables sex and country of birth (Australia/New Zealand, Southern 
Europe, Northern Europe). Previous investigations have found that 
sex strongly determines AgeAccel, particularly GrimAgeAccel (30). 
Country of birth was used as a proxy for genetic ancestry, which 
strongly determines patterns of DNA methylation. Note that 
age was not considered as a confounder since AgeAccel variables 
and AAinflammaging, are independent of chronological age. We 

additionally considered as potential confounders BMI, smoking (cur-
rent, former, never), alcohol intake, and socioeconomic status (SEIFA 
decile score) as these factors may cause elevated inflammation and 
epigenetic aging (31–33). Other factors such as dietary habits and 
physical activity were not considered as previous studies indicate 
that they may have only minor influences on epigenetic aging (31).

Data Preparation
Six participants with missing values in more than 50% of the 
markers were excluded from the analysis. There were between 0% 
and 6% missing values for the inflammatory markers at either base-
line or follow-up, which were commonly due to issues with bio-
logical samples (insufficient quantity or quality) or quantification 
issues in assay instruments and were assumed to be missing com-
pletely at random. Missing data for inflammation markers and a 
small number of confounder values were imputed using the random 
forest method missForest, which performs very well when the pro-
portion of missing data is low (34).

Inflammatory marker variables occasionally had values below 
the limit of detection (<2% in all cases). These were replaced with 
the limit of detection divided by 2 for each marker. Subsequently, in-
flammatory markers were log2 transformed to obtain distributions 
closer to Gaussian, and winsorized at <−3 and >+3 SD from the 
mean to minimize the influence of potential outliers. AgeAccel vari-
ables and AAinflammaging, which were approximately normally dis-
tributed, were similarly winsorized at 3 SD from the mean. Prior to 
fitting regression models, inflammatory markers, AAinflammaging, 
and AgeAccel variables were standardized to Z scores to facilitate 
comparison of effect sizes.

Statistical Analysis
The associations between the inflammatory markers, AAinflamm­
aging, and AgeAccel measures were assessed cross-sectionally (base-
line and follow-up) and prospectively using multivariable linear 
regression, adjusted for sex and country of birth. The prospective 
models were additionally adjusted for baseline AgeAccel measures 
as appropriate. In a sensitivity analysis, we additionally adjusted for 
socioeconomic status (SEIFA decile score), BMI, daily alcohol in-
take, and smoking status. Regression assumptions of linearity and 
homoscedasticity were checked using component-residual and scale-
location plots, respectively. Associations were approximately con-
sistent with linearity and no marked heteroscedasticity was noted.

We additionally fitted multivariable models including all the 
inflammatory marker variables and AAinflammaging together 
as predictors in order to estimate the overall variance explained 
in AgeAccel. To reduce overfitting, we fitted these models in the 
Bayesian framework using the regularized “horseshoe” shrinkage 
prior (35,36). The horseshoe prior consists of a “global” shrinkage 
hyperparameter, which shrinks all coefficients toward zero, as well 
as a “local” shrinkage hyperparameter which allows for coeffi-
cients with strong signals to escape this shrinkage. Models were 
estimated with probabilistic programming language Stan via the 
brms interface (37). Four independent chains were run, each with 
1 500 warm-up iterations and 2 500 saved iterations. According 
to a previous recommendation, priors on hyperparameters were 
set based on an a priori expectation that 1 in 5 predictors was im-
portant (36). Variance explained was estimated using leave-one-out 
adjusted Bayes R-squared (38).

Finally, we used Cox proportional hazards models to estimate 
hazard ratios (HR) and 95% confidence intervals (95% CI) for the 
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association of follow-up AgeAccel measures and AAinflammaging 
with all-cause mortality. Time at risk was calculated from the date 
of follow-up visit to the date of death or end of follow-up (October 
31, 2019). Three multivariable models were fitted, adjusting for sex 
and country of birth, and using age as the underlying time scale, 
including (a) each AgeAccel measure and AAinflammaging individu-
ally, (b) all AgeAccel measures in a multivariable model, and (c) all 
AgeAccel measures and AAinflammaging in a multivariable model. 
To evaluate the predictive performance of the models, concordance 
indices (c-index) were calculated (39,40). Model comparison was 
performed using the likelihood ratio test.

Statistical analyses were performed using R version 4.0.5. Figures 
were generated using the R package ggplot2.

Results

Sample Characteristics and Marker Correlations
The mean age of the 940 participants was 57.5  years (range: 
40–70  years) at baseline and 68.9  years (range: 50–83  years) at 
follow-up. Most participants were male (69%) and 51% of the 
sample were never smokers, Table 1. Time between baseline and 
follow-up ranged from 9 to 14.5 years with a mean of 11.4 years 
(SD = 1.2 years). Concentrations of inflammation-related markers at 
baseline and follow-up are summarized in Supplementary Table S2.

The correlations between inflammatory markers, 
AAinflammaging, and AgeAccel variables at follow-up are shown 
in Supplementary Figure 2. Spearman’s correlation (ρ) between 
AgeAccel variables ranged from ρ  =  0.26 (PhenoAgeAccel and 
DunedinAgeAccel) to ρ = 0.54 (ZhangAgeAccel and GrimAgeAccel). 
Scatter plots of the correlations of epigenetic aging measures and 
the inflammaging signature with chronological age at follow-up are 
shown in Supplementary Figure 3.

Cross-sectional Association Between Inflammation 
and Epigenetic Aging
The cross-sectional associations between inflammation and AgeAccel 
variables at each of baseline and follow-up are shown in Figures 1 
and 2, respectively. At baseline, the strongest associations were be-
tween CRP and GrimAgeAccel (coefficient per SD = 0.22; 95% CI: 
0.16, 0.28), CRP and DunedinAgeAccel (0.19; 95% CI: 0.13, 0.25), 
and IL-6 and DunedinAgeAccel (0.18; 95% CI: 0.11, 0.24). The 
associations between AAinflammaging and the AgeAccel variables 
were relatively weaker, with coefficients per SD ranging from 0.04 
(95% CI: −0.02, 0.10) for ZhangAgeAccel to 0.09 (95% CI: 0.03, 
0.15) for DunedinAgeAccel.

At follow-up, the strongest associations were between IL-6 and 
GrimAgeAccel (coefficient per SD = 0.26; 95% CI: 0.20, 0.32), IL-6 
and DunedinAgeAccel (0.26; 95% CI: 0.20, 0.32), and CRP and 
GrimAgeAccel (0.24; 95% CI: 0.18, 0.30). Most coefficients were 
positive, except that of tryptophan with ZhangAgeAccel (−0.13; 
95% CI: −0.20, −0.07). For AAinflammaging, the coefficients ranged 
from 0.12 (95% CI: 0.06, 0.18) for DunedinAgeAccel to 0.17 (95% 
CI: 0.11, 0.23) for GrimAgeAccel.

Notably, the regression coefficients for each inflammation 
marker were similar across AgeAccel variables. At follow-up, the 
correlations between the coefficients for each outcome variable 
ranged from ρ  =  0.71 (PhenoAgeAccel and DunedinAgeAccel) to 
ρ = 0.90 (DunedinAgeAccel and ZhangAgeAccel; see Supplementary 
Figure 4). CRP and IL-6 tended to have the largest coefficients across 
all models (mean coefficient = .18 and .18, respectively), compared 
with the other inflammatory markers and AAinflammaging (|mean 
coefficient| < .12).

The estimated Bayes R-squared from the cross-sectional 
multivariable models, including all inflammation-related markers 
and AAinflammaging, are shown in Supplementary Figure 5. These 
cumulatively explained between 1.4% (PhenoAgeAccel) and 7.8% 
(GrimAgeAccel) of the variation in AgeAccel at baseline and between 
2.1% (PhenoAgeAccel) and 11% (GrimAgeAccel) at follow-up.

Prospective Association Between Baseline 
Inflammation and Epigenetic Aging
The prospective associations of the inflammatory markers and 
AAinflammaging at baseline with AgeAccel at follow-up are shown 
in Figure 3. The associations were considerably weaker than those 
observed in the cross-sectional analyses, with the majority of them 
compatible with no association. The strongest associations were for 
IL-6 and DunedinAgeAccel (coefficient per SD = 0.09, 95% CI: 0.03, 
0.15), IFN-γ and DunedinAgeAccel (0.08, 95% CI: 0.02, 0.14), and 
xanthurenic acid and PhenoAgeAccel (0.08, 95% CI: 0.02, 0.13). 
For AAinflammaging, the coefficients ranged from 0.01 (95% CI: 
−0.05, 0.07) for PhenoAgeAccel to 0.05 (95% CI: −0.00, 0.10) for 
ZhangAgeAccel.

Sensitivity Analysis
The results of sensitivity analyses using models additionally ad-
justed for BMI, alcohol intake, smoking, and socioeconomic status 
are summarized in Supplementary Figures 6–8. Averaged across 
all 4 outcomes, the mean coefficient was modestly attenuated by 
4% in the baseline cross-sectional analysis and 9% at follow-up, 
respectively. The largest absolute coefficient change was noted for 
IL-6 and CRP. Averaged across all 4 outcomes, the coefficients 
for IL-6 and CRP were 0.03 per SD smaller (23% reduction) and 
0.03 per SD smaller (16% reduction), respectively, for the baseline 

Table 1.  Sample Characteristics of the Participants in the Melbourne 
Collaborative Cohort Study Included in the Analysis (n = 940)

Characteristic Baseline Follow-up 

Age, mean (SD) 57.5 (7.9) 68.9 (8.0)
Sex, n (%)   
  Male 648 (68.9) —
  Female 292 (31.1)  
BMI, mean (SD) 26.7 (3.73) 27.1 (4.15)
Country of birth, n (%)   
  Australia/New Zealand 727 (77.3) —
  Northern Europe 78 (8.30)  
  Southern Europe 135 (14.4)  
SEIFA decile, median (IQR) 7 (3–9) 6.8 (4–9)
Smoking, n (%)   
  Current 96 (10.2) 51 (5.4)
  Former 363 (38.6) 409 (43.5)
  Never 481 (51.2) 480 (51.0)
Alcohol intake (g/d), median (IQR) 7.8 (0–21.7) 10.2 (0–22.2)
Epigenetic age measures
  DunedinAgeAccel, mean (SD) 0 (0.08) 0 (0.07)
  GrimAgeAccel (y), mean (SD) −0.02 (4.26) −0.01 (4.08)
  PhenoAgeAccel (y), mean (SD) 0.01 (7.03) −0.03 (6.78)
  ZhangAgeAccel, mean (SD) 0 (0.43) 0 (0.41)

Notes: BMI  =  body mass index; IQR  =  interquartile range; 
SEIFA  =  socioeconomic index for areas, a postcode-based metric of 
socioeconomic status.
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cross-sectional model, 0.05 per SD smaller (24% reduction) and 
0.04 per SD smaller (22% reduction), respectively, for the follow-up 
cross-sectional model.

Association of Inflammation, Inflammaging, and 
AgeAccel With All-Cause Mortality
Three models investigating the association between AAinflammaging, 
AgeAccel, and all-cause mortality are given in Table 2. A  total 
of 299 deaths were observed over a median follow-up time of 
14.4  years (IQR: 12.7–15.3  years). In Model 1, each individual 
AgeAccel measure individually was associated with greater mor-
tality, with HRs per SD ranging from 1.21 (95% CI: 1.08–1.36, 
p = .001; PhenoAgeAccel) to 1.44 (95% CI: 1.27–1.63, p = 5 × 10−9; 
GrimAgeAccel). AAinflammaging was strongly associated with mor-
tality (HR  =  1.41, 95% CI: 1.27–1.56, p  =  2  ×  10−10). In Model 
2, all of the AgeAccel variables were included together in the same 
model (AAinflammaging excluded), adjusted for sex and country 
of birth. The HRs for each AgeAccel variable were attenuated, 
with only GrimAgeAccel remaining clearly associated with mor-
tality (HR  =  1.31, 95% CI: 1.12–1.53; Table 2). The c-index for 
Model 2 was 0.61. In Model 3, adding AAinflammaging to Model 
2, the HRs for the AgeAccel variables were largely unchanged, 
and AAinflammaging remained strongly associated with mortality 
(HR = 1.35, 95% CI: 1.22–1.51, p = 7 × 10−9; Table 2). The c-index 
for Model 3 was 0.64, and there was strong evidence that the add-
ition of AAinflammaging improved model fit (likelihood ratio test; 
p = 5 × 10–8).

Similar analyses replacing the inflammaging signature with CRP 
and IL-6, respectively, produced the same conclusions, that is, a 
modest attenuation of the HR after adjustment for 4 measures of 
AgeAccel (Supplementary Tables S3 and S4).

Discussion

We have evaluated the associations between the circulating con-
centrations of 22 plasma markers of inflammation and the tryp-
tophan/kynurenine pathway, a signature of inflammaging, and 
4 epigenetic predictors of aging or mortality. Cross-sectionally, 
many of these markers were associated with AgeAccel, particu-
larly IL-6 and CRP, and these associations were only modestly 
attenuated after accounting for BMI, alcohol intake, smoking, 
and socioeconomic status. Cross-sectional associations were 
similar at baseline (mean age: 58 years) and follow-up (mean age 
69 years). Combined, the inflammatory markers and age-adjusted 
inflammaging signature explained a relatively small proportion of 
the variance in AgeAccel (<12% in all cases), with generally similar 
associations across the 4 AgeAccel variables. The interdependence 
of inflammation and epigenetic aging appeared slightly greater at 
older ages, which might reflect a putative copotentiation of these 2 
phenotypes in the biological aging process (3), but the differences 
in variance explained between baseline and follow-up were gener-
ally quite small (<5%). In the prospective analysis, we found that 
baseline inflammation markers and inflammaging contained little 
predictive information about epigenetic aging after an average of 

Figure 1.  Cross-sectional association between inflammatory and kynurenine pathway markers and AgeAccel variables at baseline (N = 940). Each independent 
model is adjusted for sex and country of birth. Inflammatory markers are log-transformed. All variables are standardized to Z scores. 3-HK = 3-Hydroxykynurenine; 
3-HAA = 3-Hydroxyanthranilic acid; KTR = kynurenine to tryptophan ratio; PAr index = ratio of pyridoxal 5′-phosphate to (pyridoxal + pyridoxic acid); HK:XA = ratio 
of 3-hydroxykynurenine to xanthurenic acid; AgeAccel = epigenetic age acceleration.
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11 years of follow-up. Finally, the epigenetic aging variables and 
the inflammaging signature were independently associated with 
mortality, with improved mortality prediction when the measures 
were used conjointly.

The finding that markers of inflammation are associated with 
AgeAccel cross-sectionally is consistent with previous research. 
Using data from the Genetics Of Lipid Lowering Drugs and Diet 
Network study, Irvin et al. (15) found strong evidence that extrinsic 
AgeAccel was cross-sectionally associated with IL-6, CRP, and TNF-
α, although with small effect sizes. Similar findings were reported for 
extrinsic AgeAccel in a sample of adolescents, in this case with CRP, 
IFNγ-inducible protein of 10 kDa, and soluble TNF receptor 2 (41). 
Of the second-generation epigenetic age measures, PhenoAgeAccel 
has been cross-sectionally associated with increased CRP and in-
creased transcription of genes within a number of inflammation-
related pathways (such as response to lipopolysaccharide) (11). 
GrimAgeAccel has also been associated with increased concentra-
tions of CRP cross-sectionally (12).

To the best of our knowledge, only the study by Stevenson et al. 
(17), using data from the Lothian birth cohort of 1936, has assessed 
prospective associations. The authors found evidence that extrinsic 
AgeAccel was associated with CRP and IL-6 cross-sectionally, but no 
evidence that baseline extrinsic AgeAccel was associated with either 
marker after 9 years of follow-up. Our findings, together with those 
of Stevenson et al., suggest that inflammation, at least insofar as it is 
captured by several well-established markers, may not be meaning-
fully longitudinally associated with epigenetic aging. There are, how-
ever, other plausible interpretations of this finding. First, there may 

exist a clear relationship between inflammation and later AgeAccel, 
although confined to inflammatory mediators not measured in this 
study. Second, it may be that the association between baseline in-
flammation and follow-up AgeAccel is more apparent after a shorter 
follow-up duration (eg, 5  years), and declines in magnitude with 
increasing follow-up time.

The effect sizes of the cross-sectional associations between in-
flammation and AgeAccel were generally modest. A SD increase in 
log IL-6, for instance, was associated with a 0.26 SD increase in 
GrimAgeAccel at follow-up (the largest coefficient observed). This is 
approximately equivalent to +1 year of GrimAgeAccel for each SD 
increase in log IL-6. An indication of the potential clinical importance 
of this effect size can be evaluated through comparison with previous 
literature. One recent study, using data from a nationally representa-
tive cohort of American adults aged over 50 years, found that class II 
obesity (BMI ≥ 35) was associated with +1.1 years of GrimAgeAccel, 
relative to those with an underweight or normal BMI (30). A recent 
study of non-Hispanic White women found that lifetime alcohol use 
had a relatively smaller association with GrimAgeAccel (+0.3 years 
per 135 drinks/year; approximately 1 SD) (42). These associations, 
however, are considerably smaller than those which have been re-
ported for male sex (+3 years GrimAgeAccel) or current versus never 
smoking (+7.3 years GrimAgeAccel) (30). Thus, the magnitude of 
the cross-sectional association between inflammatory markers, par-
ticularly CRP and IL-6, and AgeAccel may be similar to or greater 
than that of some well-established risk factors of disease (ie, obesity 
and alcohol intake), though clearly less important than characteris-
tics such as sex and smoking.

Figure 2.  Cross-sectional association between inflammatory and kynurenine pathway markers and AgeAccel variables at follow-up (N = 940). Each independent 
model is adjusted for sex and country of birth. Inflammatory markers are log-transformed. All variables are standardized to Z scores. 3-HK = 3-hydroxykynurenine; 
3-HAA = 3-hydroxyanthranilic acid; KTR = kynurenine to tryptophan ratio; PAr index = ratio of pyridoxal 5′-phosphate to (pyridoxal + pyridoxic acid); HK:XA = ratio 
of 3-hydroxykynurenine to xanthurenic acid; AgeAccel = epigenetic age acceleration.
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In the mortality analyses, a measure of biological aging based 
on inflammation (the age-adjusted inflammaging signature) and 
AgeAccel measures were independently associated with mortality. The 
addition of inflammaging to a model containing all AgeAccel variables 
improved the prediction of mortality (c-index increase from 0.61 to 
0.64), indicating that the 2 sets of markers are highly complementary. 
This finding is consistent with the results of a recent investigation using 
data from the Framingham Offspring Study. The authors constructed 
a measure of “inflammation age” (distinct from the inflammaging sig-
nature included in this study) and found that this measure, extrinsic 
AgeAccel, and an additional measure of biological age based on clin-
ical variables, were independently associated with mortality (43).

Strengths and novelties of this study include the use of a wide range 
of inflammation-related markers, including those of the TK pathway, 
the inclusion of the more recent “second-generation” epigenetic aging 
measures, and its longitudinal design. A primary limitation of the study 
relates to the potential for selection bias. Only participants who were 
alive at follow-up were eligible for inclusion in the sample. As mor-
tality may be a common effect of inflammation and epigenetic age, 
conditioning on survival at follow-up could introduce selection bias. 
Additionally, 32% of participants did not attend the follow-up visit at 
wave 2 of the MCCS and could not be included in this study. If partici-
pation at follow-up was related to ill-health, associated with inflamma-
tion and epigenetic aging (3,4), this could introduce further selection 

Table 2.  Epigenetic Age Acceleration, Age-Adjusted Inflammaging Signature, and All-Cause Mortality (N = 940 Melbourne Collaborative 
Cohort Study Participants)

 Model 1: Separate Models Model 2: All AgeAccel Measures
Model 3: All AgeAccel Measures 
and AAinflammaging

N = 940  
Deaths = 299 HR 95% CI p HR 95% CI p HR 95% CI p 

PhenoAgeAccel (per SD) 1.21 1.08–1.36 .001 1.06 0.93–1.20 .38 1.04 0.91–1.18 .58
GrimAgeAccel (per SD) 1.44 1.27–1.63 5 × 10−9 1.31 1.12–1.53 9 × 10−4 1.27 1.09–1.49 .003
DunedinAgeAccel (per SD) 1.30 1.16–1.47 7 × 10−6 1.12 0.98–1.28 .10 1.12 0.98–1.28 .10
ZhangAgeAccel (per SD) 1.26 1.12–1.42 1 × 10−4 1.04 0.90–1.20 .60 1.02 0.88–1.18 .77
AAinflammaging (per SD) 1.41 1.27–1.56 2 × 10−10  —  1.35 1.22–1.51 7 × 10−9

Notes: AgeAccel = epigenetic age acceleration; AAinflammaging = age-adjusted inflammaging signature; CI = confidence interval; HR = hazard ratio. Model 2 
concordance index = 0.61; Model 3 concordance index = 0.64.

Figure 3.  Prospective association between baseline inflammatory and kynurenine pathway markers and follow-up AgeAccel variables (N  =  940). Each 
independent model is adjusted for baseline AgeAccel, sex, and country of birth. Inflammatory markers are log-transformed. All variables are standardized to Z 
scores. 3-HK = 3-hydroxykynurenine; 3-HAA = 3-hydroxyanthranilic acid; KTR = kynurenine to tryptophan ratio; PAr index = ratio of pyridoxal 5′-phosphate to 
(pyridoxal + pyridoxic acid); HK:XA = ratio of 3-hydroxykynurenine to xanthurenic acid; AgeAccel = epigenetic age acceleration.
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bias. Each of these selection biases may induce a likely negative spurious 
association between AgeAccel and inflammation, potentially leading to 
an underestimation of the association between the 2 measures.

An additional issue is the circularity in some of the hypotheses. 
For instance, PhenoAge and DunedinPoAm were developed using 
an algorithm that included CRP as one of its inputs, and cystatin C 
is an input of GrimAge. It is therefore unsurprising that these inflam-
matory markers would be associated with the respective epigenetic 
age measures of which they form part. Nevertheless, it is interesting 
to note that associations for those pairs (eg, CRP and PhenoAge) 
were generally not larger than associations observed for other in-
flammation or TK markers. Another limitation is measurement 
error. Although the reliability of AgeAccel and the inflammatory 
markers was not assessed in this study, previous research indicates 
that epigenetic age variables have high reliability (44) while inflam-
matory marker variables are measured with more error (ICCs ~ 0.6) 
(10). Such measurement error was likely nondifferential and would 
likely have introduced bias towards the null, leading to an under-
estimation of the association between inflammation and epigenetic 
aging. We previously found in the MCCS that dried blood spots 
had lower reliability than peripheral blood mononuclear cells (24) 
which could have added to measurement error; nevertheless in, for 
example, the mortality analysis, the HRs were very similar to those 
obtained in other studies for inflammatory markers (45), PhenoAge 
(11) and GrimAge (12). Future studies may benefit from performing 
repeated assays of the inflammatory markers in order to explicitly 
capture measurement and biological variation and produce more 
reliable results. Recent iterations of the epigenetic age measures for 
DunedinPoAm (46), GrimAge, and PhenoAge (47) have substan-
tially improved their test–retest reliability and should be considered 
in future studies. Another limitation relates to the use of only 2 time 
points. Two time-point studies are unable to assess the rate or tra-
jectory of change over time, which may have offered greater insight 
into the longitudinal relationships between these measures (48). 
Additional time points (eg, in 5-year intervals) would allow assess-
ment of temporal patterns in the prospective relationship between 
baseline inflammation and AgeAccel. Although our study included 
a comprehensive set of aging-related markers, many more exist that 
should be considered in future studies. For example, white blood 
cell proportions estimated from the methylation data were con-
sidered but not included in the current study, in order to focus on 
well-characterized biological markers of inflammation-related and 
epigenetic aging. It is nevertheless likely that the immune system is 
another putative marker of aging that may connect inflammation 
and epigenetic pathways and could contribute to further improve-
ments in the prediction of mortality. Finally, we did not assess effect 
modification of the relationship between inflammation and epigen-
etic aging, nor of the relationship between inflammaging, epigenetic 
age, and mortality. It is plausible that these relationships may have 
differed according to characteristics such as sex, age, or genetic pre-
disposition, and future studies should consider such a possibility.

Conclusion

In conclusion, cross-sectionally, but not longitudinally, concentrations 
of several inflammation-related markers were positively associated with 
epigenetic aging, but most of the variation in AgeAccel cannot be ac-
counted for by consideration of a wide-ranging panel of inflammation-
related markers. Epigenetic aging and inflammaging were independently 
associated with mortality in a large sample of older adults. These 2 
sets of markers therefore offer complementary information that may 

be valuably used in combination, potentially improving upon existing 
models of biological aging. Future research should consider the com-
bined use of markers of inflammaging and epigenetic age, alongside 
other candidate markers of biological age such as transcriptomic age 
(49) or metabolomic age (50) to better reflect the complexity of aging. 
Ultimately, the integration and consideration of markers representing 
the many facets of biological aging may contribute to improved predic-
tion and understanding of age-related diseases.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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