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Abstract
Phoretic nematodes associated with two mass-occurring populations 
of the millipede Parafontaria laminata were examined, focusing on 
Pristionchus spp. The nematodes that propagated on dissected 
millipedes were genotyped using the D2-D3 expansion segments of 
the 28S ribosomal RNA gene. Four Pristionchus spp. were detected: 
P. degawai, P. laevicollis, P. fukushimae, and P. entomophagus. Of the 
four, P. degawai dominated and it was isolated from more than 90% 
of the millipedes examined. The haplotypes of partial sequences 
of mitochondrial cytochrome oxidase subunit I examined for 
Pristionchus spp. and P. degawai showed high haplotype diversity.

Keywords
Ecology, Genotyping, Millipede, Parafontaria laminata, Phorecy, 
Pristionchus.

The genus Pristionchus (Kreis, 1932) is a satellite 
model system in many different fields of biology 
(Sommer, 2015). The flagship species P. pacificus 
(Sommer et al., 1996) is used to study phenotypic 
plasticity, kin recognition, and chemical biology 
(e.g., Ragsdale et al., 2013a, 2013b; Lightfoot et al., 
2019), and its congeners show high biological and 
physiological diversity (e.g., fig-associated species) 
and provide comparative information on genome-level 
diversification and speciation (e.g., Rödelsperger et al.,  
2014; Susoy et al., 2016).

Therefore, dense taxon sampling of the genus has 
been conducted (e.g., Herrmann et al., 2006; Mayer 
et al., 2007; Kanzaki et al., 2012a), but the diversity 
of the genus is far from saturated (Ragsdale et al., 
2015). The genus is distributed widely, i.e., at least 
one species including undescribed ones have been 
isolated from all major continents (Ragsdale et al., 
2015; Wang et al., 2015; Susoy et al., 2016), and in 
the previous studies, the genus has been isolated 

from relatively nutrient-rich substrates in European 
countries, partially because the taxonomy of 
Pristionchus has not been conducted in other areas 
of the world (e.g., Herrmann et al., 2015; Ragsdale  
et al., 2015). However, recently, their close association 
with wide-ranged invertebrates, mostly insects, 
has been recognized (e.g., Herrmann et al., 2006; 
Kanzaki et al., 2012a, 2012b, 2013), and the isolation 
from these hosts, especially Scarabaeidae (Ragsdale  
et al., 2015), are increasing. In addition, recent surveys 
have found that many nominal and undescribed 
Pristionchus species are also associated with soil 
arthropods, such as millipedes (Kanzaki et al., 2016, 
2018; Kanzaki unpubl. obs.).

Biologically, Pristionchus is phoretic and 
necromenic nematodes. The nematodes are isolated 
from their host/carrier insects as dauer ( = dormant 
and dispersal) stage, which can be reared on 
artificial media, suggesting phoretic association, 
but the worms also propagate on the carcass of 
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their host/carrier insects utilizing the carcass as the 
substrate of their food bacteria (e.g., Rae et al., 2008; 
Cinkornpumin et al., 2014). Thus, the insects which 
can be utilized in multiple ways are very important for 
the nematodes, and the genus possibly provide an 
insight for analyzing evolution of feeding preference 
and host/carrier usage.

To isolate Pristionchus spp., phoretic/necromenic 
nematodes were examined in two mass-occurring 
populations of Parafontaria laminata in Nagano, 
Japan. The mass-occurring population of P. laminata 
is known as ‘train millipede’ covers the ground and 
even disturb the train service covering the railroad 
(Toyota et al., 2006), and it was previously considered 
an independent subspecies, ‘P. l. armigera (Verhoeff)’, 
but is now synonymized to the original subspecies 
(Tanabe, 2002). Parafontaria laminata is the only 
species undergoing mass-occurrence every 8 years 
in the collection area, and easily identified based on 
its mass-occurrence and general morphology (Fig. 1). 
Four species of Pristionchus, an Oscheius sp., and 
a hind gut parasite (Thelastomatidae) were isolated, 
and two Pristionchus spp. that were undescribed at 
the time were described taxonomically as P. degawai 
(Kanzaki et al., 2018) and P. laevicollis (Kanzaki et al., 
2018) before this study (Kanzaki et al., 2018).

The present study provides extensive information 
on the isolation of these four Pristionchus species.

Materials and methods

Collection of millipedes

Millipedes were collected manually in Koumi near 
Matsubara Lake (Mat) and Nobeyama (Nob), 

Minamimaki Village, Nagano, Japan in 2016. These 
sites are relatively cool mountain areas (> 1,100 m 
a.s.l.) in central Japan.

Collected millipedes were brought to the 
laboratory, and kept at 10 to 15°C until dissection.

Nematode isolation, culture, and  
genotyping

First, millipedes (33 individuals from Mat and 38 from 
Nob) were individually dissected on water agar (2.0% 
agar in a φ = 90 mm Petri dish) and kept at ca. 20°C 
for 1 week. After the propagation of Pristionchus spp. 
was confirmed, 3 to 5 individual nematodes were 
hand-picked from each plate, transferred individually 
to nematode digestion buffer (Kikuchi et al., 2009; 
Tanaka et al., 2012), and genotyped based on the D2-
D3 LSU sequence, as described in Ye et al. (2007). 
Three species of Pristionchus were recognized: 
P. fukushimae from Mat, P. laevicollis from Nob, 
and P. degawai from both localities; all examined 
millipedes harbored one or two Pristionchus 
species. Pristionchus degawai dominated in both 
millipede populations (Table 1). Here, two strains of P. 
fukushimae, one strain of P. laevicollis, and one strain 
of P. degawai were established. The last two were 
used as the type strains of each species (Kanzaki  
et al., 2018).

To examine more detailed associations, the partial 
sequence of the mitochondrial cytochrome oxidase 
subunit I (mtCOI) gene was determined for the 
established cultures. Millipedes (20 per population) 
were dissected on the agar plate, and kept at ca. 
20°C, as described above. The agar plates were 
examined under a dissecting microscope (S8 Apo, 
Leica) daily for 2 weeks.

When any Pristionchus species was recognized, 
5 to 10 first-found gravid females were transferred 
separately into Nematode Growth Medium (φ = 40 mm 
Petri dish) previously inoculated with the Escherichia 
coli OP50 strain. The propagated nematodes were 
subcultured and kept as laboratory strains. Using this 
procedure, 215 temporal strains were established. 
An individual nematode was hand-picked from 
each culture and genotyped based on the D2-D3 
LSU sequence (as described above). In addition, all 
temporal strains and two strains of P. fukushimae 
established in the first isolation were genotyped based 
on the mtCOI sequence according to the methods in 
Kanzaki and Futai (2002), and the sequences were 
analyzed phylogenetically with the online version 
of PhyML (http://www.atgc-montpellier.fr/phyml/) 
in which the analytical parameters were selected 
automatically (Guindon et al., 2010).

Figure 1: Millipedes (Parafontaria 
laminata) collected for this study.
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Table 1. Isolation of Pristionchus spp. in the preliminary study.

Matsubara Lake population Nobeyama population

Individual 
number

Gender
Nematode 
species

Individual  
number

Gender
Nematode  
species

Mat_1 M P. degawai Nob_1 F P. degawai

Mat_2 F P. degawai Nob_2 M P. degawai, P. laevicollis
Mat_3 M P. degawai Nob_3 M P. degawai
Mat_4 F P. degawai Nob_4 M P. degawai
Mat_5 F P. degawai Nob_5 M P. degawai
Mat_6 M P. degawai Nob_6 M P. degawai
Mat_7 F P. degawai Nob_7 F P. degawai, P. laevicollis
Mat_8 F P. degawai Nob_8 F P. degawai
Mat_9 F P. degawai Nob_9 M P. degawai
Mat_10 F P. degawai Nob_10 F P. degawai
Mat_11 F P. degawai Nob_11 F P. degawai
Mat_12 F P. degawai Nob_12 F P. degawai, P. laevicollis
Mat_13 F P. degawai Nob_13 F P. degawai
Mat_14 F P. degawai Nob_14 M P. degawai
Mat_15 F P. degawai Nob_15 F P. degawai
Mat_16 F P. fukushimae Nob_16 F P. degawai
Mat_17 F P. fukushimae Nob_17 M P. degawai
Mat_18 M P. degawai Nob_18 M P. degawai
Mat_19 F P. degawai Nob_19 F P. laevicollis
Mat_20 F P. degawai Nob_20 F P. degawai
Mat_21 M P. degawai Nob_21 M P. degawai
Mat_22 M P. degawai Nob_22 M P. degawai
Mat_23 F P. degawai Nob_23 F P. degawai
Mat_24 F P. degawai Nob_24 M P. degawai
Mat_25 F P. degawai Nob_25 F P. laevicollis
Mat_26 F P. degawai Nob_26 F P. laevicollis
Mat_27 F P. degawai Nob_27 F P. laevicollis
Mat_28 M P. degawai Nob_28 M P. laevicollis
Mat_29 M P. degawai Nob_29 M P. degawai
Mat_30 F P. degawai Nob_30 M P. degawai
Mat_31 M P. degawai Nob_31 F P. laevicollis
Mat_32 F P. degawai Nob_32 M P. degawai
Mat_33 F P. degawai Nob_33 M P. laevicollis

Nob_34 F P. laevicollis
Nob_35 F P. degawai
Nob_36 F P. degawai
Nob_37 F P. degawai
Nob_38 M P. degawai
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Results and discussion

Species diversity

The 217 strains were separated into four species: 
P. entomophagus (one strain from Mat; one mtCOI 
haplotype), P. fukushimae (11 strains from Mat; 
three mtCOI haplotypes), P. laevicollis (three strains 

from Nob; three mtCOI haplotypes), and P. degawai 
(97 strains from Mat and 105 from Nob; 47 mtCOI 
haplotypes) (Fig. 2A and Table 2). The D2-D3 LSU 
sequences of these four species were identical to 
those deposited in GenBank (https://www.ncbi.
nlm.nih.gov/genbank/?). The newly determined 
mtCOI sequences were deposited in GenBank with 
accession numbers LC589007-LC589060 (Table 3). 

Figure 2: Phylogenetic relationships among the 54 haplotypes of four Pristionchus species found 
in this study. A: Unrooted tree showing the relationships among the four species; B: Phylogenetic 
relationships among the 47 genotypes of P. degawai. The Maximum Likelihood tree was inferred 
from partial sequences of the mtCOI gene. The GTR+G model was applied, and the parameters 
were as follows: lnL = –45,723.93825, freqA = 0.21, freqC = 0.10, freqG = 0.16, freqT = 0.43, 
R(a) = 3.9, R(b) = 100.0, R(c) = 15.8, R(d) = 14.0, R(e) = 100.0, R(f) = 1.0, and Shape = 0.12. 
Bootstrap values exceeding 50% are given on the appropriate clades. Some P. fukushimae 
strains did not amplify with the universal mtCOI primers (Kanzaki and Futai, 2002), probably 
because of a mutation in the primer region, and these strains were treated as a genotype (they 
do not appear in the tree). Symbols after haplotype codes indicate the haplotype found only from 
Nob (open circle), only from Mat (closed circle) and both Nob and Mat (arrow).
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Table 2. Mitochondrial cytochrome oxidase subunit I haplotypes isolated in the 
extensive study.

Matsubara Lake population Nobeyama population

Individual 
number

Gender Haplotype
Individual 
number

Gender
Nematode  
species

Mat101 M D1, D3, D12, F8, N Nob101 F F11, La, Ma

Mat102 F D1, D2, F17 Nob102 M D8, F2, Oa

Mat103 M D3, D5, F1, F14, F15 Nob103 M F2, D14

Mat104 F D1, D8, D16 Nob104 M D8, D14, F2

Mat105 F D1, D12, F1 Nob105 M D8, D14

Mat106 M C, D1, D6, D16 Nob106 M D8, F2, F6, E3, E6

Mat107 F D3, D8, D17 Nob107 F D8

Mat108 F D1, D5, D6, F15, K Nob108 F D14, F12, F13

Mat109 F D5, D8, D13, E1, E6, F1, K Nob109 M D1, E6, E7, La

Mat110 F D2, D3, D12, F1, K, Xa Nob110 F F2, E4

Mat111 F D1, D2, D11, E6, F2, F12 Nob111 F D8, D14

Mat112 F D1, D3, D7, F1, F8 Nob112 F E1, I1

Mat113 F D1, D3, D6, D12, F3 Nob113 F D1, F4, F5, I2

Mat114 F D3, D9, E6, F1, F2, F9, K, Ga Nob114 M D1, F6, D8

Mat115 F D1, D2, D3, D6, D13, F1, F7, F14 Nob115 F F6

Mat116 F D1, F1, F10 Nob116 F D1, D8, D14

Mat117 F D1, D6, D11, F8 Nob117 M F2, F12

Mat118 M D1, D2, D3, D4, D5, D6, D12 Nob118 M D1, D11, E1, E5

Mat119 F D1, D2, D3, F2, H Nob119 F D1, D3, D10, E2, J, Oa

Mat120 F D1, D2, D7, E6, F3 Nob120 F D15, Ma

Notes: aHaplotype G is P. entomophagus (Mat114); L, M, O are P. laevicollis (Nob 101, 102, 109, 119 and 120); and X 
which was not amplified with universal primer set is P. fukushimae (Mat110). In addition to these strains, haplotypes A 
and B (P. fukushimae strains established in the first isolation) were included the phylogenetic analysis.

In addition, an unidentified Oscheius sp. was isolated 
from all examined individual millipedes, although 
further study was not conducted for the species.

Previous and present isolation records of 
Pristionchus spp. from millipedes are summarized 
in Figure 2. Pristionchus entomophagus is widely 
distributed in Europe (Kanzaki et al., 2014; Ragsdale 
et al., 2015), but this is the first report of the species 
in East Asia. Pristionchus fukushimae was originally 
described from stag beetle collected from northeast 
Japan (Fukushima Prefecture) (Ragsdale et al., 2013a, 
2013b) and subsequently found from stag beetles 
and a soil sample in several relatively cool areas of 

Japan (Kanzaki, unpubl. obs.). Therefore, the species 
is considered widespread in the cool areas of Japan 
(and possibly other East Asian countries) mostly 
associated with decomposed plant materials and 
their related arthropods. Pristionchus laevicollis was 
previously isolated from Aegus laevicollis subnitidus 
in Nagoya (Kanzaki et al., 2018) and Kyoto (Kanzaki, 
unpubl. obs.), Japan, a relatively warm area, and 
might be distributed widely in Japan, although this 
remains unknown. So far, P. degawai has been 
isolated only from P. laminata (Kanzaki et al., 2018), 
and dominated the Pristionchus spp. associated with 
the millipede in this study.
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inhabiting newly-dead wood, e.g., Micoletzkya 
(diplogastrid bacteria feeder) and Bursaphelenchus 
(aphelenchoidid fungal feeder), have relatively high 
host/carrier specificity (Susoy and Herrmann, 2014; 
Kanzaki and Giblin-Davis, 2018). This could be partially 
because of the stability of habitat, i.e., newly dead 
wood environment, especially inner bark, does not 
last long, and the nematodes need to be transferred 
to appropriate habitat by specialized carrier. While the 
soil/litter habitat are rather consistent, i.e., leaf litter 
is constantly supplied. Thus, the nematodes are not 
necessary to be transported long distance to specific 

Table 3. GenBank accession numbers for the mtCOI haplotypes.

Type Species
Accession 
number

Type Species
Accession 
number

A P. fukushimae LC589007 E4 P. degawai LC589034

B LC589008 E5 LC589035

G P. entomophagus LC589009 E6 LC589036

L P. laevicollis LC589010 E7 LC589037

M LC589011 F1 LC589038

O LC589012 F2 LC589039

C P. degawai LC589013 F3 LC589040

D1 LC589014 F4 LC589041

D2 LC589015 F5 LC589042

D3 LC589016 F6 LC589043

D4 LC589017 F7 LC589044

D5 LC589018 F8 LC589045

D6 LC589019 F9 LC589046

D7 LC589020 F10 LC589047

D8 LC589021 F11 LC589048

D9 LC589022 F12 LC589049

D10 LC589023 F13 LC589050

D11 LC589024 F14 LC589051

D12 LC589025 F15 LC589052

D13 LC589026 F16 LC589053

D14 LC589027 F17 LC589054

D15 LC589028 H LC589055

D16 LC589029 I1 LC589056

D17 LC589030 I2 LC589057

E1 LC589031 J LC589058

E2 LC589032 K LC589059

E3 LC589033 N LC589060

Considering millipedes’ bionomics, i.e., feeding 
on decomposing plant materials and inhabiting soil 
(Toyota et al., 2006), their habitat partially overlap 
stag beetles (Tanahashi et al., 2009), and it is not 
surprising that these hosts share the same nematode 
species. In addition, relatively wide host (carrier) range 
of Pristionchus spp. (P. fukushimae, P. laevicollis, and 
P. entomophagus) was confirmed. Pristionchus spp., 
except for fig associates, is not only phoretic, but  
also necromenic species. Thus, considering their 
host as a substrate, host specificity is not neces-
sary to become strict. Contrastingly, many species 



7

JOURNAL OF NEMATOLOGY

habitat, but can utilize wide-ranged arthropod as both 
carrier and substrate.

Intraspecific variation in P. degawai

Pristionchus degawai is highly divergent in the 
mtCOI sequence, separated into 47 haplotypes, 

with 24, 15, and 8 types isolated from Mat, Nob, 
and both localities, respectively. The average 
number of haplotypes isolated from an individual 
millipede was 5.0 (SD 1.5; range 3-8) for Mat and 
3.0 (1.2; 1-5) for Nob (Table 2), suggesting that the 
Mat population is genetically more divergent than 
the Nob population.

Figure 3: Previous isolation record of Pristionchus spp. associated with millipedes in Japan. The 
collection localities for the present study are suggested by solid line box, previous record of the 
species mentioned in the present study are suggested by dotted line box, and Hachijojima Isl. (Carta 
et al., 2018) is suggested by double line box. N. Kanzaki’s unpubl. obs. is indicated with an asterisk.
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The haplotypes were separated into four groups 
according to the bootstrap values (Fig. 2B). Groups 
1 and 2 were mostly found from Nob, group 3 was 
found from Mat, and group 4 consisted of strains 
from both localities. Considering the phylogenetic 
relationships (Fig. 2B), the Mat population could be 
more derived. However, to clarify the population 
structure, more materials from different localities 
are necessary. Compared with the first isolation, in 
which the nematodes were examined 1 week after 
the dissection, the species and genotypes were more 
divergent in the extensive survey, where the first-found 
individuals were cultured. In addition, P. degawai,  
which was found from all millipedes in the extensive 
survey, was not found in several millipedes in the first 
isolation (Tables 1 and 2). This suggests that one 
species/genotype dominates quickly (during 1 week 
of culture), and the nematodes should be examined in 
earlier cultures to evaluate diversity.

Additional remarks

The primary purpose of this study was to establish 
many Pristionchus cultures to find undescribed 
species; so the sample size for the haplotype analysis 
was limited. However, regardless of the limitation, 
the haplotype diversity of P. degawai, 47 types, 
was much higher than expected. So far, population 
genetic studies of Pristionchus species have been 
conducted only on P. pacificus (Herrmann et al., 2010; 
Morgan et al., 2012, 2014), and no other species has 
been examined. P. pacificus is a hermaphroditic 
and cosmopolitan species. Thus, as a comparative 
system, similar analysis of more locally distributed 
gonochoristic species could be valuable. Further 
analysis of P. degawai and other gonochoristic 
species focusing on haplotype diversity (without 
establishing strains) will give more detailed population 
genetics information.

To date, several Pristionchus spp. have been 
isolated from millipedes, including P. laevicollis, 
P. degawai, P. riukiariae (Kanzaki et al., 2018), P. 
arcanus (Kanzaki et al., 2012a, 2012b), P. pacificus 
(Kanzaki et al., 2016, 2018), and several other species 
(Kanzaki, unpubl. data). Pristionchus pacificus is 
a hermaphroditic species with a cosmopolitan 
distribution that dominates in the lowland temperate 
zone in Japan (Herrmann et al., 2007; Kanzaki et al., 
2016; Kanzaki, unpubl. obs.). Nevertheless, none of 
our more than 200 tentative strains was P. pacificus, 
suggesting that Pristionchus spp. segregate by 
altitude, temperature, or both.

Although many thelastomatid and rhigonematid 
gut parasites have been described from millipedes, 

phoretic/necromenic species have not been examined 
systematically, i.e., in addition to above species 
descriptions, Carta et al., (2018) isolated Oscheius 
rugaoensis, Oscheius necromenus (Sudhaus 
and Schulte, 1989) and Mononchoides sp. from 
Chamberlinius hualienensis collected at Hachijojima 
Island, Japan and Kanzaki et al. (2016) reported  
P. pacificus, P. arcanus, and Oscheius spp. from 
Riukiaria spp. collected in three localities in Japan  
(Fig. 3). In the present study, although detailed analysis 
was not conducted, an unidentified Oscheius sp. was 
associated with all examined millipedes. Considering 
the isolation records provided by Kanzaki et al. (2016) 
and Carta et al. (2018), the genus seems commonly 
associated with millipedes. Oscheius is a typical 
soil dwelling bacteria feeder, and all member of the 
genus are hermaphroditic species (Sudhaus, 2011), 
and presumed to be a competitor of Pristionchus 
spp. for the food (substrate for food bacteria). Further 
analysis of its diversity and ecology, e.g., whether 
they are competing or segregating, will give new 
insight to understand the biological interaction among 
Pristionchus spp. and other millipede associates.

In addition, P. laminata has other populations 
that do not undergo typical mass-occurrence and 
has several congeners in Japan (e.g., Tanabe, 2002). 
Further surveys of phoretic nematodes of millipedes, 
especially in cool mountain areas, will reveal further 
nematode diversity, including the satellite model 
group, Pristionchus spp. as well as other phoretic/
necromenic species.
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