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Simple Summary: Sensors, routinely collected on-farm tests, and other repeatable, high-throughput
measurements can provide novel phenotype information on a frequent basis. Information from these
sensors and high-throughput measurements could be harnessed to monitor or predict individual dairy
cow feed intake. Predictive algorithms would allow for genetic selection of animals that consume less
feed while producing the same amount of milk. Improved monitoring of feed intake could reduce
the cost of milk production, improve animal health, and reduce the environmental impact of the
dairy industry. Moreover, data from these information sources could aid in animal management (e.g.,
precision feeding and health detection). In order to implement tools, the relationship of measurements
with feed intake needs to be established and prediction equations developed. Lastly, consideration
should be given to the frequency of data collection, the need for standardization of data and other
potential limitations of tools in the prediction of feed intake. This review summarizes measurements
of feed efficiency, factors that may impact the efficiency and feed consumption of an animal, tools
that have been researched and new traits that could be utilized for the prediction of feed intake and
efficiency, and prediction equations for feed intake and efficiency presented in the literature to date.

Abstract: Feed for dairy cattle has a major impact on profitability and the environmental impact of
farms. Sustainable dairy production relies on continued improvement in feed efficiency as a way
to reduce costs and nutrient loss from feed. Advances in breeding, feeding and management have
led to the dilution of maintenance energy and thus more efficient dairy cattle. Still, many additional
opportunities are available to improve individual animal feed efficiency. Sensing technologies such as
wearable sensors, image-based and high-throughput phenotyping technologies (e.g., milk testing) are
becoming more available on commercial farm. The application of these technologies as indicator traits
for feed intake and efficiency related traits would be advantageous to provide additional information
to predict and manage feed efficiency. This review focuses on precision livestock technologies and
high-throughput phenotyping in use today as well as those that could be developed in the future as
possible indicators of feed intake. Several technologies such as milk spectral data, activity, rumen
measures, and image-based phenotypes have been associated with feed intake. Future applications
will depend on the ability to repeatably measure and calibrate these data across locations, so that
they can be integrated for use in predicting and managing feed intake and efficiency on farm.

Keywords: feed efficiency; precision technologies; novel phenotypes

1. Introduction

Sustainable agricultural practices are increasingly important to feed a growing world
as animal-sourced protein is required for proper cognitive development in children [1]. A
major contributor to sustainability in the dairy cattle industry is feed intake and efficiency,
as it impacts economic and the environmental impacts. Feed has the largest economic
impact on dairy farm profitability, at more than 40% of the expenses in the production of
milk [2].

Improvements in feed efficiency will also positively impact the environment by reduc-
ing greenhouse gas emissions of cattle and manure (Food and Agriculture Organization
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of the United Nations) [3] as well as land requirements for manure disposal and water
needs [4,5]. Improvements in production efficiency and management practices have already
reduced the carbon, water, and land use footprints of the dairy industry [5–7]; however,
additional improvements are needed to reach future sustainability goals (e.g., Net Zero
Initiative [8]). A next step could involve the use of precision sensing data to monitor
sustainability metrics as part of SMART farms [9] that use data to inform producers on how
to be more efficient on dairies.

New methods and technologies are needed to monitor feed intake in the dairy in-
dustry since current technologies that measure individual feed intake are not practical on
commercial farms. The methods used today to predict feed efficiency utilize costly feed
intake systems on research farms to track individual feed intake, milk and component
data, body weights that are modeled with advanced statistical models [10,11]. Sensing
technologies may be useful as indicators of feed intake as they are portable, and some are
already available on commercial dairies today. Likewise, milk testing data are another
information resource the use of which could be expanded to help predict feed intake. The
objective of this review is to discuss new opportunities to use data from state-of-the-art
technologies such as sensing technologies and high-throughput lab data to monitor feed
intake and other factors known to impact various definitions of efficiency.

2. Defining Feed Efficiency

There is no one single definition or set of traits that have been agreed upon to define
feed efficiency. This may be one reason why feed efficiency traits have yet to be monitored
directly in dairy cattle in most countries. Two other important factors are (1) the high cost
and labor to collect individual feed intake measurements; and (2) limited availability of
measurements on correlated traits (e.g., body weight). To date, most individual animal feed
efficiency data have been collected on research facilities. This section will describe common
feed efficiency definitions, component traits and genetic tools developed to manage feed
efficiency in dairy cattle herds today. (For more information, see Pryce et al. [12,13].)

2.1. Dry Matter Intake

Feedstuffs can broadly be separated into water and nutrient sources, which can
be measured as moisture and dry matter. Dry matter is simply everything remaining
after water content has been removed. Since moisture content can vary considerably
across diets, dry matter is often considered a fairer measure of the nutritional content of a
ration [14]. An obvious way to minimize feed expense would be to decrease dry matter
intake (DMI), without a reduction in milk production. Genetic correlations between DMI
and milk production range from 0.44 to 0.94, indicating selection for decreased DMI is
expected to decrease milk production if these correlations are not accounted for in breeding
value estimation [15–17]. Heritability estimates for DMI range from 0.17 to 0.60 and vary
depending on the stage of lactation, study location, and parity, indicating genetics have a
significant contribution in the variability of DMI [18–20].

2.2. Gross Feed Efficiency

Feed conversion ratio, also known as gross feed efficiency (GFE), is the proportion
of output to input, or the amount of milk output produced per one unit of feed intake in
lactating dairy cattle. Milk output and feed input can be defined in many ways, which
may lead to inconsistencies [21]. Nonetheless, use of GFE is desirable in the sense that it is
relatively easy to measure, and its concept is easily explained and understood [22]. Reported
heritabilities of GFE are moderate, ranging from 0.14 to 0.37 [19,23]. The high genetic
correlation between milk yield and GFE (0.88–0.95) indicates GFE is already indirectly
being selected upon [12,24].
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2.3. Residual Feed Intake

Residual feed intake (RFI) is defined as the difference between an animal’s actual
feed intake and expected feed intake, accounting for the animal’s energy sinks [25,26]. In
RFI, energy sinks include milk production (e.g., energy corrected milk and fat-corrected
milk), body weight (BW) and BW fluctuations [11,13,15,27]. An advantage of RFI is that
it is defined mathematically to be phenotypically uncorrelated to milk production traits.
Heritability estimates for RFI vary by age, days in milk (DIM), and energy sinks, ranging
between 0.02 and 0.38 [12,23,27–30]. Few studies have obtained reliable estimates of genetic
correlations with other economically important traits [22].

2.4. Feed Saved

Feed saved is defined as the reduced feed intake (i.e., the actual amount of feed saved)
between an animal’s actual feed intake and the predicted intake-based accounting for milk
production and maintenance requirements using BW and RFI [12]. A breeding value for
feed saved has been developed for use in the U.S. dairy industry for genetic selection,
where the RFI component has a heritability of 0.14 [31]. Relationships with other traits are
currently under investigation.

3. The Application of Precision Technologies in the Dairy Industry Today

Precision livestock farming (PLF) can be defined as using the principles and technology
of process engineering for the management of livestock [32]. Simply put, PLF is the use of
real-time sensors, devices, and technologies to monitor livestock in an automated fashion.
Devices used in such monitoring are often referred to as precision livestock technologies
(PLT). As cow numbers are continuing to increase and labor levels remain unchanged,
PLT have the potential to provide large benefits in the monitoring of animal performance,
behavior, and health [5,33]. PLT, as well as the often forgotten high-throughput assays, will
likely provide new or hard to measure information needed to identify the most efficient
cows, reduce health problems, and improve farm management. An overview of cow-level
data (PLT, high-throughput phenotypes and genetic or molecular information) either in
use today or of interest for the future to predict feed intake is shown in Figure 1.

Animals 2022, 11, x FOR PEER REVIEW  4 of 18 
 

 

Figure 1. Overview of precision technologies, high‐throughput assays and genetic data that could 

be applied commercially in the improvement of feed intake and efficiency. (A). Sensing technologies 

in use today include wearable sensors, such as milking collar, leg band and ear tag‐based sensors 

with accelerometers, temperature sensors, and proximity sensors; image‐based monitoring systems; 

internal sensors (e.g., rumen boluses); and environmental sensors which can monitor temperature 

and humidity. High‐throughput assays  include milk component data derived  from mid‐infrared 

spectral data, capturing small molecules in milk. Future technologies may detect such small mole‐

cules in the blood. Additional molecular data could potentially be obtained from the rumen or fecal 

microbiome. (B). All of this information could be integrated with genetic and genomic information 

that is already used today to predict breeding values for genetic improvement of feed efficiency. 

3.1. Milk Monitoring Systems 

As milk monitoring systems have advanced, the ability to measure a large number 

of traits at each milking has become possible. Conventional and automated milking sys‐

tems (AMS) can detect individual milk weights, components, somatic cell scores (SCC), 

conductivity, flow rates and many more measures. The wealth of data regularly recorded 

via milking systems is often underutilized. It is likely that milk information will be of great 

benefit in the determination of feed intake and efficiency [34,35]. For example, mid‐infra‐

red spectroscopy  (MIR)  is used  to routinely monitor milk components at standardized 

testing laboratories. Some milking systems are including in‐line MIR or similar spectral 

sensors that can monitor a variety of different milk components and compounds today in 

hopes  that milk molecules will be  informative about  a  cow’s  energy balance,  fertility, 

health and potentially efficiency. The ability of MIR and related  technologies  to detect 

molecules in milk on a daily basis could be very powerful analytics (e.g., Dórea et al. [34]). 

However, challenges  for  these milking systems  include  limited  integration of different 

sensing data and difficulty in standardization and pooling of data across locations. More‐

over, commercial dairy  farms often only collect milk  samples every  four  to  six weeks. 

Thus, depending on when an animal calves in regard to the milk testing cycle, key infor‐

mation (e.g., milk‐based information around parturition) could be missed. Additionally, 

since these data are time specific, the sparsity of data reduces the ability to track daily or 

weekly changes in the spectra that could have application in prediction of other pheno‐

types (e.g., health and feed intake). 

Figure 1. Overview of precision technologies, high-throughput assays and genetic data that could
be applied commercially in the improvement of feed intake and efficiency. (A). Sensing technologies



Animals 2022, 12, 15 4 of 17

in use today include wearable sensors, such as milking collar, leg band and ear tag-based sensors
with accelerometers, temperature sensors, and proximity sensors; image-based monitoring systems;
internal sensors (e.g., rumen boluses); and environmental sensors which can monitor temperature and
humidity. High-throughput assays include milk component data derived from mid-infrared spectral
data, capturing small molecules in milk. Future technologies may detect such small molecules in the
blood. Additional molecular data could potentially be obtained from the rumen or fecal microbiome.
(B). All of this information could be integrated with genetic and genomic information that is already
used today to predict breeding values for genetic improvement of feed efficiency.

3.1. Milk Monitoring Systems

As milk monitoring systems have advanced, the ability to measure a large number
of traits at each milking has become possible. Conventional and automated milking
systems (AMS) can detect individual milk weights, components, somatic cell scores (SCC),
conductivity, flow rates and many more measures. The wealth of data regularly recorded
via milking systems is often underutilized. It is likely that milk information will be of great
benefit in the determination of feed intake and efficiency [34,35]. For example, mid-infrared
spectroscopy (MIR) is used to routinely monitor milk components at standardized testing
laboratories. Some milking systems are including in-line MIR or similar spectral sensors that
can monitor a variety of different milk components and compounds today in hopes that milk
molecules will be informative about a cow’s energy balance, fertility, health and potentially
efficiency. The ability of MIR and related technologies to detect molecules in milk on a daily
basis could be very powerful analytics (e.g., Dórea et al. [34]). However, challenges for
these milking systems include limited integration of different sensing data and difficulty
in standardization and pooling of data across locations. Moreover, commercial dairy
farms often only collect milk samples every four to six weeks. Thus, depending on when
an animal calves in regard to the milk testing cycle, key information (e.g., milk-based
information around parturition) could be missed. Additionally, since these data are time
specific, the sparsity of data reduces the ability to track daily or weekly changes in the
spectra that could have application in prediction of other phenotypes (e.g., health and
feed intake).

3.2. Collar/Halter-Mounted Monitors

Wearable devices mounted on cow collars or halters have been developed to monitor
traits such as activity, rumination and feeding and drinking time using accelerometer
and microphone technologies. Potential benefits of such devices include less sensor loss
and expanded use of hardware such as collars that are often already on cows for parlor
monitoring. Challenges associated with these technologies include the need for periodic
adjustment, replacement (i.e., battery life), and difficulty in calibration, which may impact
sensor accuracy or require additional labor.

3.3. Leg-Mounted Devices

Devices attached at the leg are most often utilized to monitor animal activity using
accelerometers or technologies that track animal location proximity. Such technologies are
potentially the earliest form of PLT to be used in the dairy industry, originally for estrus de-
tection applications. Over time, leg-mounted devices have been further developed to serve
as a tool to help monitor animal health. Challenges associated with leg-mounted devices
include limited access (typically only during milking), and difficulty in calibration [36].

3.4. Ear Tag Technologies

Ear tag technologies can track temperature, activity, rumination, feeding behavior,
panting time and location. Accelerometers, proximity sensors, and skin temperature sensors
are most often applied within these devices. Sensor-based ear tags are most commonly
used in the dairy industry for estrus detection but are gaining in popularity for health
monitoring [36]. With these technologies already being commonplace commercially, their
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implementation for use in the prediction and determination of feed intake and efficiency
should, in theory, be rather straightforward. There are, however, potential downfalls in
the use of ear tags. These include a limited battery life [36], loss of tags, variability in tag
placement and difficulty in calibration.

3.5. Rumen Boluses

Rumen boluses have been developed to monitor an animal’s activity, rumen temper-
ature and in some cases rumen pH. Rumen boluses have been used on a limited basis
on commercial farms, largely due to their cost associated with pH sensing compared to
other technologies. Devices that monitor rumen-based activity and temperature alone are
considerably more affordable and have longer battery life. Battery life of rumen boluses
that sense pH are substantially shorter than other sensors, lasting only approximately six
months [37]. Further retrieval of these devices is not possible, and calibration of the sensors
is challenging.

3.6. Image-Based Technologies

Recently, several new image sensing technologies have become commercially available
to monitor animal health and feed intake. Relatively little is known about how these are
working in the industry today; however, based on previous research there is incredible
potential for image data to revolutionize the industry [38,39]. The major advantages
include the ability to have contact-free monitoring of animals and the ability to observe
new, previously unknown behavioral phenotypes. Image device challenges include keeping
camera lenses clean to permit constant data flow, access to power or internet network to
record phenotype data and relatively limited information about calibration of these devices.
Acquisition of digital phenotypes from images through computer vision is an extensive area
of research. Additional information about considerations in the application of computer
vision and state-of-the-art machine learning methodologies employed is available in the
following reviews [40–42].

Sensing technologies are evolving rapidly beyond the more commonly used technolo-
gies discussed above. Given the various applications for these sensors, the logical next step
would be to start monitoring feed intake and other traits impacting the efficiency of dairy
cattle. The following sections of this review will be efficiency trait centric, with specific
discussion on sensing technologies as indicators of the various subcomponents or com-
posite measurements that impact feed efficiency. The next section will discuss commonly
used technologies, followed by under-utilized and cutting-edge sensing data, which may
revolutionize our ability to manage dairy feed efficiency but have yet to be implemented in
commercial dairies.

4. Traits and Environmental Variables Associated with Feed Intake and Efficiency

Numerous factors impact how much feed an individual animal consumes and its feed
efficiency. Factors with potential impacts can be divided into two overarching categories:
individual animal variation in traits and environmental factors, including management
decisions. Trait examples include energy sinks such as milk production and maintenance
energy, as well as behavior. Additional variables that impact feed intake are described
below. Sensors that may directly monitor or be correlated with feed intake and efficiency
are reported in Table 1.



Animals 2022, 12, 15 6 of 17

Table 1. Summary of precision measures that could be utilized in the improvement of feed intake
and efficiency, including their relationship with feed intake and efficiency, sensors that collect the
precision measures and research involving the precision measure and feed intake and/or efficiency.

Precision Measure Relationship to Feed
Intake and Efficiency Sensor Types References

Milk components and
metabolites (via MIR 1)

Energy requirements
Health status MIR 1

Dórea et al., 2018 [34]
McParland et al., 2011 [35]
McParland et al., 2014 [43]

Shetty et al., 2016 [44]
Lahart et al., 2019 [45]

Body weight and condition Maintenance requirements Image data

Lassen et al., 2018 [39]
Shelley et al., 2016 [46]
Song et al., 2018 [47]
Song et al., 2019 [48]

Spoliansky et al., 2016 [49]
Zin et al., 2020 [50]

Bloch et al., 2019 [51]

Activity Metabolic rate
Health status

Ear tags
Rumen boluses
Collar mounted

Leg mounted

Halachmi et al., 2019 [36]
Connor et al., 2013 [52]
Hafla et al., 2013 [53]

Martin et al., 2021 [54]
Olijhoek et al., 2019 [55]

Temperature Metabolic rate
Health status

Ear tags
Rumen boluses

Thermosensors (vaginal or
rectal)

Image data

Koltes et al., 2018 [37]
Burdick et al., 2012 [56]
Fischer et al., 2018 [57]

Rumen health measurements Health status
Ear tags

Collar mounted
Rumen boluses

Hamilton et al., 2019 [58]

1 Mid-infrared spectroscopy.

4.1. Energy Sinks
4.1.1. Milk Production Measurements

Milk, fat, and protein yield are important metrics in understanding variation in an
individual animal’s efficiency, as feed usage per unit of output is important. Research
indicates that milk and protein yield [59] are likely of most importance in evaluating feed
efficiency. Modern milking systems (conventional and AMS) routinely measure many traits
at milking, such as milk weights, components, and conductivity (an indicator of SCC and
mastitis). Milk yield, components (e.g., fat, protein, and lactose), and SCC were previously
associated with feed efficiency [29,60]. Prediction equations using MIR data (i.e., data used
in the determination of milk components) have been developed for energy balance [35],
metabolic status [61], RFI [43,44] and DMI [34,44,45]. The range in reported accuracies is
wide; however, it appears the utilization of MIR data to predict feed efficiency could be
greatly beneficial. Importantly, if MIR information is to provide accurate estimates, effective
calibration of a prediction equation would be required. This would need to include some
means of accounting for location and differences in MIR machines, so that data could be
compared across testing locations and farms [62], MIR measurement technologies [63–65]
and feeding systems (i.e., high- vs. low-concentrate diets [35]). Another major hurdle in the
commercial application of MIR for the prediction of feed intake is increasing the frequency
of measurement, as such discussed previously. For more comprehensive information
on MIR and other infrared spectrums to predict complex traits, please see Bresolin and
Dórea [66].
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4.1.2. Maintenance of Body Weight and Condition

Dairy cattle have a baseline net energy requirement for maintenance. Feed used for
maintenance supports essential functions for life, such as blood circulation and respira-
tion [29]. In the instance that a cow eats at maintenance level and does not produce milk,
her GFE would be 0. Additional energy consumption above maintenance can be utilized
to produce milk or converted to body tissues. As an animal eats an increasing amount,
the proportion of total feed intake utilized for maintenance diminishes (i.e., the dilution of
maintenance), resulting in increased efficiency. Body weight is important in understand-
ing variability in feed intake and, for this reason, routinely used in genetic evaluations
(e.g., metabolic body weight and ∆ body weight). Automated scales connected to milking
systems and camera-based imaging systems may allow for monitoring of body weight
over time. Further, milk component and MIR data may provide useful information about
changes in the catabolism of body fat reserves during negative energy balance.

4.2. Novel Sensors and Phenotypic Measures That May Aid in Predicting Feed Intake—Looking
toward the Future
4.2.1. Activity

Variation in individual animal activity likely influence feed efficiency since energy for
movement and heat production alter maintenance requirements [67]. Conflicting associ-
ations between activity and feed efficiency have been reported [52,53,68]. Several recent
studies have identified relationships between feed intake and activity [54,55]. Moreover,
several studies conducted in pigs have identified differences in activity between low and
high RFI animals [69–71]. Activity data appear to be a promising phenotype for use in
predicting feed intake [54].

4.2.2. Thermoregulation and Heat Stress

Thermoregulation is an important contributor to feed efficiency of cattle [67,72]. This
is driven by the fact that animals with higher core body temperatures utilize more energy
for heat production than their contemporaries with lower core body temperature [72,73].
In fact, Shuey et al. [74] found that fasting heat production accounted for more than
70% of the variation in maintenance requirements in cattle. Moreover, evaporative heat
loss is the primary route of energy loss in ruminants, and this is largely regulated by
respiratory rate [67]. Thus, respiration rate could be correlated to feed intake. Body surface
temperature may be another measure relevant to feed intake, which can be measured
by infrared thermography. More efficient dairy cattle were found to have numerically
lower surface temperatures of the lower rear leg than less efficient cows. In addition,
regression analysis of leg and paralumbar fossa surface temperature tended to explain
variation in RFI (p < 0.10 [15]). Similarly, lower skin temperatures of beef cattle have
been associated with lower RFI values (i.e., more efficient [75]). Further, heat stress is
known to effect feed intake and milk production [76–79], and therefore likely impacts
measures of feed efficiency. Research also indicates that heat stress effects post-absorptive
carbohydrate metabolism [76], which has been suggested to play a key role in the efficiency
of an animal [67,80,81]. Therefore, sensing-based measurements of heat stress are likely
important for understanding variability in feed intake and efficiency.

4.2.3. Rumen Characteristics

Rumen characteristics are important contributors to feed efficiency [82]. A host of
measurements from the rumen could be evaluated with sensors or high-throughput assays,
including rumination, pH, temperature, and microbial content. It is well established that
rumen pH is affected by the diet [83,84]; however, individual cow variation is still observed
likely due to variable buffering and acid absorption [84,85]. Acidotic conditions cause
health events and reduce milk production [84–86], thus reducing feed efficiency. Water and
feed intake impact rumen temperature [37]. Fischer et al. [57] found that more efficient
lactating Holsteins showed decreased variability in rumen temperature when correcting
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for drinking events, indicating it will be important to consider eating and drinking bouts in
further research of this measure. Rumination time and feed intake are directly related (i.e.,
more feed consumption should result in increased rumination time), and therefore research
into rumination as an indicator of feed intake is warranted.

4.2.4. Microbiome

The microbiome in the gastrointestinal tracts of cattle is key in the ability of rumi-
nants to digest and absorb nutrients from plant mass [87–92]. Host genetics and factors
such as diet composition, rumen pH, age and sex of an animal influence microbiome
composition [91,93–95]. Multiple studies have identified relationships between rumen
microbiome composition and the efficiency of energy conversion [87–89,91–93,95,96]. Pre-
vious research determined that more efficient Holstein Friesian cows have microbiomes
that are lower in richness and diversity (i.e., specie number and bacteria within a species,
respectively) and higher in dominance of microbes. With this, the microbiomes exhibited
less complexity and an increased specialization to support the energy requirements of
the host [89]. Importantly, studies have shown there are heritable elements in the rumen
microbiome associated with host traits such as DMI and RFI [92,93,95]. In addition to
differences in the rumen microbiome associated with feed efficiency, a study involving the
fecal microbiome of cattle found bacterial operational taxonomic units that were unique to
RFI groups [97]. Elolimy et al. [98] found differences in hindgut microbiome of more- and
less-efficient Holstein calves at birth and during the pre-weaning period. Such findings
indicate that microbial communities beyond those in the rumen influence how efficiently an
animal utilizes feed for production. There are not yet technologies to measure the rumen or
other microbiomes, though such sensors could be valuable to monitor health and efficiency
of animals.

4.3. Management and Nutrition Factors Affecting Feed Intake and Efficiency

The ability to predict and mange feed efficiency through precision feeding is an at-
tractive approach to reduce costs and environmental impacts of dairy cows. Nutrition is a
well-known factor impacting feed intake and efficiency (i.e., diet composition, feedstuff
processing procedures, and nutritional grouping of animals). VandeHaar and St-Pierre [99]
have described how increased fiber digestibility results in increased milk production and
thus increased GFE. Feed particle size, processing and changes in the diet also impact
rumen health and subsequently efficiency. Numerous other measurements and attributes
of feed could be monitored or examined on a regular basis by sensors and sensing tech-
nology to aid in the determination of how efficiently an animal utilizes feed to produce
product. Feed level information could be detected by sensors and potentially integrated
into precision feeding models. Precision feeding would prescribe feed intake levels on an
individual cow basis, based on DIM, milk and component production, feedstuff prices and
the predicted variation in traits associated with feed efficiency measures [100]. Precision
feeding has been shown to increase both milk and fat-corrected milk yield, as well as
physical feed efficiency [101]. Models have been developed to predict dry mater in take in
lactating dairy cows [10,102], but additional information will likely be added in the future
to improve predictions, thanks to new studies and information collected through precision
sensing technologies.

5. Monitoring the Impacts of Stress and Illness on Feed Efficiency

When a cow is physiologically stressed, its maintenance requirements increase to miti-
gate the source of stress. In order to meet this higher maintenance requirement, nutrient
partitioning may shift, ultimately impacting feed efficiency [60,103,104]. An example of
such partitioning may include using energy normally devoted to production to instead
support the immune system [105]. The redirecting of energy away from production could
result in decreased milk production and a reduction in the dilution of maintenance, ul-
timately leading to decreased feed efficiency [60,106]. As of today, there has been little
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research on the direct impact of specific diseases/illnesses on feed intake and efficiency in
dairy cattle. Briefly, research has shown that when undergoing a bout of mastitis, energy
output and input are decreased, but the decrease in output outweighs the decrease in input,
resulting in decreased GFE [107]. Similarly, a decrease in intake and production has been
observed when an animal is lame [108,109].

Identification of Stress and Disease

A major application of PLF and automated sensors commercially is attributed with
providing information for the detection of health events and aiding in management deci-
sions [110]. The majority of research thus far has focused on the identification of mastitis
and lameness with sensors, though there have been efforts to identify metabolic diseases.
For more information on PLT to detect health events, please see King et al. [111], Maltz [112].
Numerous studies indicate illness is associated with changes in milk production which
can be monitored by milk monitoring systems, collar systems, leg-mounted devices, ear
tags and rumen boluses. A future need is to quantify losses in feed efficiency due to illness
and identify animals who are more resilient to production losses during illness, as these
animals will be more feed efficient. Sensing technologies may be able to help identify robust
individuals who are more efficient, due to their ability to overcome illness and bounce back
more quickly to previous milk and component productivity levels.

6. A Closer Look at Feed Intake Prediction Methods Integrating Sensing Technologies

The following passage summarizes five studies that have predicted feed intake with
sensing or high-throughput phenotyping technologies. These studies apply, and in some
cases compare multiple methodologies of predictive ability. The quality of prediction was
evaluated using measurements of precision and accuracy (e.g., concordance correlation
coefficient; CCC, coefficient of determination; R2 and cross-validation or leave-one-out
(LOO) validation methods), the amount of variance in DMI explained (e.g., R2), and the
amount of residual error unexplained (root mean square error of prediction; RMSE).

6.1. Martin et al.: Prediction of DMI and RFI Using Activity and Blood Metabolite Data

The objective of Martin et al. [54] was to predict feed intake utilizing four datasets, each
building upon the information used in the previous model. The initial dataset included milk
traits (i.e., yield and components), the next added body size-related traits, the following also
included behavior traits recorded via sensors, and lastly blood metabolite measurements
were incorporated. Data were recorded on 124 mid-lactation (50–200 DIM) Holstein cows
in two replicates (62 cows per replicate). In addition to exploring how the addition of novel
sensing phenotypes affected prediction, four types of prediction models were assessed.
These included multiple linear regression (MLR), partial least squares regression (PLSR),
artificial neural networks (ANN), and stacked ensembles (SEB). LOO cross validation was
applied for all methods; however, 5-fold cross validation algorithms were used prior to
LOO cross validation in models utilizing hyperparameters, in order to tune the models.
Regarding DMI, the largest improvement in predictive performance was observed by
adding body size traits to milk recording variables. The highest prediction accuracy for
DMI was observed for the MLR model using the dataset including sensor-based behavior
traits (R2 = 0.82; CCC = 0.90; RMSE = 1.68 kg/d). Addition of blood metabolites to the model
generally decreased accuracy and precision (e.g., ANN: R2 = 0.79 vs. 0.81; CCC = 0.88 vs.
0.90; RMSE = 1.78 vs. 1.64), except when MLR was used, and no difference was seen
compared to the sensor trait model. When predicting RFI, performance was poor regardless
of dataset or predictive method used (best RFI R2 = 0.13 and CCC = 0.29 for MLR with the
full dataset including metabolites).

6.2. Dórea et al.: Addition of MIR Data into DMI Predictions

The objective of Dórea et al. [34] was to predict feed intake utilizing MIR and behavior
data in addition to energy sinks (i.e., milk yield, metabolic body weight, milk components)
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with ANN versus PLSR models. Feature selection was applied to identify wavelengths
from MIR data by Bayesian network (BN) and only selected wavelengths were modeled.
Nearly 1280 milk samples collected from 308 animals were used and models were validated
using an external dataset. Generally, ANN performed better than PLSR models. The
addition of the BN selected spectra to milk components (i.e., fat, protein, lactose) in the
ANN minimally improved predictive performance (R2 = 0.54 vs. 0.53; CCC = 0.73 vs. 0.72;
RMSE = 2.71 vs. 2.81 kg/d). The best predictions resulted from the inclusion of duration
of time at the feed bunk (i.e., feeding time) and the BN selected MIR in the ANN model
(R2 = 0.70; CCC = 0.83; RMSE = 2.15 kg/d).

6.3. Shetty et al.: Application of MIR Data to Predict DMI and RFI

The objective of Shetty et al. [44] was to predict DMI and RFI with MIR data. MIR
data from 140 cows (97 Holsteins and 43 Jerseys; 1044 weekly average DMI records)
were utilized in PLSR prediction models for weekly average DMI and RFI. Validity of
the prediction models were assessed by either (1) randomly leaving out 20% of records;
(2) randomly leaving out 20% of cows; or (3) randomly leaving out one cow (i.e., LOO) for
validation and using the remaining data for training. Highest accuracies were obtained
when utilizing method (e.g., PLSR using milk yield, weight, and MIR: R2 = 0.81 vs. 0.77 and
0.42; RMSE = 1.49 vs. 1.65 and 2.07 kg). Moreover, models were developed within and
across lactational stages (based on DIM). The prediction model for DMI including only MIR
resulted in an R2 of 0.30 and RMSE of 2.91 kg. Combining MIR with milk yield and weight
resulted in an R2 of 0.81 and RMSE of 1.49 kg. The prediction of RFI changed throughout
lactation, with early lactation having the highest accuracy compared to across-, mid- or
late-lactation (Early: R2 = 0.46; RMSE = 1.70; Mid: R2 = 0.08; RMSE = 1.35; Late: R2 = 0.14;
RMSE = 1.33; Across: R2 = 0.24; RMSE = 1.46). The most important spectra contributing to
DMI and RFI prediction were those related to fat, protein, and lactose peaks. Similar results
were obtained by including MIR predicted fat, protein, and lactose instead of MIR data.

6.4. Lahart et al.: Milk MIR and Fecal Near-Infrared Spectral (NIR) Data for DMI Prediction

The objective of Lahart et al. [45] was to evaluate the use of MIR and fecal NIR data to
predict DMI. Linear regression and PLSR using 7 datasets were evaluated for the prediction
of DMI. Datasets included information related to lactation (production, stage, and parity),
MIR from milk and NIR from fecal samples. Data were recorded from over 450 animals
(337 Holstein-Friesians and 120 Jersey cross Holstein Friesians; 1074 records). Initially,
split-sample (i.e., removing every 20th sample) cross validation was conducted on all PLSR
models to determine the minimum number of partial least squares factors needed to obtain
the lowest RMSE. Within herd validation and across herd validation was utilized for all
prediction equations. Within herd validation resulted in higher accuracies (e.g., model
including MIR: R2 = 0.76 vs. 0.64; RMSE = 1.51 vs. 1.59 kg). The addition of MIR improved
prediction slightly (R2 = 0.64 vs. 0.60; RMSE = 1.59 kg vs. 1.68 kg). Highest accuracy was
achieved by including both the MIR and NIR data (R2 = 0.68; RMSE = 1.52 kg).

6.5. De Souza et al.: Prediction of DMI with Energy Sink and Body Size Data

The objective of de Souza et al. [10] was to develop prediction equations for DMI to
compare against the recommended Nutrient Requirements in Dairy Cattle (NRC) guide-
lines. A mixed effects model and a non-linear mixed model were used to predict DMI. Over
31,600 weekly observations were obtained from about 2800 cows. The prediction model
included DMI, milk energy, change in body weight, body condition score, height, DIM,
parity and two-way interactions with parity, and other systematic effects (i.e., location,
study, diet and cow). The non-linear model consisted of a two-step approach. The first step
was a linear model component to predict DMI in mid-lactation cows (DIM 76–175) and the
second step was a non-linear adjustment for DIM using data across the whole lactation
(DIM 0–368). The non-linear model was also compared to a linear model with a 4th-order
polynomial for DIM using data from the entire lactation (DIM 0–368). A 5-fold across-study
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cross validation was used. Accuracy and precision measures for the best-fitting model
are as follows: CCC = 0.72, RMSE = 2.89. Researchers compared predicted DMI using
their model to the 2001 NRC and found their model had smaller mean bias and RMSE and
higher CCC (i.e., improved predictive ability).

These studies demonstrate the potential to predict feed intake with reasonable accuracy
(CCC > 0.70) with a variety of data types and methods. Accounting for stage of lactation
(DIM) and inclusion of novel data such as activity, metabolites, NIR or MIR improved model
predictive performance. Interestingly, prediction of DMI had higher accuracy than the
prediction in RFI within Martin et al. [54]. This study also explained the highest percentage
of variability of DMI among these studies (R2 = 0.82). Feature selection approaches as
described in Dórea et al. [34] helped in selecting the most informative spectra, resulting
in the highest R2 (0.81) among MIR studies predicting DMI. Several of these studies used
machine learning-based methods, but mixed models and regression-based approaches
were also successful and, in some cases, outperformed machine learning methods [54].

7. The Future: Possible New Phenotypes and Tools for Predicting Feed Intake
and Efficiency

As technology and science advance, the number of possible phenotypes and tools
for use in the prediction of feed intake and efficiency has become limitless. This begs the
question of how do researchers target the most useful technologies, in order to identify
solutions efficiently? The answer to this question likely varies between research groups;
however, factors such as the ability to apply tools commercially, potential uptake by the
industry, and data availability and usability need to be considered. Regarding prediction
of feed intake and efficiency, more research is needed to develop algorithms and tools to
improve accuracies in commercial farm settings. Predicted feed intake could be used for
precision feeding, management, genetics, and culling decisions to improve the sustainability
of individual dairy herds, as well as the larger industry. At present, MIR and activity data
appear to be the most promising data for inclusion in new prediction models. However,
both methods will require more research to determine how to best calibrate and integrate
data across locations where they are measured. Development of new technologies will
likely need to overcome these same challenges.

7.1. Image-Based Phenotyping

A frontrunner technology to provide new feed intake and efficiency related data in the
future is image data. Multiple types of camera-based methods have been investigated for
use in estimating individual feed intake, body weight and condition score, and detection of
gate abnormalities. Types of methods include Light Detection and Ranging (LIDAR) sens-
ing [46], 3-dimensional cameras [39,47–50,113] and photogrammetry [51]. In the prediction
of intake or body weight, these methods utilize various methods to estimate volume or
mass and can thus utilize additional algorithms to determine intake from the difference
post- and pre-eating bout or the weight of an animal [39,46,47,51]. Body condition score
can be predicted through the assessment of contours in key areas of fat deposition, such
as around the tailhead and between the hooks and pins [48–50]. Lastly, lameness can be
detected by assessing back angles and posture, based on the fact that curvature of the back
is an indicator of lameness [113,114]. Research thus far indicates that implementation of
cameras for on-farm estimates and prediction is feasible; however, some systems may be
more advantageous than others for commercial use. For example, some cameras are more
sensitive to sunlight and thus careful consideration needs to be given to the placement of
them, whereas other systems lack sensitivity to lighting conditions and may be easier to
implement [51].

7.2. Other Novel Technologies

Additional underutilized technologies that could be developed for use to predict
feed intake (including possible measurements), include environmental sensors (heat and
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cold stress), implantable sensors (proximity to feed, temperature, and activity), sound
monitoring (feeding behavior), metabolite profiling (metabolic or immune status), and
microbiome profiling (health and feed intake). Technological advances are needed to
employ some of these technologies, while others could be used implemented today.

8. Overcoming Challenges and Developing Tools to Manage Feed Efficiency

Precision management of feed and feed efficiency on farm has incredible potential to
improve dairy sustainability and profitability. The use of precision technologies will help
in the development of both day-to-day predictive analytics, as well as genetic management
tools. Application of precision technologies will also help spur new research because
many of the new automated data collection systems allow measurement of traits that were
previously difficult or impossible to measure. However, to truly make use of precision
technologies to better manage feed on farm, there are a number of challenges that will
require resolution.

A major challenge to implementing feed intake prediction on farm is where the data
will come from, and how it will be standardized and calibrated across sampling locations.
Clearly, large scale measurement of individual cow feed intake outside of research farms
is not feasible. One solution may be the use of sensors and high-throughput assays as
proxies. These proxies need to be scalable and robust enough to survive daily activities on
a commercial dairy farm. Sensing devices are also needed to monitor fluctuations in body
weight, which is important to understanding energy utilization in cows. Automated milk-
ing parlor returns with scales, AMS and cameras are all potential solutions to monitoring
changes in bodyweight. To utilize proxy data, there will need to be systems to collect and
clean data. Existing data infrastructure within the dairy industry may be able to provide
this resource. Data quality and calibration standards are also a continuing challenge with
sensor data. Entities such as International Committee for Animal Recording (ICAR) could
help to determine the accuracy, precision, and reproducibility of data from automated
sensing systems. Proxy data, such as milk testing, needs to be observed at a regular enough
frequency to be informative and also cost effective. One challenge with milk testing is that
many producers are no longer milk testing due to cost. Future inline sensors within milking
systems or updates that reduce the cost of milk testing may help overcome this problem.
Another critical challenge will be defining how to use technologies across different points
during lactation (i.e., DIM) given the variability in metabolic demands on the cow overtime.

Often, the needs of those developing technologies and the ability to utilize sensor
data are at odds. For example, proprietary software can make it challenging to obtain,
develop new uses for and integrate data from proprietary sensors. More research is needed
in this area and incentives are needed for industry to collaborate in the development of
innovative new tools that benefit both industry and producers. Automated technologies
also need to be economical, both for companies to produce and producers to afford. Any
analytics developed from precision technologies need to be understandable. For example,
RFI is a helpful trait for understanding feed efficiency, but extremely difficult to explain
to producers compared to other traits like feed saved. Ideally, such jargon would be
tested with producers. Data overload is another challenge, in which producers can be
overwhelmed with information or not know what the actionable outcome is for sensors. A
final consideration of note is that researchers can develop all kinds of wonderful analytics
and technology, but if it’s not usable and industry is not willing to adopt it, then sensors
and sensing technologies will be of no impact in the dairy industry. Moreover, if society
and customers of the dairy industry view these new technologies as invasive or impersonal
over being aids and precision health care tools to enhance animal care and welfare, then
these precision technologies will not be able to help improve feed efficiency or other metrics
related to dairy sustainability.
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9. Conclusions

Sensors and other high-throughput assays are rapidly changing the dairy industry
by providing new information and innovative approaches to monitor animal fertility and
health. We believe it is likely that sensors will eventually allow monitoring of individual
feed intake on commercial farms, enabling management decisions and selection for more
feed efficient dairy cattle. The key next step will be in the development of analytics that
are truly actionable and simple for dairy producers to utilize. It is well established in
research that body weight, milk energy and feed nutrients impact efficiency, but there
are several new technologies such as MIR and animal behavioral data (e.g., activity) that
could enhance our predictions. It is likely new information measured by sensors may
help track differences in energy sinks, behavior, genetic or environmental factors that
aid in our understanding of feed and nutrient efficiency in the future. Use of these new
precision dairy tools will depend on the cost, ease of application, durability and replication
on farm. Sensing technologies are still in the hype cycle today, where much of what can
be achieved is yet to be realized despite some early successes. The next steps will require
more calibration and standardization of sensing data, continued identification of new traits
associated with feed intake, and development of prediction equations and validation in
independent populations. Once new, valuable pieces of information are identified, then
focus can shift to how to measure them on farm and integrate them into existing models.
Integration of multiple sources of data will likely lead to the most informative analytics
for management.
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