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Sample size considerations for the
external validation of a multivariable
prognostic model: a resampling study
Gary S. Collins,*†Emmanuel O. Ogundimu and Douglas G. Altman

After developing a prognostic model, it is essential to evaluate the performance of the model in samples indepen-
dent from those used to develop the model, which is often referred to as external validation. However, despite its im-
portance, very little is known about the sample size requirements for conducting an external validation. Using a
large real data set and resampling methods, we investigate the impact of sample size on the performance of six pub-
lished prognostic models. Focussing on unbiased and precise estimation of performance measures (e.g. the c-index,
D statistic and calibration), we provide guidance on sample size for investigators designing an external validation
study. Our study suggests that externally validating a prognostic model requires a minimum of 100 events and
ideally 200 (or more) events. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Prognostic models are developed to estimate an individual’s probability of developing a disease or out-
come in the future. A vital step toward accepting a model is to evaluate its performance on similar indi-
viduals separate from those used in its development, which is often referred to as external validation or
transportability [1,2]. However, despite the widespread development of prognostic models in many areas
of medicine [3–5], very few been externally validated [6–8].

To externally validate a model is to evaluate its predictive performance (calibration and discrimination)
using a separate data set from that used to develop the model [9]. It is not repeating the entire modelling
process on new data, refitting the model to new ‘validation’ data, or fitting the linear predictor (prognostic
index) from the original model as a single predictor to new data [9]. It is also not necessarily comparing the
similarity in performance to that obtained during the development of the prognostic model. Whilst in some
instances a difference in the performance can be suggestive of deficiencies in the development study, the
performance in the new data may still be sufficiently good enough for the model to be potentially useful.

The case-mix (i.e., the distribution of predictors included in the model) will influence the performance
of the model [10]. It is generally unlikely that the external validation data set will have an identical case-
mix to the data used for development. Indeed, it is preferable to use a slightly different case-mix in
external validation to judge model transportability. Successful external validation studies in diverse
settings (with different case-mix) indicate that it is more likely that the model will be generalizable to
plausibly related, but untested settings [11].

Despite the clear importance of external validation, the design requirements for studies that attempt to
evaluate the performance of multivariable prognostic models in new data have been little explored
[7,12,13]. Published studies evaluating prognostic models are often conducted using sample sizes that
are clearly inadequate for this purpose, leading to exaggerated and misleading performance of the
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prognostic model [7]. Finding such examples is not difficult [14–16]. For example, a modified
Thoracoscore, to predict in-hospital mortality after general thoracic surgery, was evaluated using 155
patients, but included only eight events (deaths). A high c-index value was reported, 0.95 (95% confi-
dence interval 0.91 to 0.99) [16]. In the most extreme case, a data set with only one outcome event
was used to evaluate a prognostic model [14]. In this particular study, an absurd value of the c-index
was reported, 1.00 (95% confidence interval 1.00 to 1.00)[sic]. Concluding predictive accuracy, and thus
that the model is fit for purpose, on such limited data is nothing but misleading.

The only guidance for sample size considerations that we are aware of is based on a hypothesis testing
framework (i.e. to detect pre-specified changes in the c-statistic) and recommends that models developed
using logistic regression are evaluated with a minimum of 100 events [12]. However, a recent systematic
review evaluating the methodological conduct of external validation studies found that just under half of
the studies evaluated models on fewer than 100 events [7].

It is therefore important to provide researchers with appropriate guidance on sample size consider-
ations when evaluating the performance of prognostic models in an external validation study. When
validating a prognostic model, investigators should clearly explain how they determined their study size,
so that their findings can be placed in context [17,18]. Our view is that external validation primarily
concerns the accurate (unbiased) estimation of performance measures (e.g., the c-index). It does not nec-
essarily include formal statistical hypothesis testing, although this may be useful in some situations.
Therefore sample size considerations should be based on estimating performance measures that are suf-
ficiently close to the true underlying population values (i.e., unbiased) along with measures of uncer-
tainty that are sufficiently narrow (i.e., precise estimates) so that meaningful conclusions on the
model’s predictive accuracy in the target population can be drawn [9,19].

The aim of this article is to examine sample size considerations for studies that attempt to externally
validate prognostic models and to illustrate that many events are required to provide reasonable esti-
mates of model performance. Our study uses published prognostic models (QRISK2 [20], QDScore
[21] and the Cox Framingham risk score [22]) to illustrate sample size considerations using a resampling
design from a large data set (>2 million) of general practice patients in the UK.

The structure of the paper is as follows. Section 2 describes the clinical data set and the prognostic
models. Section 3 describes the design of the study, the assessment of predictive performance and the
methods used to evaluate the resampling results. Section 4 presents the results from the resampling
study, which are then discussed in Section 5.

2. Data Set and prognostic models

2.1. Study data: the health improvement network

The Health Improvement Network (THIN) is a large database of anonymized primary care records
collected at general practice surgeries around the UK. The THIN database currently contains medical
records on approximately 4% of the UK population. Clinical information from over 2 million individuals
(from 364 general practices) registered between June 1994 and June 2008 form the data set. The data
have previously been used in the external validation of a number of prognostic models (including those
considered in this study) [23–30]. There are missing data for various predictors needed to use the prog-
nostic models. For simplicity, we have used one of the imputed data sets from the published external
validation studies, where details on the imputation strategy can be found [23,24].
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2.2. Prognostic models

At the core of the study are six sex-specific published models for predicting the 10-year risk of develop-
ing cardiovascular disease (CVD) (QRISK2 [20], and Cox Framingham [22]) and the 10-year risk of de-
veloping type 2 diabetes (QDScore [21]). All six prognostic models are all predicting time-to-event
outcomes using Cox regression. None of these models were developed using THIN, but THIN has pre-
viously been used to evaluate their performance in validation studies [23,24].

QRISK2 was developed using 1.5 million general practice patients aged between 35 and 74years
(10.9 million person years of observation) contributing 96709 cardiovascular events from the
QRESEARCH database [20]. Separate models are available for women (41 042 CVD events) and
men (55 667 CVD events), containing 13 predictors, 8 interactions and fractional polynomial terms
for age and body mass index (www.qrisk.org).
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226
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Cox Framingham was developed using 8491 Framingham study participants aged 30 to 74years con-
tributing 1274 cardiovascular events [22]. Separate models are available for women (456 CVD events)
and men (718 CVD events), each containing 7 predictors.

QDScore was developed on 2.5 million general practice patients aged between 25 and 79years (16.4
million person years of observation) contributing 72986 incident diagnoses of type 2 diabetes from the
QRESEARCH database [21]. Separate models are available for women and men, each containing 12 pre-
dictors, 3 interactions and fractional polynomial terms for age and body mass index (www.qdscore.org).
3. Methods

3.1. Resampling strategy

A resampling strategy was applied to examine the influence of sample size (more specifically, the num-
ber of events) on the bias and precision in evaluating the performance of published prognostic models.

Samples were randomly drawn (with replacement) from the THIN data set so that the number of
events in each sample was fixed at 5, 10, 25, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 by stratified
sampling according to the outcome ensuring that the proportion of events in each sample was the same
as the overall proportion of events in the THIN data set (Table I). The sample sizes for each prognostic
model at each value of number of events can be found in the Supporting Information. For each scenario
(i.e., for each sample size), 10 000 samples (denoted B) were randomly drawn and performance mea-
sures were calculated for each sample.
3.2. Performance measures

The performance of the prognostic models was quantified by assessing aspects of model discrimination
(the c-index [31] and D statistic [32]), calibration [9,33], and other performance measures (R2

D [34],R2
OXS

[35] and the Brier score for censored data [36]).
Discrimination is the ability of a prognostic model to differentiate between people with different out-

comes, such that those without the outcome (e.g., alive) have a lower predicted risk than those with the
outcome (e.g., dead). For the survival models used within this study, which are time-to-event based,
discrimination is evaluated using Harrell’s c-index, which is a generalization of the area under the
receiver operating characteristic curve for binary outcomes (e.g., logistic regression) [31,37]. Harrell’s
c-index can be interpreted as the probability that, for a randomly chosen pair of patients, the patient
who actually experiences the event of interest earlier in time has a lower predicted value. The c-index
and its standard error were calculated using the rcorr.cens function in the rms library in R.

We also examined the D statistic, which can be interpreted as the separation between two survival
curves (i.e., a difference in log HR) for two equal size prognostic groups derived from Cox regression
[32]. It is closely related to the standard deviation of the prognostic index (PI= β1x1 +β2x2 +⋯+ βkxk),
which is a weighted sum of the variables (xi) in the model, where the weights are the regression coeffi-
cients (βi). D is calculated by ordering the values from the prognostic index, transforming them using
expected standard normal order statistics, dividing the result by κ ¼ ffiffiffiffiffiffiffiffi

8=π
p

≃1:596 and fitting this in a
single term Cox regression. D and its standard error are given by the coefficient and standard error in
the single term Cox regression model.
Table I. ‘True’ values based on the entire THIN validation cohort.

Number of
individuals

Number of
events (%)

Performance measure

c-index D statistic R2
D ρ2OXS Brier

score
Calibration

slope

QRISK2 [20,51] Women 797,373 29,507 (3.64) 0.792 1.650 0.394 0.668 0.052 0.948
Men 785,733 42,408 (5.40) 0.775 1.530 0.359 0.607 0.075 1.000

Cox Framingham [22] Women 797,373 29,507 (3.64) 0.756 1.435 0.330 0.553 0.055 0.919
Men 785,733 42,408 (5.40) 0.759 1.452 0.335 0.554 0.084 1.001

QDScore [21,23] Women 1,211,038 32,200 (2.66) 0.810 1.872 0.456 0.731 0.041 0.875
Men 1,185,354 40,786 (3.44) 0.800 1.760 0.425 0.687 0.053 0.869
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The calibration slope was calculated by estimating the regression coefficient in a Cox regression
model with the prognostic index (the linear predictor) as the only covariate. If the slope is <1, discrim-
ination is poorer in the validation data set (regression coefficients are on average smaller than the devel-
opment data set), and conversely, it is better in the validation data set if the slope is >1(regression
coefficients are on average larger than the development data set) [9,33]. We also examined the calibra-
tion of the models over the entire probability range at a single time point (at 10 years) using the val.surv
function in the rms library in R, which implements the hare function from the polspline package for
flexible adaptive hazard regression [38,39]. In summary, for each random sample, hazard regression
using linear splines are used to relate the predicted probabilities from the models at 10 years to the
observed event times (and censoring indicators) to estimate the actual event probability at 10 years as
a function of the estimate event probability at 10 years. To investigate the influence of sample size on
calibration, for each event size, plots of observed outcomes against predicted probabilities were drawn
and overlaid for each of the 10 000 random samples.

We examined two R2-type measures [40,41] (explained variation [32] and explained randomness
[35]) and the Brier score [42]. Royston and Sauerbrei’s R2

D is the proportion of the that is explained
by the prognostic model [32,34] and is given by

R2
D ¼ D2=κ2

σ2 þ D2=κ2

where D is the value of the D statistic [32], σ2 =π2/6≃1.645 and κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=π≃1:596

p
. The measure of

explained randomness, ρ2k of O’Quigley et al. [35] is defined as

ρ2OXS ¼ 1� exp �2
k

lβ � l0
� �� �

where k is the number of outcome events, and lb and l0 are the log partial likelihoods for the prognostic
model and the null model respectively. Standard errors of ρ2k were calculated using the nonparametric
bootstrap (200 bootstrap replications).

The Brier score for survival data is a measure of the average discrepancy between the true disease
status (0 or 1) and the predicted probability of developing the disease [36,43], defined as a function
of time t>0:

BS tð Þ ¼ 1
n
∑
n

i¼1

Ŝ tjXið Þ2�I ti ≤ t; δi ¼ 1ð Þ
Ĝ tið Þ þ 1� Ŝ tjXið Þ� �2�I ti > tð Þ

Ĝ tð Þ

" #

where Ŝ(· |Xi) is the predicted probability of an event for individual i; Ĝ is the Kaplan–Meier estimate of
the censoring distribution, which is based on the observations (ti, 1� δi),δi is the censoring indicator and
I denotes the indicator function. [36,43,44]. The Brier score is implemented in the function sbrier from
the package ipred in R.

3.3. Evaluation

The objective of our study was to evaluate the impact of sample size (more precisely the number of
events) on the accuracy, precision and variability of model performance. We examined the sample size
requirements using the guidance by Burton et al. [45]. We calculated the following quantities for each of
the performance measures over the B simulations (defined in the preceding section):

• Percentage bias, which is the relative magnitude of the raw bias to the true value, defined as

θ̂
- � θ

�
=θ

�
.

• Standardized bias, which is the relative magnitude of the raw bias to the standard error, defined as

θ̂
- � θ

�
=SE θ̂

	 
�
. A standardized bias of �25 percent implies that the estimate lies one quarter of

a standard error below the true value.

• Root mean square error, which incorporates both measures of bias and variability of the estimate,
defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
B ∑

B

i¼1
θ̂ i � θ

	 
2
s

.
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• Estimated coverage rate of the 95% confidence interval for the c-index, D statistic,R2
D andρ

2
OXS, which

indicate the proportion of times that a confidence interval contains the true value (θ). An acceptable
coverage should not fall outside of approximately two standard errors of the nominal coverage prob-
ability pð Þ; SE pð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ=Bp
[46].

• Average width of the confidence interval, defined as 1=B ∑
B

i¼1
2Z1�α=2SE θ̂ i

	 
� �
.

The true values (θ) of the performance measures were obtained using the entire THIN data set for each

model (Table I). θ̂
- ¼ ∑

B

i¼1
θ̂ i=B, where B is the number of simulations performed and θ̂ i is the performance

measure of interest for each of the i = 1,…,B=10000 simulations. The empirical standard error, SE θ̂
	 


,

is the square root of the variance of over all B-simulated θ̂ values. If, for the D statistic andR2
D, the model-

based standard error is valid, then its mean over the 10000 simulations should be close to the empirical
standard error SE θ̂

	 

.

4. Result

Figure 1 presents the empirical values, with boxplots overlaid, for the c-index, D statistic, R2
D, ρ

2
OXS Brier

score and calibration slope for QRISK2 (women), describing pure sampling variation. As expected, con-
siderable variation in the sample values for each of the six performance measures are observed when the
number of events is small. Thus, inaccurate estimation of the true performance is more likely in studies
with low numbers of events.

The mean percent bias, standardized bias and RMSE of the performance measures are displayed
graphically in Figure 2. For all of the models, the mean percent bias of both the c-index and Brier score
are within 0.1% when the number of events reaches 50. At 50 events, the average bias of the D statistic,
R2
D and calibration slope is within 2% of the true value. The mean standardized bias for all of the models

and performance measures drops below 10% once the number of events increases to 75–100.
Because of the skewness in bias at small values of number of events, the median percent bias and stan-

dardized bias of the performance measures are also presented (Supporting Information). For all of the
performance measures, the median bias drops below 1% as the number of events reaches 100. Similarly,
Figure 1. Empirical performance of QRISK2 (women), measured using the c-index, D statistic, R2
D, ρ

2
OXS, Brier

score and calibration slope.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226
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the median standardized bias drops below 10% for all of the performance measures and models when the
number of events approaches 100.

As expected, the RMSE decreases as the number of events increases for all six performance measures
(Figure 2). The same pattern is observed for all six prognostic models.

Coverage of the confidence intervals for the c-index, D statistic and R2
D are displayed in Figure 3.

Acceptable coverage of the c-index at the nominal level of 95 percent is achieved as the number of
events approaches and exceeds 200. However, the D statistic confidence interval exhibits over-coverage
regardless of sample size. There is under-coverage of R2

D at less than 25 events and over-coverage as the
number of events increases (for four of the six prognostic models examined). The mean widths of the
95% confidence intervals for all of the models are displayed in Figure 3. A steep decrease is observed
in the mean width for all models as the number of events approaches 50–100. Within this range, the
decrease in mean width becomes smaller with more events. A similar pattern is observed in the width
variability, as shown in Figure 4 for QRISK2 (women).
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226



Figure 3. Coverage rates and 95% confidence interval widths for the c-index, D statistic,R2
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slope. [Bootstrap standard errors for ρ2OXS based on 1000 simulations and 200 bootstrap replications].
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The effect of sample size on the performance of the hazard regression assessment of calibration of
QRISK2 (women) is described in Figure 5. For each panel (i.e., each event size), 10 000 calibration lines
have been plotted and a diagonal (dashed) line going through the origin with slope 1 has been
superimposed, which depicts perfect calibration. Furthermore, we have overlaid a calibration line using
the entire THIN data set to judge convergence of increasing event size. For data sets with 10 or fewer
numbers of events, the ability to assess calibration was poor. For predicted probabilities greater than
0.2, there was modest to substantial variation between the fitted calibration curves, which decreased
as the number of events increased. The calibration line (blue line) using the entire THIN data set shows
overestimation towards the upper tail of the distribution, whilst some overestimation is captured, from
event sizes in excess of 100, the true magnitude of overestimation in using QRISK2 (women) in the
THIN data set is not fully captured even when the number of events reach 1000. Calibration plots for
two of the five prediction models (QRISK2 men and Cox Framingham women) show similar patterns,
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226



Figure 4. Width of the 95% confidence interval of the c-index, D statistic R2
D , ρ2OXS and calibration slope

(QRISK2 women). [Bootstrap standard errors for ρ2OXS based on 1000 simulations and 200 bootstrap
replications].
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whilst for the remaining three models accurate assessment of calibration is achieved when the number of
events reach 100 (data not shown).

Figure 6 displays the proportion of simulations in which the performance estimates are within 0.5, 2.5,
5 and 10% of the true performance measure as the number of events increases. Fewer events are required
to obtain precise estimates of the c-index than of the other performance measures. For example, at 100
events, over 80% of simulations yield estimates of the c-index within 5% of the true value and over 60%
of simulations yield values within 2.5% of the true value. Considerably more events are required for the
D statistic, R2

D, Brier score and calibration slope.
221
4.1. Additional analyses

As observed in Figure 3, coverage of the D statistic is larger than the nominal 95% level regardless of
the number of events. Similarly, R2

D coverage tends to be larger than the nominal 95% level as the
number of events increases. Therefore, we carried out further analyses to investigate the model-based
standard error and the nonparametric bootstrap standard error of the D statistic and R2

D [47]. The
results are shown in Table II.
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226



Figure 5. Calibration plots for QRISK2 (women). The red dashed line denoted perfect prediction. The blue line
is the model calibration using the entire data set.

G. S. COLLINS, E. O. OGUNDIMU AND D. G. ALTMAN

222
The results from the additional simulations indicate that the model-based standard error is
overestimated. There is good agreement between the empirical and bootstrap standard errors, with cov-
erage using the bootstrap standard errors close to the nominal 95 percent (Table III).

5. Discussion

External validation studies are a vital step in introducing a prognostic model, as they evaluate the per-
formance and transportability of the model using data that were not involved in its development
[2,48]. The performance of a prognostic model is typically worse when evaluated on samples indepen-
dent of the sample used to develop the model [49]. Therefore, the more external validation studies that
demonstrate satisfactory performance, the more likely the model will be useful in untested populations,
and ultimately, the more likely it will be used in clinical practice. However, despite their clear impor-
tance, multiple (independent) external validation studies are rare. Many prognostic models are only sub-
jected to a single external validation study and are abandoned if that study gives poor results. Other
investigators then proceed in developing yet another new model, discarding previous efforts, and the
cycle begins again [2]. However, systematic reviews examining methodological conduct and reporting
have shown that many external validation studies are fraught with deficiencies, including inadequate
sample size [7,49]. The results from our study indicate that small external validation studies are unreli-
able, inaccurate and possibly biased. We should avoid basing the decision to discard or recommend a
prognostic model on an external validation study with a small sample size.

An alternative approach that could be used to determine an appropriate sample size for an external
validation study is to focus on the ability to detect a clinically relevant deterioration in model perfor-
mance [12]. Whilst this approach may seem appealing, it requires the investigator to pre-specify a
performance measure to base this decision on and to justify the amount of deterioration that will indicate
a lack of validation. Neither of these conditions are necessarily straightforward, particularly when the
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226



Figure 6. Proportion of estimates within 0.5, 2.5, 5, 1 and 0% of the true value for QRISK2 (women).
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case-mix is different or the underlying population in the validation data set is different to that from
which the model was originally developed [50]. We take the view that a single external validation is gen-
erally insufficient to warrant widespread recommendation of a prognostic model. The case-mix in a
development sample does not necessarily reflect the case-mix of the intended population for which
the model is being developed, as studies developing a prognostic model are rarely prospective and
typically use existing data collected for an entirely different purpose. A prognostic model should be
evaluated on multiple validation samples with different case-mixes from the sample used to develop
the model, thereby allowing a more thorough investigation into the performance of the model, possibly
using meta-analysis methods.

A strength of our study is the use of large data sets, multiple prognostic models and evaluating seven
performance measures (c-index, D statistic, R2

D, ρ
2
OXS, brier score, calibration slope and calibration plots).
© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 214–226



Table II. Standard errors (QRISK2 men) of the D statistic and R2
D based on 1000 simulations and 500 boot-

strap replications.

Number of
events
(non-events)

D statistic R2
D

Model-based
standard error

Empirical
standard error

Bootstrap
standard error

Model-based
standard error

Empirical
standard error

Bootstrap
standard error

10 (175) 0.5587 0.5424 0.5905 0.1508 0.1441 0.1334
25 (438) 0.3384 0.3046 0.3150 0.0983 0.0890 0.0874
50 (876) 0.2362 0.2163 0.2159 0.0696 0.0635 0.0623
75 (1315) 0.1914 0.1708 0.1730 0.0567 0.0506 0.0505
100 (1753) 0.1651 0.1481 0.1491 0.0492 0.0440 0.0440
200 (3506) 0.1162 0.1077 0.1046 0.0347 0.0322 0.0311
300 (5258) 0.0945 0.0853 0.0850 0.0283 0.0256 0.0254
400 (7011) 0.0819 0.0722 0.0735 0.0246 0.0216 0.0220
500 (8764) 0.0731 0.0656 0.0658 0.0219 0.0197 0.0197
1000 (17528) 0.0516 0.0463 0.0464 0.0155 0.0139 0.0139

Table III. Coverage (QRISK2 men) based on model-based and bootstrap standard errors for the D statistic
and R2

D (1000 simulations; 500 bootstrap replications).

Number of
events
(non-events)

D statistic R2
D

Model-based
standard error

Bootstrap
standard error

Model-based
standard error

Bootstrap
standard error

10 (175) 0.968 0.952 0.906 0.884
25 (438) 0.970 0.953 0.951 0.932
50 (876) 0.967 0.945 0.957 0.933
75 (1315) 0.974 0.950 0.965 0.942
100 (1753) 0.959 0.943 0.953 0.937
200 (3506) 0.966 0.941 0.965 0.935
300 (5258) 0.970 0.950 0.970 0.946
400 (7011) 0.976 0.952 0.975 0.953
500 (8764) 0.971 0.950 0.970 0.947
1000 (17528) 0.965 0.949 0.965 0.948
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We also showed that the analytical standard error for the D statistic (and R2
D) are too large, but could be

rectified by calculating bootstrap standard errors.
Fundamental issues in the design of external validation studies have received little attention. Existing

studies examining the sample size requirements of multivariable prognostic models have focused on
models developed using logistic regression [12,13]. Adopting a hypothesis testing framework,
Vergouwe and colleagues suggested that a minimum of 100 events and 100 non-events are required for
external validation of prediction models developed using logistic regression [12]. Peek and colleagues
examined the influence of sample size when comparing multiple prediction models, including examining
the accuracy of performance measures, and concluded that a substantial sample size is required [13]. Our
study took the approach that the sample size of an external validation study should be guided by the
premise of producing accurate and precise estimates of model performance that reasonably reflect the true
underlying population estimate. Despite the differences taken in approach, our recommendations coincide.
Our study focused on prognostic models predicting time-to-event outcomes, whilst we don’t expect any
discernable differences, further studies are required to evaluate models predicting binary events. We sug-
gest that externally validating a prognostic model requires a minimum of 100 events, preferably 200 or
more events.
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