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Introduction
MicroRNAs (miRs) are small, single-stranded, noncoding 
RNAs (∼20–22 nucleotides) that regulate target gene expres-
sion by binding to complementary sites (seed sequences) in 
the messenger RNA (mRNA) target gene.1 This interaction, 
mediated by the miR-induced silencing complex (miR-RISC), 
reduces the stability and translational rate of the mRNA tar-
get.2,3 These miRs are predicted to target one-third of all genes 
in the genome, where each miR is expected to target hundreds 
of transcripts.4,5 As the number of published miR sequences 
continues to increase with small RNA deep sequencing 
experiments,6 the biological implications of miRs as modu-
lators of post-transcriptional regulation expand. As of April 
2016, there are 1,881 miR sequences in the human genome 
annotated in mirBase (http://www.mirbase.org), the primary 
miR sequence repository. However, the functions of only a 
subset of these miRs have been experimentally determined. 
To date, .300 cancer-related miRs and 829 target genes 
from .25 cancer tissues have been collected in OncomiRDB,  

a manually curated database of cancer-related miRs with 
direct experimental evidence.7 As miRs mainly regulate func-
tion through their targets, elucidating the miR–target interac-
tions (MTIs) is vital for functional characterization of miRs. 
Therefore, much progress has been made over the past decade 
to develop high-throughput experimental and computational 
methods for MTI identification.

Relevance of miR biology to cancer studies. Recent 
studies have found that miR oncogenes (oncomiRs) and miR 
tumor suppressors tend to regulate tumor suppressors and 
oncogenes, respectively.8–11 Tumors that depend on over-
expression of oncomiRs are said to demonstrate “oncomiR 
addiction,”12 for example, mice overexpressing miR-21 were 
found to contract pre-B malignant lymphoid-like pheno-
type tumors, and inactivation of this oncomiR resulted 
in complete tumor regression.13 Dysregulation of miR–
gene networks has been shown to play an important role 
in tumor initiation and progression.14 The dysregulation of 
miR expression in cancer can be attributed to (i) DNA point 
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mutations, (ii) epigenetic mechanisms (eg, DNA methylation),  
(iii) alterations of chromosomes (eg, deletions or ampli-
fications of miR genes), and (iv) changes in the machinery 
responsible for miR processing.14

While global expression of miRs is usually repressed in 
cancer,15 a pan-cancer co-regulated “superfamily” of upregu-
lated oncomiRs co-targeting critical tumor suppressors has been 
identified.11 Several miRs have been shown to inhibit metasta-
sis through negative regulation of the epithelial–mesenchymal 
transition (EMT) and stemness pathways.16 Yang et al.17 
found that miR-506 functioned as a potent EMT inhibitor 
in an orthotopic mouse model of ovarian cancer. Delivery of 
miR-506 via lipid-based nanoparticles to the tumor resulted 
in reduced tumor growth. Therapeutic inhibition of oncomiRs 
using antisense oligomers (called antimiRs) has also been 
shown to reduce tumor growth.12 These recent studies have 
established the role for miRs as “druggable targets” with vast 
potential for anti-cancer therapies.

In addition to novel targets for cancer therapy, miR 
expression profiles have the potential to play an important 
role in the diagnosis and management of patients with can-
cer. Numerous studies in multiple cancer types found miR 
expression profiles that serve as diagnostic and prognos-
tic biomarkers. MiRs detected in various bodily fluids have 
been found to originate from cancer cells secreting exosomal 
vesicles (exosomes).18 High-quality miR samples have been 
extracted from a variety of sources, including plasma/serum, 
urine, and formalin-fixed, paraffin-embedded (FFPE) tis-
sues.19 MiR expression profiles from FFPEs have been shown 
to determine the tissue of origin from metastatic tumors.20,21 
Remarkably, miRs remain largely intact in bodily fluids and 
FFPE tissues in contrast to most mRNAs.22,23 The resistance 
of miRs to degradation from RNases and severe conditions 
has been attributed to their small size, encapsulation by lipid 
vesicles (eg, exosomes or apoptotic bodies), and association 
with RNA binding proteins.24,25 Russo et al.26 created a man-
ually curated database of extracellular circulating miRs called 
miRandola (http://atlas.dmi.unict.it/mirandola/browse.php) 
containing 581 miRs from 21 types of samples. This website 
allows users to efficiently review the literature on circulat-
ing miRs that have been studied as biomarkers in cancer and 
various other diseases. For example, a recent study by Razzak 
et al.27 found that expression profiling of three miRs (miR-21,  
miR-210, and miR-372) in sputum from patients with early 
stage non-small cell lung cancer (NSCLC) and cancer-free 
controls detected NSCLC with 67% sensitivity and 90% 
specificity. Upregulation of miR-21 in the biopsies of NSCLC 
lung tumors has also been associated with poor prognosis.28,29 
Using a matched analysis of miR and gene expression from 
cancer tissue samples, a number of studies have identified 
cancer subtype-specific miR-regulatory networks that serve as 
network biomarkers for colorectal and breast cancers.30–33

Framework for elucidating MiR-regulatory modules 
from multi-dimensional omics data. The rapidly increasing 

availability of transcriptome-wide matched miR and gene 
expression data via microarray and more recently RNA- 
sequencing technologies has greatly expanded our understand-
ing of miR–gene regulation and interactions. The interactions 
between miRs and their target genes form networks, which 
much like gene–gene interaction (GGI) networks, are under-
stood to consist of modules in which co-expressed miRs have 
a greater tendency to be functionally associated with miRs 
within the same module than to those outside the module.34–36 
Groups of miRs coordinately regulate sets of targets forming 
miR-regulatory modules (MRMs), which function to control 
different biological processes.37,38 Recent studies have found 
that the modular organization and co-expression of miRs are 
dysregulated in cancer.35,39 However, the targets of most miRs 
remain unknown and the complex regulatory mechanisms of 
MRM are an open area of research.

Integration of multiple types of molecular data in a simul-
taneous analysis, termed multi- or meta-dimensional analysis,40 
is fundamental for discovery of MRMs. Multi-dimensional 
analysis is broadly classified into three categories40,41: (i) con-
catenation based (or early integration), (ii) model based (or 
late or decision integration), and (iii) transformation based (or 
intermediate integration); the schema is depicted in Figure 1. 
Concatenation-based (or early) integration combines mul-
tiple pre-processed molecular data matrices into one larger 
data matrix before constructing a model. Early integration 
requires an appropriate method to combine the diffe rent data 
types into one model. This task is often challenging, given 
that different data types often have differing properties and 
scales.42 Taskesen et al.43 found that gene expression and 
DNA-methylation profiles combined in an early integration 
strategy improved prediction of leukemia subtypes versus 
analysis of datasets individually. In model-based integration, 
the models are generated from each of the different data types 
and fused into a final model. For example, Kim et al.44 deve-
loped an integrative method that combined variables from 
models derived from each genomic data type to generate a 
final model to predict survival in ovarian cancer.

Transformation-based (or intermediate or partial) inte-
gration combines multiple data types after transforming each 
type into an intermediate form, such as a graph or matrix, 
before generating a model.40 The advantage of transformation-
based integration over early integration is that when each 
type of data is transformed into an appropriate intermediate 
form, the data type-specific properties of each dataset are pre-
served without information loss.45 The transformation-based 
integration strategy is most frequently applied for identifica-
tion of MTIs and MRM.42,46 Typically, miR–gene correla-
tion matrix and sequence-based target prediction scores are 
integrated by transformation into binary matrices or bipartite 
graphs (discussed in the “Methods for inferring MRMs in 
a single cancer-type via network approaches” and “Methods 
for inferring pan-cancer MTIs and MRMs via joint analy-
sis of sample data” sections).42,47,48 An alternative integration 
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strategy developed by Zhang et al.49 used a joint matrix factor-
ization technique to project multiple data types onto a com-
mon coordinate system to detect profiles that are highly (anti-) 
correlated (discussed in the “Methods for inferring MRMs in 
a single cancer-type via network approaches” section).

Integration of miR and gene expression data with 
sequence-based target prediction has been shown to improve 
prediction of MTIs.50–52 Integration of other high-throughput 
molecular layers, including methylomic and proteomic data, 
can also improve MRM discovery.49,53,54 Over the past 
decade, there has been a tremendous increase in the amount  
of publically available genomic, transcriptomic, methylomic, 
proteomic, and clinical data for many types of cancer.55 This 
has provided a major opportunity for researchers to study 
genetic and molecular abnormalities across human cancer 
types to discover pan-cancer commonalities as well as can-
cer (sub)type-specific features. The Cancer Genome Atlas 
(TCGA) project,56 a large systematic cancer genomics proj-
ect, provides clinical, transcriptomic, and genomic data for 
.33 cancer types and subtypes. Initiated in 2006, TCGA 
has currently characterized tissues from matched tumor and 
healthy tissues from 11,000 patients, making it an invaluable 

resource for multi-dimensional omics projects. The rapidly 
increasing abundance of multi-dimensional omics data has 
been met with novel computational methods, providing sig-
nificant advances in our understanding of genomic and epige-
netic drivers of cancer. More specifically, the TCGA project 
has allowed researchers to develop new approaches to identify 
both cancer (sub)type-specific and pan-cancer MRM. How-
ever, discovery of MRM presents a number of challenges 
and potential pitfalls to the computational biologists. In the 
following sections, we highlight research progress that has 
addressed these challenges to identify MTIs and MRMs in 
cancer datasets.

Recent reviews of integration of multiple omic data40,45,57 
and integrative analysis of cancer data58–60 are available and 
are outside the scope of this review article. While tran-
scription factors (TFs) and miRs can jointly regulate target 
expression in MRM in the form of feed-forward and feed-
back loops,61 the involvement of TFs in MRM networks is 
also beyond the scope of this review. In the next section, we 
provide a brief overview of sequence-based target prediction 
algorithms and recent high-throughput experimental target 
identification methods.

Concatenated dataset

Concatenation based (early) Transformation-based (intermediate) Model-based (late)

Integration to
intermediate form

CBA

figure 1. Simultaneous integration of multiple data types: classification of approaches into three categories. (A) Concatenation-based (early) integration 
of multiple preprocessed molecular data matrices into one larger data matrix before constructing a model. (b) transformation-based (intermediate) 
integration combines the multiple data types after transforming each type into an intermediate form before generating a model. (C) model-based (late) 
integration creates models for each of the different data types and then combines each model into a final model for analysis. Modified from Ritchie et al.40
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Mir–target Interactions
overview of sequence-based target prediction and 

recent high-throughput experimental methods. Sequence-
based miR–target prediction. A number of bioinformatics algo-
rithms for predicting miR recognition sites within transcripts 
have been developed using knowledge from experimentally 
validated target sites. Early experimental studies found that a 
primary determinant of target specificity was perfect comple-
mentarity (canonical site) at the 5′ end of the miR “seed region” 
at positions 2–7.1,2,62 Therefore, these algorithms initially were 
primarily focused on sequence complementarity between the 
seed region of miR and the 3′ untranslated region (UTR) of 
the putative target.62,63 However, given the large number of 
randomly occurring six nucleotide sequences in a 3′ UTR  
of a gene, perfect seed match itself is a poor predictor of 
miR regulation.64–66

Several studies have proposed that target sites in which 
the pairing between miR seed and mRNA does not com-
pletely match (termed non-canonical sites) also confer regula-
tory effect.67,68 A recent study by Agarwal et al.69 found that 
while miRs bind to non-canonical sites, there was no detect-
able repression based on mRNA stability or translation using 
multiple cell types. This finding has supported the focus on 
canonical binding sites by sequence-based target prediction 
programs. Other algorithms consider additional data, includ-
ing mRNA secondary structure and target accessibility70,71; 
however, this also results in a large number of predictions 
with many false positives (FPs).2 Many algorithms, includ-
ing TargetScan69 and TargetRank,62 use evolutionary conser-
vation of the target site to select predicted targets based on 
conservation to reduce FP predictions. However, approxi-
mately 20% of functional target sites are not conserved 
between mammals, and conservation is further decreased in 
a step-wise manner in larger taxonomic groups,72 indicating 
that sensitivity of target prediction decreases with higher  
conservation thresholds.65

The growing number of experimental MTI data has 
prompted more recent use of machine learning (ML) algo-
rithms to train classifiers directly on the experimental data. 
For example, miRSVR exploits mRNA expression data from 
miR transfection experiments to train an ML algorithm to 
predict MTIs.64 The miRSVR scoring model for predicted 
MTIs is calibrated to correspond linearly with the probability 
of downregulation of the target, providing a meaningful guide 
for selecting a score cutoff. Agarwal et al.69 recently compared 
17 sequence-based target prediction algorithms and found that 
the number of potential MTIs varied greatly, reflecting the 
varied strategies of these algorithms. Their analysis found that 
TargetScan version 7 performed significantly better than the 
existing models and was as good as recent high-throughput 
experimental approaches to identify effective target sites. 
Table 1 summarizes the target prediction algorithms discussed 
earlier. Sequence-based miR target prediction algorithms have 
been comprehensively reviewed elsewhere.73

High-throughput experimental methods for miR–target 
identification. High-quality experimentally derived training 
data are generally required to improve sequence-based target 
prediction performance.74 High-throughput methods such 
as those employing crosslinking and immunoprecipitation 
(CLIP) are an important class of capture-based methods for 
detection of direct miR–target binding events associated with 
the Argonaute protein (Ago).75,76 Argonaute high-throughput 
sequencing of RNAs isolated by CLIP simultaneously 
sequences Ago-miR and Ago-mRNA binding sites to identify 
interaction sites between miR–target pairs.76 One limitation 
of this approach is that miR–target complexes are dissoci-
ated prior to sequencing, requiring the target sequence in 
each miR–target pair to be inferred computationally, which 
is prone to error.

Recently a method for producing ligation of the miR–
target pair called crosslinking, ligation, and sequencing of 
hybrids (CLASH) has shown to be more robust than CLIP 
for identification of miR target sites.67 The former method is 
similar to CLIP, but adds a ligation step between the miR 
and target, allowing direct characterization of the chimeric or 
hybrid miR–target to unambiguously identify the miR bound 
at a specific target site. A novel finding from the CLASH 
analysis was the detection of strongly overrepresented motifs 
in the interaction sites of several miRNAs, suggesting that 
individual miRs systematically differ in their binding site 
modes. Although this likely affects the response of RISC to 
miR–target binding, it is unclear how it impacts in vivo func-
tion of MTIs.67

While CLASH holds much promise, at the present 
time, this method has a very low yield with only ∼2% of the 
reads obtained in an experiment corresponding to miR–tar-
get chimeras. Thus, further improvements to CLASH will 
be needed before comprehensive mapping of MTIs will be 
possible.77 As each cell line has a different miR expression 
profile, the cell line used in an experimental analysis will 
yield different sets of MTIs than other cell lines or disease 
conditions. For example, an miR with low expression in a 
cancer (sub)type profiled using CLASH may not be detected, 
whereas this miR may have high expression in another (sub)
type of cancer. Therefore, studies have integrated knowledge 
of MTIs from one cell line or condition identified by CLIP 
and CLASH with miR and gene expression profiles from the 
cell line or condition of interest, yielding condition-specific 
MTIs. For example, StarBase, a database of 108 CLIP- and 
CLASH-based datasets from 37 studies, integrates TCGA 
pan-cancer expression data with CLIP-seq data to pro-
vide MTI pan-cancer predictions.78 Recent comprehensive 
reviews of experimental target prediction methods are avail-
able elsewhere.75,77

While high-throughput experimental (in vitro) approaches 
are being increasingly performed, they currently suffer from 
several disadvantages compared to in silico predicted MTIs 
(based on sequence based and/or structural stability): 1) the 
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number of experimentally derived MTIs remains far fewer 
than the predicted MTIs79 and 2) the tissue specificity of the 
experimental method may exclude availability of cancer (sub)
types of interest to the investigator. Therefore, the most com-
mon approach to facilitate inference of cancer-specific MTIs 
involves profiling paired miR and gene expression datasets. 
Integrating condition-specific (dynamic) expression profiles 
with in silico predicted MTI datasets (static) datasets (as dis-
cussed in the next section) has been shown to improve MTI 
prediction.80 Several recent studies have demonstrated better 
MTI prediction in cancer datasets by integrating CLIP data 
with sequence-based target predictions.11,81 In the next sec-
tion, we discuss commonly applied methods to integrate paired 
miR and gene expression with in silico and in vitro data types 
for multi-dimensional analysis to identify significant MTIs.

Methods for inferring MtIs. The integration of 
matched miR and gene expression data with sequence-based 
target prediction has been shown to significantly improve the 
quality of the identified MTIs.50,80 While high-throughput 
measurement of miR and gene expression has become rela-
tively straightforward, their joint integration for detecting 
high-confidence interacting miR–mRNA pairs is more chal-
lenging.80,82 A number of approaches have been used to quan-
tify the statistical significance for association between an miR 
and its target using their expression measurements. These 
approaches include correlation and mutual information-based 
methods,47 multiple linear regression (MLR) models,17 partial 
least squares (PLS) regression,83 and regularized least-squares 
regression models.52 A PLS model extracts coefficients (miRs) 
that explain the maximum variance in the dependent variable 

Table 1. List of software, websites, and references to methods for sequence-based mir target prediction and method for inferring mir–target 
relationships using paired expression profiles of miRs and genes in single-cancer datasets.

SEqUENCE bASED METhoDS foR miR TARGET PREDICTIoN
(PREDICTING whEThER A GIvEN mRNA IS TARGETED bY A miR)

METhoD/REfERENCE/SofTwARE DATA TYPES CoMMENTS

TargetRank
nielsen et al.62

http://hollywood.mit.edu/targetrank/

*mrna sequence *scoring system based on
sequence complementarity and
conservation 

miRanda
enright et al.114

*mrna sequence *sequence complementarity and
estimated minimum free energy
*source code in C freely available

TargetScan (Version 7)
agarwal et al.69

http://www.targetscan.org/vert_71/

*mrna sequence *scoring system based on 14 features found to be informative  
of binding efficacy using a regression model

STarMir
rennie et al.70

http://sfold.wadsworth.org/cgi-bin/starmir.pl

*mrna sequence *model for binding site predictions trained on mir binding sites  
from CLIP data

miRanda-miRSVR
Betel et al.64

http://www.microrna.org/microrna/home.do

*mrna sequence *regression model trained on miranda predicted target site  
features and mir transfection data to predict target site binding 
efficacy

METhoDS foR INfERRING miR–TARGET RELATIoNShIPS USING PAIRED MIR AND GENE ExPRESSIoN PRofILES
IN SINGLE-CANCER DATASETS

METhoD DATA TYPES CoMMENTS

Correlation coefficient based methods
Peng et al.47

*mir & gene expression
*sequence predicted targets 

*Proposed permutation based method to estimate fDr of mtIs

MLR
Yang et al.17

*mir & gene expression
*sequence predicted targets
*Cna
*Pm

*models gene expression by a linear
combination of all miR expression profiles (adjusting for  
epigenetic and genomic effects)

LASSO
Lu et al.52 

*mir & gene expression *models gene expression given multiple potentially competing 
mirs 

Elastic net regression
sass et al.82

*mir & gene expression *found superior performance for identification of  
experimentally validated mtIs versus Lasso and PCC

Causal inference (IDA)
Le et al.88

*mir & gene expression *ensemble of Lasso, PCC, and IDa
detected more mtIs than any single method

Maximal information content (MIC)
Le et al.88

*mir & gene expression *mutual information based method to detect linear and  
non-linear associations between two variables

GenmiR++
Huang et al.51

*mir & gene expression
*sequence predicted targets

*Bayesian inference method for mtI prediction

Abbreviations: fDr, false discovery rate; mtI, mir–target interactions; Utr, untranslated region; Lasso, least absolute shrinkage and selection operator;  
PM, DNa promoter methylation; CNA, copy number abnormalities; PCC, Pearson’s correlation coefficient; IDA, interventional calculus when the directed acyclic 
graph is absent; CLIP, crosslinking and immunoprecipitation.
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(gene expression) by ensuring good fit of the model.80 A regu-
larized least-squares model also ensures good model fit and 
adds an extra term to prevent model overfitting (discussed in 
the “Regularized least squares” section). GenMiR++, the first 
developed target prediction algorithm that integrated miR 
and gene expression data with sequence-based target predic-
tions, applies a Bayesian inference to score potential targets.51 
In the following section, we survey the major classes of statis-
tical approaches for MTI detection in paired miR and gene 
expression data from cancer samples.

Correlation coefficient-based methods. The principle of 
assuming that the expression levels of miRs and target 
mRNAs are negatively correlated is commonly used to detect 
MTIs.47,48,84 These methods typically select potential miR–
target pairs that (i) are negatively correlated above some sta-
tistical significance threshold and (ii) have been identified to 
interact using sequence-based target prediction or experi-
mental methods (Fig. 2). The large number of miR–target 
correlations calculated necessitates estimation of the false 
discovery rate (FDR), defined as the number of FP divided 
by the number of FP and true positives (TPs). Peng et al.47 
proposed a permutation-based method to estimate the FDR 
of miR–target correlations at a given statistical threshold 
(Fig. 3A). The FDR was defined as the ratio of the number 
of correlated miR–mRNA pairs above a given threshold (eg, 
Pearson’s r , −0.5 and P , 0.01) in a randomly permuted 

dataset (ie, FP) to the number of pairs above the threshold 
in the original dataset (ie, TP and FP). To generate the ran-
domly permutated miR–mRNA datasets, the sample labels 
for miR and mRNA were randomly swapped such that the 
samples in the random miR datasets did not correspond to 
the samples in the random mRNA datasets. This process was 
repeated 100 times, and a median value of FDR was selected. 
Using this approach, the authors were able to ascertain that 
Pearson’s r , −0.55 with P-value , 0.01 was associated with 
an approximately 5% FDR. An alternative method to estimate 
FDR using empirical Bayes (EB) is discussed in the “Bayesian 
models” section (Fig. 3B).

For miR and gene expression profiles from heteroge-
neous conditions such as multiple (sub)types of cancer samples 
or cancer and healthy controls, correlations are often calcu-
lated for each condition separately rather than over the data 
as a whole.81,85,86 The rationale for this approach is that each 
cancer type may have differences in dysregulation of MTIs. 
Farazi et al.81 found significant differences in the medians of 
the correlation distributions for miRs and their predicted tar-
gets comparing between three subtypes of breast cancer. They 
also detected distinct correlations between the expression of 
specific miR families and their predicted targets among the 
three cancer subtypes, providing a rationale for performing 
separate MTI analysis based on the subtype. Importantly, 
the top-ranked miRs according to regulatory activity did 

Genes

Gene expression

SamplesSequence based

target predictions

for miR k

Pearson’s correlation:

Gene j, miR k
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figure 2. Inferring MTIs by integrating match miR–gene expression profiles and sequence-based target prediction data. Sequence predicted targets 
from a pre-selected database (orange matrix) depicted as a binary matrix (indicating the presence or absence of mir–target pairs, as dark orange or light 
orange boxes, respectively). Expression profiles from matched gene (green matrix) and miR (red matrix) microarrays are correlated using the PCC and 
input into the purple matrix. mtIs with PCC above a selected threshold and present in the sequence-based target prediction database are indicated as 
dark purple boxes, while all other pairs as light purple boxes.
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not necessarily overlap with the top-ranked miRs according 
to association with tumor subphenotype. This disconnection 
becomes especially relevant for validation and development of 
future miR-based therapies.

MLR and regularized least-squares models. MLR models. 
Whereas correlation-based approaches consider only the pair-
wise miR–gene expression, MLR models gene expression by 
a linear combination of all miR expression profiles targeting 
the gene. Furthermore, other epigenetic or genomic factors 
can also be modeled such that gene expression is the response 
(dependent) variable and the transcriptional and epigenetic 
regulators are the independent variables in the models (Fig. 4). 
Integrating gene expression with associated alterations in 
genomic, epigenetic, and miR expression has been undertaken 

in several studies to identify molecular drivers of cancer (sub)
types. Yang et al.17 applied an MLR model to analyze gene 
expression of each gene in a mesenchymal signature of ovarian 
cancer. The putative regulatory factors of each gene selected 
for analysis were the associated DNA copy number abnormal-
ities (CNA), promoter methylation (PM), and miR expression 
level, which were used as independent variables in the regres-
sion model. Based on this analysis, the investigators detected 
a set of 219 genes predicted to be targeted by 19 miRs in an 
miR–mRNA network. These genes could be used to distin-
guish the mesenchymal subgroup of ovarian cancer from other 
ovarian cancer subtypes.

Regularized least squares. Least absolute shrinkage and 
selection operator. The least absolute shrinkage and selection 
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operator (LASSO) algorithm performs variable selection 
procedure by estimating linear regression coefficients through 
L1-constrained least squares. This L1 constraint (penalty) 
tends to result in regression coefficients that are exactly zero, 
thereby imposing sparsity on feature selection, making the 
models more interpretable. Several investigators have argued 
that LASSO avoids overfitting in the presence of noisy expres-
sion data and a large number of explanatory variables, leading 
to better prediction accuracy.53,87 Li et al.54 found LASSO 
with negative coefficient constraint as the best performing 
method for the joint analysis of miR and mRNA expression 
data compared to Pearson’s correlation-based methods and 
Genmir++ (a Bayesian learning method to infer the proba-
bilities of targets)51 using a database of experimentally verified 
MTIs as a reference.

MLR with elastic net penalty. While LASSO models mul-
tiple potentially competing miRs,52 several investigators82,86 
have noted that it fails to account for co-expression between 
miRs targeting the same gene. The sparse solution (L1 penalty) 
implemented in LASSO selects one representative miR from 
each correlated group of miRs, disregarding other potentially 
biologically relevant co-expressed miRs within the group. In 
contrast, the ridge regression model maintains predictors in 
the model by using an L2 penalty in which the coefficients are 
small but non-zero. However, this approach does not facili-
tate feature selection. The elastic net penalty overcomes the 
drawbacks of LASSO and ridge regression by combining L1 
and L2 penalties in order to account for co-expression among 

miRs while simultaneously performing feature selection. 
Compared to Pearson’s correlation and LASSO, elastic net 
regression in combination with negativity constraint coeffi-
cients was applied to a head and neck cancer dataset and was 
found to identify MTIs with greater enrichment for experi-
mentally validated MTIs.82

Ensemble of computational methods. Le et al.88 investi-
gated the performance of eight methods for joint analysis of 
miR–target expression and prediction methods using data-
sets from multiple cancer types. The computational methods 
compared were (i) Pearson’s correlation coefficient, (ii) MIC 
(maximal information coefficient, a mutual information based 
method to detect linear and non-linear associations between 
two variables),89 (iii) z-score (a network inference method 
to estimate the effects of gene knockout experiments),90 (iv) 
IDA (interventional calculus when the directed acyclic graph 
is absent, a causal inference method),91 (v) ProMISe (proba-
bilistic MiR–mRNA interaction signature, a method that 
estimates the probability of a gene to be a target of an miR 
by taking competition between genes and between miRs into 
account),92 (vi) GenMiR++,51 (vii) LASSO, and (viii) elastic 
net regression methods.

An ensemble of three methods (Pearson, IDA, and 
LASSO) obtained more targets than any single method and 
identified targets with enhanced functional enrichment. From 
this, we can infer that different classes of computational 
methods tend to identify unique sets of validated targets and 
therefore each has its own merits.91 It is important to note 
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that this analysis did not incorporate sequence-based target 
predictions. Thus, the investigators hypothesized that the 
poor performance by GenMiR++ and ProMISe, two methods 
originally designed to incorporate sequence-based predicted 
targets, may have been due to the use of miR and gene expres-
sion data alone. Le et al.93 provided a software pipeline inte-
grating the above computational methods in the R package 
miRLAB that is freely available on Bioconductor at http://
bioconductor.org/packages/miRLAB/.

The statistical approaches described in this section quan-
tify the association between any given single miR and single 
gene (refer “Correlation coefficient-based methods” section) 
or associations between multiple (co-expressed) miRs and a 
single gene (refer “MLR and regularized least-squares mod-
els” section). These approaches are summarized in Table 1. In 
the next section, we explore methods for identifying associa-
tions between co-expressed miRs and groups of gene targets 
in a network of “many-to-many” miRs and genes termed an 
MRM. As is discussed in the following, a greater under-
standing of the (patho)biological roles of miRs and their tar-
gets can be gained by identifying MRM compared to single 
MTI analysis.

Mir-Regulatory Modules
Methods for inferring MRMs in a single-cancer type 

via network approaches. A number of methods have been 
developed to study MRM. Most approaches aim to identify 
groups of co-expressed miRs and their inversely expressed 
targets by integrating paired miR and gene expression profiles 
with sequence-based predicted MTIs. The methods discussed 
in this section implement analysis of a single condition (eg, 
cancer type versus some reference). Here, we discuss three dis-
tinct learning frameworks to elucidate MRM: biclique enu-
meration, matrix factorization, and Bayesian networks (BNs). 
The methods that have been designed for analysis of more 
than two conditions (eg, pan-cancer analysis) are discussed in 
the “Methods for inferring pan-cancer MTIs and MRMs via 
joint analysis of sample data” section. The methods for infer-
ring MRM in cancer and pan-cancer datasets are summarized 
in Table 2.

Bipartite graphs and biclique enumeration approach. 
A bipartite graph (network) consists of two sets of nodes (in this 
case, miR and target) and a set of edges connecting the nodes 
(in this case, edges represent association strength between 
miR and target).36 A putative module (in this case, MRM) in 
the bipartite network has been postulated to correspond to a 
biclique, a special type of bipartite network where every node 
in the first set (miRs) is connected to every node in the second 
set (target genes).47 A biclique is called a maximal (complete) 
biclique if it is not contained in a larger biclique. To perform 
enumeration of the maximal bipartite cliques (EBC) within 
the bipartite network representing putative MRMs, the 
module input consensus algorithm (MICA),94 the most effi-
cient algorithm for finding bicliques, is often used.47 Zhang 

et al.95 argued that MICA is designed for general graphs and 
unable to take advantage of the bipartite structure. Therefore, 
the investigators developed the maximal biclique enumeration 
algorithm, which outperformed MICA.95

Peng et al.47 developed one of the earliest approaches to 
identify MRM using a maximal biclique method on MTIs 
discovered in a multi-step approach. In the first step, pair-
wise Pearson’s correlation between the differentially expressed 
(DE) miRs and genes across all samples was preformed 
to identify putative MTIs. The MTIs were selected if they 
exceeded a predefined FDR threshold (discussed in the “Cor-
relation coefficient-based methods” section). Then the MTIs 
were further selected if present in a set of sequence-based tar-
get predictions, resulting in a binary matrix of MTIs. This 
matrix of selected MTIs was graphically represented as a 
bipartite network. Using MICA, maximal bicliques (ie, puta-
tive MRMs) were identified, which comprised between one 
and three miRs per MRM.

Maximal biclique-based methods to discover putative 
MRM have been argued to be too sensitive to noise in the 
data and frequently produce MRM with a high level of redun-
dancy and only a single miR that cannot be used to explore 
miR combinatorial regulation.95,96 Missing subsets (false neg-
atives) or erroneous (FP) MTIs may have an adverse effect on 
the quality of the maximal bicliques detected. Furthermore, 
searching only for maximal bicliques may be too restrictive 
as they are defined by an all-to-all relation between miRs 
and targets within the MRM.97 To add flexibility to MRM 
detection, several studies98,99 have applied quasi-bicliques, 
which exhibit a most-to-most interaction between miRs and 
genes within the MRM (Fig. 5).97 Quasi-bicliques allow all 
nodes in the bipartite network (miRs and genes) to accommo-
date missing interactions up to some user-determined level. 
Veksler-Lublinsky et al.99 found that MRMs discovered using 
the quasi-biclique method more significantly identified MTIs 
than a maximal biclique approach.

Kim et al.100 have argued that the bi-relationships mod-
eled between miRs and targets using bicliques are unsuitable 
for complex genetic interactions because information is lost. 
Instead, they applied hypergraphs to generalize the concept 
of an edge between nodes to a hyperedge by which more 
than two variables could be connected simultaneously. As the 
weight of a hyperedge reflects the strength of higher order 
dependency among variables, it was hypothesized that each 
hyperedge potentially behaves as a gene module. To model 
prostate cancer stage-specific MRM networks, the investiga-
tors developed a hypergraph model with each hyperedge rep-
resented by miR and gene expression for each cancer stage. 
Using a learning hypergraph model, hyperedges having high 
discriminative capacity between cancer stages were selected 
The investigators identified putative prostate cancer stage- 
specific MRMs; however, it is unclear whether the hypergraph 
structure improves MRM discovery over the maximal biclique 
approach utilized by Peng et al.47
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Table 2. List of software, websites, and references to methods for inferring mrms in single-cancer or pan-cancer datasets.

METhoDS foR INfERRING MRMs IN SINGLE-CANCER DATASETS

METhoD/REfERENCE/SofTwARE DATA TYPES CoMMENTS

Maximal Biclique enumeration
Peng et al.47

software upon request

*sequence predicted targets
*mir & gene expression (De)

*maximal biclique enumeration method to sensitive to noise 
in the data
*frequently often produces mrm with only 1 mir

Hypergraph
Kim et al.100

software upon request

*mir & gene expression
*cancer stage

*Hyperedges (mrms) weighted by
discriminative ability to predict
cancer stage

Matrix Factorization
Zhang et al.49,96

snmnmf
http://zhoulab.usc.edu/snmnmf/

*sequence predicted targets
*mir & gene expression
*GGI
*Dna-protein interaction 

*mrm had greater enrichment for Go terms compared to 
Peng et al.47

*requires estimation of pre-defined number of modules
*the solution is often not unique
*omits mrm regulated by a single type of regulator

Matrix Factorization
Yang and michailidis101

inmf
https://github. com/yangzi4/inmf

*mir & gene expression
*Pm
*Cna

*mrm detection more robust to noisy datasets than Zhang 
et al.49 

Bayesian network
Jin and Lee105

software upon request

*mir & gene expression (De)
*GGI data

*Condition-specific analysis
*mrm had greater enrichment for Go terms compared to 
Zhang et al.96 

Bayesian network
Liu et al.104

software upon request

*sequence predicted targets
*mir & gene expression (De)

*Condition-specific analysis
*top interactions under each condition determined then 
merged in final network

Bayesian network
Zacher et al.33

birta
https://www.bioconductor.org/
packages/release/bioc/html/birta.html

*sequence predicted targets
*mir & gene expression (De)

*Condition-specific analysis
*Detects mirs with regulatory activity differing between 
two conditions and their gene targets
*Does not detect mrm

METhoDS foR INfERRING miR–TARGET RELATIoNShIPS AND MRMS IN PAN-CANCER DATASETS

METhoD DATA TYPES CoMMENTS

MLR
Jacobsen et al.8

*mir & gene expression
*sequence predicted targets
*Pm
*Cna

*Inferred MTIs for 11 cancer types to derive high-confi-
dence network
*results available in the Cancerminer website  
http://cancerminer.org

LASSO
setty et al.87

RegulatorInference https://bitbucket.org/
leslielab/regulatorinference/

*mir & gene expression
*Cna
*sequence predicted targets

*Group Lasso used to learn regression models of all 
samples simultaneously to identify common and subtype 
specific miRs associated with gene expression

Lasso
Le and Bar-Joseph53

software upon request

*mir & gene expression
*sequence predicted targets
*GGI

*Dependent on quality of GGI data
*number of modules must be determined in advance  
(fixed for each cancer (sub)type)

Empirical Bayes
Chen et al.86

mCmG
http://bioinformatics.med.yale.edu/
group

*mir & gene expression *Prioritizes mtIs by sharing information between cancers 
(joint posterior estimation).
*Higher precision than Pearson correlation-based and 
LASSO approaches for identification of MTIs across  
multiple cancer types

Empirical Bayes
Li et al.112

Panmira
http://www.cs.utoronto.ca/∼yueli/
Panmira.html

*mir & gene expression
*Cna
*Pm

*Integrates mLr approach of Jacobsen et al.8 (accounting 
for biases due to Pm and Cna) with the joint posterior  
estimation method of Chen et al.86 for pan-cancer analysis

Notes: the names of packages available in r are italicized where available. methods with data types that input De mirs and genes are indicated.
Abbreviations: mtI, mir–target interaction; nmf, non-negative matrix factorization; Lasso, least absolute shrinkage and selection operator; Pm, Dna promoter 
methylation; Cna, copy number abnormalities; Bn, Bayesian network.

Matrix factorization approach. An alternative strategy to the 
biclique approach was implemented by Zhang et al.96 by inte-
grating miR and target expression profiles using non-negative 
matrix factorization (NMF) to identify putative MRM. 
The NMF method decomposes a matrix to find two smaller 
(lower rank) non-negative matrices, allowing substructures  

to be readily identified within the data. This method is similar 
to principal component analysis, another unsupervised matrix 
decomposition technique, except that it employs a constraint 
of non-negativity instead of orthogonality.101 Zhang et al.96 
extended the NMF method by simultaneously factoring 
two variable types (expression profiles for miRs and genes) 
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miR and gene expression) to be analyzed. Therefore, Zhang 
et al.49 implemented a joint NMF (jNMF) semi-supervised 
framework for the integrative analysis of more than two types 
of genomic data to identify groups of methylomic mark-
ers, miRs, and genes in putative modules in ovarian cancer 
datasets. Yang and Michailidis101 have noted that the jNMF 
method is not different from NMF, and as a consequence, 
jNMF does not distinguish between different data sources in 
the integrative analysis, which can be problematic for analyz-
ing heterogeneous data. Thus, the investigators developed an 
integrative NMF (iNMF) method that applied a novel tun-
ing selection procedure that allows the model to adapt to the 
level of heterogeneity among the datasets. The iNMF method 
was found to be more robust to heterogeneous noise across the 
data sources than jNMF for the detection of true modules. 
These matrix factorization approaches exemplify transforma-
tion-based integration of multi-dimensional datatypes (refer 
“Framework for elucidating MiR-regulatory modules (MRM) 
from multi-dimensional omics data” section).

BN models. A BN is a graphical model based on probabi-
listic relationships among the measured variables,102 which can 
be applied to miR and mRNA expression datasets to discover 
MRM.103,104 Inference of the BN structure (topology) involves 
searching among the possible networks and then scoring these 
structures. Two nodes are expected to be connected to each 
other if one node (ie, miR expression) affects another (eg, gene 
target expression). If the search space (number of potentially 

into a common basis matrix and two lower rank matrices. 
The decomposed matrices were then used to identify MRM 
with each miR or gene permitted to be assigned to multiple 
MRMs. Sparsity was induced via L1 penalty, and they named 
their algorithm the sparse network-regularized multiple NMF 
(SNMNMF) technique. To guide the optimization process, 
the investigators incorporated sequence-based predicted tar-
get data and GGI using a semi-supervised learning frame-
work to define constraints for MRM. Using a multiplicative 
interactive procedure, the model is learned until convergence 
to a local optimum.

Comparing NMF to EBC methods using the TCGA 
ovarian cancer data, only 19% of the modules identified by 
EBC were enriched for at least one gene ontology (GO) bio-
logical term compared to 53% of the modules identified by 
NMF, indicating that this method performed better than 
EBC. The limitations of the NMF approach include the 
requirement for a pre-defined number of modules in order 
to perform the matrix factorization (which may be difficult 
to estimate empirically), the solution is often not unique, and 
it does not enforce a negative correlation constraint. A nega-
tivity constraint is implemented by other MRM methods to 
account for the fact that since miRs mainly repress mRNA 
target expression levels, positively correlated MTIs are likely 
to be FP.3,82

An additional limitation of the conventional NMF 
method is that it only permits two types of genomic data (eg, 
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figure 5. Comparison of maximal biclique and quasi-biclique enumeration of bipartite graph for identification of MRMs. A matrix of miRs and genes 
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interacting variables) is not sufficiently restricted, the process 
of learning a BN can become very computationally time 
consuming, as all possible networks will be formed.103 There-
fore, most BN approaches rely on constraints to decrease the 
search space to provide a more compact representation of prob-
ability distributions. Prior information such as predicted target 
data can be incorporated to improve network construction.

After the topology of the BN is determined, the strength 
of the relationship between any two nodes is quantified using 
conditional probabilities (network parameters). Thus, the 
expression values (activities) of miRs and genes are represented 
as nodes, and the dependence between nodes (regulatory 
interactions) is represented by the edges within the network.

Jin and Lee105 proposed a method to integrate miR–gene 
expression data with GGI data using the TCGA ovarian 
cancer dataset as an alternative to the NMF method devel-
oped by Zhang et al.49 To constrain the search space, DE 
genes along with labeled samples were input into a bicluster-
ing algorithm. Clustering has been previously demonstrated 
to aid in the inference of BN by reducing the parameter space 
and avoiding highly correlated gene profiles from inhibiting 
interaction inference.106 The interaction of sample and gene 
expression profiles was modeled as a bipartite graph and 
generated subgraphs, termed gene-sample modules (GSMs). 
Within each GSM, the expression trend was similar for most 
genes among the subset of selected samples.

Since previous studies have shown that not all the genes 
in cancer-related pathways undergo expression changes, the 
investigators expanded the GSMs using GGI data by including 
genes that are significantly correlated with at least one gene in 
a GSM. Next, to discover MRMs, a BN model was used to 
estimate dependencies between expression values of miRs and 
genes in the GSM using Bayes information criterion (BIC). 
The BIC is a score function used to assess the degree to which 
the BN explains the data (ie, whether it provides a “good” 
structure).102 The search space is constrained to the miRs 
whose correlation coefficient values for genes in a given GSM 
are in the top T%. The investigators found that the average 
number of enriched pathways in modules using this method 
was larger than that in the NMF approach by Zhang et al.96 
described in the “Matrix factorization approach” section.

Liu et al.104 were the first to model separate BN struc-
tures in two different conditions (eg, cancer and normal) in 
order to effectively identify both strong and subtle MTIs. For 
each condition, the BN learning was performed using the 
miR and gene expression as input, initially generating sepa-
rate BN models for each condition. The BN learning itera-
tively evaluated the MTIs, removing MTIs from the initial 
structure using the expression data and retaining only high-
confidence MTIs, with the goal of selecting the structure that 
best fits the data based on a scoring function. To avoid statisti-
cally insignificant results and overfitting with small sample 
sizes, a bootstrapping step (sampling with replacement) was 
added to achieve reliable inference and integration of the BN 

models from the two conditions. To significantly reduce the 
search space, the BN was assumed to have a bipartite graph 
topology, and sequence-based predicted targets were further 
used to constraint the initial network. Furthermore, miR and 
gene expression profiles were discretized into a binary status: 
“up” or “down” regulated. This condition known as “split-
ting” approach, initially used to generate separate models, was 
shown to capture complex MTIs from the cancer and control 
samples. Using datasets from epithelial and mesenchymal cell 
lines, their method named Bayesian networks splitting and 
averaging was found to identify more co-regulated targets by 
multiple miRs compared to conventional BN that did not sepa-
rate the conditions. This example of intermediate integration40 
learned after combining the sample types was also found to 
result in improved performance over concatenation-based 
integration by Gevaert et al.107 for integration of clinical and 
gene expression data.

Zacher et al.33 formulated a BN integrating miR and 
gene expression to infer miR activities in a specific condition 
versus a reference condition (eg, controls). In their model, 
if the activity of certain miRs changes between conditions, 
a shift in the expression value of the targets is expected. For 
example, an miR is considered to be active in a condition if 
it is upregulated and its gene targets are downregulated com-
pared to the reference condition. While TF-target activity 
can also be inferred using this approach, we will focus on 
the use of this application for miR–target discovery. The 
investigators applied a Bayesian linear regression, where the 
expression level of each gene in each condition was deter-
mined by a linear combination of miR activities. Then a score 
was used to rank the degree to which miRs explained the 
observed differential gene expression, where a score close to 
1 indicates that the corresponding miR is essential (ie, high 
miR activity) for explaining the differential gene expression 
in the condition versus reference. The miR activity states are 
inferred using Markov Chain Monte Carlo sampling. The 
model swaps the activity states of any two miRs with oppo-
site activity states sampled from the posterior distributions. 
To reduce the size of the potential network, the investigators 
(i) input only DE miRs and genes between the two condi-
tions, (ii) limited MTIs to those present in experimental or 
sequence-based predicted MTIs datasets, and (iii) required 
that the target genes for two miRs exhibit a minimal overlap-
ping similarity (ie, 0.8). While this method identifies miRs 
(and their targets) with condition-specific activity, it does not 
directly identify MRMs in contrast to the other BN methods 
described earlier.

The investigators applied their method to ovarian cancer 
data from TCGA. They separated patients into “early” or “late” 
relapse (.1 year) and discovered 12 miRs active in the “early” 
but not in the “late” relapse patients, with target genes of 11 
of the 12 miRs directly associated with relapse-free survival 
times. This method named Bayesian influence of regulation 
of transcriptional activity is freely available through the R 
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package birta on Bioconductor at https://www.bioconductor.
org/packages/release/bioc/html/birta.html.

These BN methods represent examples of transforma-
tion-based (intermediate) integration.40,57 While the meth-
ods described earlier facilitate MTI or MRM discovery using 
datasets from a single-cancer type (or subtype), other recent 
works have investigated methods for inferring MTIs and 
MRMs across many types of cancers, which are discussed in 
the next section.

Methods for inferring pan-cancer MtIs and MRMs 
via joint analysis of sample data. The recent availability of 
miR and gene expression across multiple cancer types has 
spurred investigators to develop approaches to compare the 
similarities and differences of MTIs and MRMs across cancer 
types. Recurrent MTIs across cancer types are hypothesized 
to play important roles in tumorigenesis.8 Pan-cancer analysis 
has identified convergent cancer subtypes composed of several 
distinct cancer types providing novel prognostic and thera-
peutic insights.108 Joint analysis of multiple cancer types to 
infer pan-cancer MTIs and MRMs presents an additional set 
of challenges in comparison to single-cancer analysis. These 
challenges include systematic confounding biases owing to 
differences in study size, sample heterogeneity (eg, tumor  
purity), experimental platforms, differences in miR expression 
across cancers, and other technical factors. Thus, pan-cancer 
analysis requires robust algorithms to detect key features 

(MTIs) in the setting of noisy multi-dimensional datasets. 
While early efforts addressed these challenges by performing 
analysis of each cancer individually before combining these 
results,8 more recent studies have developed probabilistic 
approaches to large-scale pan-cancer analysis as discussed in 
the following.

MLR and regularized least-squares models. Multiple lin-
ear regression. Jacobsen et al.8 analyzed associations between 
miR and gene expression for individual cancer types using an 
MLR model that was fit to the gene expression, taking into 
account biases due to copy number abnormalities (CNA) and 
PM at the gene locus (Fig. 6). The linear coefficients for each 
miR in the MLR model indicate the magnitude of associa-
tion between the miR–target pairs for each cancer type, where 
the greater (negative) value of the coefficient infers greater 
miR activity on the target gene. This method more accurately 
evaluated miR–target expression association in the presence 
of CNA and PM abnormalities that influence gene expres-
sion. To evaluate the relative strength of association between 
given miR and gene in at least half of the cancer types while 
avoiding potential biases in cancer datasets (such as sample 
size), the authors developed a rank-based, statistic, associa-
tion RECurrence (REC), under the null hypothesis that no 
association exists between the miR–target pair in any of the 
cancer types. Jacobsen et al.8 applied a model-based (late 
integration) approach40,57 (refer “Framework for elucidating 
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MiR-regulatory modules from multi-dimensional omics data” 
section) that applies an MLR model to each cancer type indi-
vidually and combines the results (ranks) into a pan-cancer 
REC score.

Using this approach, the investigators identified 143 
miR–target pairs (40 miRs and 72 mRNA targets) having 
both strong negative REC score and exceeding sequence-
based predicted target thresholds (using TargetScan and 
miRanda scores). The 40 miRs in the pan-cancer network 
were more likely to be dysregulated by genetic and epigenetic 
alterations – a common property of cancer driver genes – than 
180 other miRs expressed across all cancer types. The results of 
this analysis are available in the CancerMiner website (http://
cancerminer.org).

Regularized regression (LASSO). Setty et al.87 applied a 
LASSO model using CNA, miR binding site counts in mRNA 
3′ UTR, and TF binding site counts in the gene promoter as 
covariates to explain gene expression changes (tumor ver-
sus normal) from subtypes of glioblastoma multiforme. First, 
LASSO was applied on a sample-by-sample basis to identify 
key direct regulators (miR and TF) that account for DE genes 
in glioblastoma multiforme relative to normal brain samples. 
A second LASSO model used a multi-task learning frame-
work (group LASSO) to learn regression models of all samples 
simultaneously. Multi-task learning seeks to perform indi-
vidual tasks (eg, selecting MTIs in subtypes), while exploiting 
the relationships between several learning tasks to increase the 
power of the search, thereby improving model performance. 
Group LASSO, an extension of LASSO, was developed for 
multi-task learning to select a common subset of features among 
tasks.109 For both LASSO models, Setty et al.87 used a feature-
scoring scheme to determine significant regulators for com-
mon and subtype-specific gene expression. This scoring scheme 
estimated increase in total residual error in the models when 
an miR was excluded in order to determine its degree of influ-
ence in predicting gene expression changes. Using this method, 
common and subtype-specific miR and TFs were identified. 
This software is available in the R package RegulatorInference 
(https://bitbucket.org/leslielab/regulatorinference/).

Le and Bar-Joseph53 developed a probabilistic regression 
model called protein interaction-based miR modules (PIMiM) 
to discover MRMs in specific cancers (conditions) and across 
multiple cancers. The goal of this approach was to determine 
MRMs that explain gene expression as a function of the miR 
expression and the set of proteins the genes interact with. This 
module-based method assigned miRs and predicted targets 
to one of K modules (where K was a predetermined number). 
A regularized probabilistic regression model was learned in 
which gene expression data were regressed to the expression 
data of the miRs in the assigned modules. Their algorithm used 
sequence-based target prediction and GGI data as constraints. 
The cancer-specific approach used an L1-norm to encourage 
sparser modules and additional terms to reward sequence-
 predicted MTIs and GGI pairs to the same network.

PMiM was also found to detect MRMs with higher 
functional enrichment than the matrix factorization method by 
Zhang et al.96 when PIMiM was applied to the ovarian cancer 
dataset from TCGA. The investigators also found that using 
the prior knowledge from GGI datasets greatly increased pre-
cision and recall of 115 miRs known to participate in ovarian 
cancer. A potential disadvantage of supervised MRM identi-
fication methods such as PMiM is that the MRMs identified 
naturally tend toward the reference (in this case, GGI data). 
Yang and Michaelidis101 have argued that publically available 
GGI datasets are prone to accumulated errors and oversim-
plification, and therefore, supervised MRM methods depend 
on the accuracy of these databases. Indeed, a recent evalua-
tion of Mirsynergy,54 a LASSO and clustering-based MRM 
algorithm that is also dependent on GGI data, was found to 
produce module structures that were highly dependent on ini-
tial clustering of miRs and the GGI data.110 Moreover, super-
vised methods are less likely to select new candidates based 
on the existing data and therefore are at a disadvantage for 
novel discovery.101

To integrate multiple types of cancers, PMiM uses a 
group LASSO to regularize the models over multiple can-
cer (sub)types using an L1/L2 penalty to encourage miRs 
and genes to be assigned to the same modules across cancer 
types. One limitation of this approach is that the total number 
of modules must be determined in advance and is fixed for 
each cancer (sub)type. The group selection approaches imple-
mented by Setty et al.87 and Le and Bar-Joseph53 are examples 
of model-based (late) integration methods (refer “Frame-
work for elucidating MiR-regulatory modules from multi-
dimensional omics data” section) in which different models 
are learned simultaneously across cancer types, increasing the 
power to detect pan-cancer MTIs compared to traditional 
approaches that integrate parameters after each cancer has 
been separately modeled.

Bayesian models. Chen et al.86 demonstrated the advan-
tage of joint analysis of multiple cancers using an EB method 
over a single-cancer analysis for identification of MTIs. The 
underlying goal of their method was to integrate MTI com-
monalities among cancers by explicitly borrowing information 
among the cancer types to increase the power of detecting TP 
and reducing FP MTIs, respectively. It was recognized that 
different cancer types have distinct sets of MTIs, and there-
fore, the investigators expected that only a fraction of the 
MTIs would be shared between cancers. Additionally, cancers 
that were more closely related (eg, ovarian and breast cancers) 
were expected to share a higher degree of common MTIs than 
distantly related cancers. Thus, similarity between two cancers 
was quantified by the fraction of shared MTIs.

In the first stage, Pearson’s correlation coefficients (PCCs) 
for all miR–mRNA pairs were expressed as z-scores (derived 
from Fisher transformation), which approximately followed a 
normal distribution, where increasingly negative z-scores were 
more likely to represent MTIs. Next, to correct for multiple 
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hypothesis testing, a variant of the Benjamini–Hochberg FDR, 
termed local FDR, was applied to the set of all z-scores.111 The 
local FDR method estimated the empirical null distribution 
(histogram of z-scores) using maximum likelihood, where the 
central peak of the distribution mainly consisted of null cases 
(non-interacting pairs) and the (negative) tail tended to con-
tain non-null cases (interacting pairs with negative z-scores). 
Thus, the FDR could be determined at any given z-score 
threshold; a lower (absolute) z-score threshold resulted in a 
greater sensitivity at the cost of a higher FDR and vice-versa 
(Fig. 3B). Using samples from glioblastoma multiforme and 
ovarian cancer, the investigators estimated that ∼10% of miR–
mRNA pairs may interact.

In the next stage, the estimated similarity between cancers 
based on the fraction of shared MTIs was calculated. Then the 
estimated similarity among cancers and the estimated MTI 
probability in individual cancers (obtained from local FDR) 
were combined to derive the posterior marginal probability of 
MTIs between miR–target pairs. The prior probabilities that 
measure cancer similarity were estimated from the observed 
data using an iterative updating procedure. Unlike the local 
FDR approach for single-cancer analysis, the pan-cancer 
approach was shown to change the order of z-scores, thereby 
re-prioritizing candidate MTIs by sharing information 
between cancers. This method called joint analysis of multiple 
cancers for miR–gene interactions (MCMG) was shown to 
have a higher precision than Pearson’s correlation-based and 
LASSO approaches for identification of MTIs in a dataset of 
multiple cancer types. The MCMG method is implemented 
in R and available for download (http://bioinformatics.med.
yale.edu/group).

Li and Zhang112 developed a pan-cancer analysis method 
called pan-cancer miRNA–target associations (PanMiRa) 
that directly infers the posterior distribution of the pan-cancer 
MTIs and accounts for potential genomic confounders. Unlike 
the MCMG approach that predicts cancer-specific MTIs by 
borrowing information from other cancers, PanMiRa aims 
to infer recurrent MTIs across all cancers while taking into 
account biases due to CNA and PM. Similar to Jacobsen 
et al.8, PanMiRa applies an MLR model for individual can-
cers with gene expression as the response (dependent) vari-
able and miR expression, CNA, and PM as the independent 
variables (Fig. 6). The coefficient in the MLR model for miR 
expression (denoting relationship between miR k gene i in can-
cer type d) is converted to a t-statistic, which is subsequently 
transformed into z-scores. To reduce FP, only the interactions 
with negative z-scores in at least 75% of the cancer types were 
retained. Next, the investigators exploited the empirical dis-
tribution approach of the local FDR method applied to the 
z-scores to estimate the joint posterior of the true interactions 
across the pan-cancer types via an EB algorithm. The miRs 
and targets involved in pan-cancer interactions detected using 
PanMiRa were significantly enriched for known oncomiRs 
and oncogenes, respectively. The investigators also found a 

significantly higher enrichment number of MTIs detected by 
CLASH when comparing PanMiRa to the recurrence asso-
ciation method by Jacobsen et al.8 and randomly shuffled pos-
teriors. The source code is freely available in R (http://www.
cs.utoronto.ca/∼yueli/PanMiRa.html).

conclusion and outlook
Dysregulation of miR activity is increasingly being recog-
nized as a pivotal factor in the development and progression of 
cancer. Expression profiling of miRs within tumors and those 
secreted from tumors as circulating miRs detected in bodily 
fluids have great potential for diagnostic and prognostic bio-
markers in many types of cancer. miRs possess several charac-
teristics making them particularly advantageous as therapeutic 
targets. Their small size and resistance to degradation make 
delivery of miRs to the tumor site relatively achievable.

To detect miRs with therapeutic potential in cancer, the 
investigators have sought to identify these miRs acting as cen-
tral drivers of cancer within miR-regulatory networks. These 
networks are composed of subsets of densely interconnected 
co-expressed miRs, and their overlapping targets are termed 
as MRM. As MRM are composed of many MTIs, MRM 
identification is dependent on the quality of the MTIs. Much 
progress has been made over the past decade in experimental 
high-throughput methods to detect MTIs, and this know-
ledge has served to improve in silico sequence-based target 
predictions. Integration of matched miR and gene expression 
profiles from cancer samples with in silico and/or experimen-
tal MTIs is instrumental for most MRM detection methods.

The general challenges for MRM detection are the com-
plexity of the regulatory networks, the large number of FPs 
generated from computational analysis, and the frequently 
small sample sizes available. With massive multi-omic proje-
cts such as TCGA, the latter issue is abating within the cancer 
field. Furthermore, as our knowledge of miR biology and reg-
ulatory mechanisms continues to augment, it is expected that 
computational tools being developed or refined will reflect 
this biological reality. Our understanding of the complexities 
of post-transcriptional regulation by miR will continue to be 
refined. While mRNA destabilization has been found to be 
the dominant form of miR-mediated repression in endogenous 
genes, translational repression has been reported to be the 
major mode for reporter genes. Some investigators have iden-
tified miRs capable of repressing translation in one cellular 
context while inducing translation upregulation in another,113 
challenging basic assumptions regarding miR-regulatory roles. 
Moreover, advances in our understanding of miR–miR inter-
actions as well as TF–miR interactions are currently being 
applied to develop increasingly sophisticated network analyses 
to reflect the complexity of post-transcriptional regulation.

In this review, we have highlighted major classes of statisti-
cal and computational approaches to identify MTIs and MRM 
in individual cancer and pan-cancer analyses. Future develop-
ments in the MRM tool are anticipated to improve integration 
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of multiple heterogeneous omics datasets across multiple types 
of cancer types. Exploiting improved integration of these omic 
datasets and the information borrowed from many cancer types is 
expected to facilitate novel discovery and prioritization of MRM. 
Specifically, MRM that encompass the interplay between miRs 
and TFs for gene co-regulation will help to further elucidate the 
miR-regulatory mechanisms. Knowledge of these important reg-
ulatory layers will be vital for the development of effective thera-
peutic interventions in cancer and other challenging diseases.
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