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Abstract

We introduce AGAMEMNON (https://github.com/ivlachos/agamemnon) for the acquisition
of microbial abundances from shotgun metagenomics and metatranscriptomic samples,
single-microbe sequencing experiments, or sequenced host samples. AGAMEMNON
delivers accurate abundances at genus, species, and strain resolution. It incorporates a time
and space-efficient indexing scheme for fast pattern matching, enabling indexing and
analysis of vast datasets with widely available computational resources. Host-specific
modules provide exceptional accuracy for microbial abundance quantification from tissue
RNA/DNA sequencing, enabling the expansion of experiments lacking metagenomic/
metatranscriptomic analyses. AGAMEMNON provides an R-Shiny application, permitting
performance of investigations and visualizations from a graphics interface.

Keywords: Computational metagenomics, Microbiome, Quantification of microbial
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Background
The study of metagenomics has offered us novel views of the world around us and

within, while shotgun sequencing has revolutionized the field offering higher resolution

and throughput [1]. Microbiome sequencing has shed light to the complex host-

microbiome relationships in humans and other organisms, enabling detailed or even

population-scale studies. The Human Microbiome Project (HMP) [2] and other similar

studies revealed the importance of the microbiome and its implications in pathological

conditions, including gastrointestinal tract inflammatory diseases, neoplastic condi-

tions, metabolic disorders, neurodegenerative diseases, and adverse outcomes in preg-

nancy [3–5]. A significant source of advancements in the fields of host-microbiome

interactions and microbiome manipulation for therapeutic purposes has come through

the development of germ-free (GF) mice [6–9]. Utilizing GF animals, researchers can

effectively transfer specific bacterial species in the gastrointestinal tract deeming these

animals defined in terms of their microbiome. The field has provided hope for novel
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diagnostics or even therapeutic interventions through microbiome manipulation and/or

transplantation [10–12]. Currently, numerous research projects worldwide are explor-

ing the possibilities of microbiome studies in health, disease, nutrition, reproduction,

and even forensics [13, 14].

The increased resolution of shotgun DNA (metagenomics) or RNA (metatranscrip-

tomics) samples comes along with numerous technical obstacles, mostly derived from

the vast size of the generated files, reference indexes, and search space during align-

ment and taxonomic characterization of each sequenced read. State-of-the-art imple-

mentations have offered significant breakthroughs in most aspects of the shotgun

metagenomics / metatranscriptomics pipeline, including alignment, clustering, and

differential abundance analyses [15, 16]. Kraken [17], an algorithm for taxonomic label

assignment, achieved a significant speed improvement by utilizing exact alignment of

k-mers to the Lowest Common Ancestor (LCA) containing that k-mer. MetaPhlAn 3

[18] is a tool for profiling of microbiome communities and uses a database of unique,

clade-specific gene markers. It assigns fragments by mapping them against the gene

markers database using Bowtie 2 [19]. Kaiju [20] translates DNA sequencing reads into

amino acid sequences and searches for maximum exact matches in a database of pro-

teins from microbial genomes. Finally, Schaeffer et al. [21] demonstrated the ability to

achieve fast and accurate read assignment transferring technology from RNA-Seq to

metagenomics by applying the concept of pseudoalignment implemented in Kallisto

[22], and the subsequent use of an expectation maximization algorithm for abundance

estimation. Recent studies [23, 24] have shown that viral and microbial sequences can

be present in host tissue and bulk cell RNA or DNA sequencing libraries. These could

be the result of sample contamination, microbial infection, or local microbiota present

within a sample. Leveraging processed samples could prove invaluable since they could

be used for quality assessment or contaminant detection but also to quantify tissue in-

filtration by microbial species, viral load, or even to detect associations between host-

pathogen interactions. These studies have mainly employed pipelines similar to stand-

ard RNA-Seq analyses and mostly focused on the viral content of these samples. Focus-

ing on viral content was performed due to the lower complexity of this subproblem

compared to the assignment and quantification of microbial species. Notably, a recent

reanalysis of whole genome/transcriptome datasets originating from The Cancer

Genome Atlas (TCGA) [25] using Kraken [17, 26] revealed microbial content in

both tissue and blood samples and across different cancer types, highlighting the

importance of the human microbiome for oncology-related studies using tissue-

specific host samples. GATK PathSeq [27] is a recently published relevant method

that aims to identify/quantify microbial sequences in DNA/RNA eukaryotic host

samples and is available through the Genome Analysis Toolkit (GATK) [28]. Ac-

curate, rapid, and memory-efficient microbial abundance quantification in host

samples is still actively pursued, when the reference index comprises hundreds or

thousands of microbial genomes.

We designed and implemented the Accurate metaGenomics And MEtatranscrip-

toMics quaNtificatiON analysis suite, AGAMEMNON [29, 30] (Figs. 1 and 2), to

address still open challenges in the field but also to provide an A-to-Z approach

that can support both novices and specialists. AGAMEMNON caters every step of

the process, from quantification to differential abundance analysis and exploratory
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data visualization. It employs a series of advancements that enable very frugal

memory requirements compared to other alignment-based approaches, enabling the

use of even larger microbial indices for agnostic, hypothesis-free investigations. The

pipeline for quantification follows multiple well-known existing metagenomic pro-

filing tools [31–34], in that it divides the task of profiling into two independent

steps of read alignment and subsequent abundance estimation. AGAMEMNON uti-

lizes the Pufferfish [35] data structure for space and time-efficient representation

and indexing of a collection of microbial genomes, coupled with the concept of se-

lective alignment which allows for fast alignment of sequencing reads against a col-

lection of genomes (Methods, “Indexing of microbial genomes”), and then feeds a

novel quantification algorithm for metagenomic samples, in order to quantify the

abundance of the microbial genomes. The main approach in the abundance estima-

tion step is based on the expectation maximization (EM) algorithm and targets

maximizing the likelihood of the observed reads by gradually altering the abun-

dance value associated to different taxa. However, the EM approach is modified

and adapted based on specific properties of metagenomic data; mainly, (1) high

similarity among the strain sequences, (2) taxonomic tree and strain relationships

through the tree hierarchy, and (3) high number of unknown species. This modi-

fied EM has been implemented as a separate module called Cedar which given the

alignments from Puffaligner [36] step and reports the reference quantification at

Fig. 1 Schematic representation of AGAMEMNON. Dataset input is in raw FASTQ format. Paired-end (PE) or Single-
end (SE) libraries are supported. For single-cell libraries, AGAMEMNON has helper scripts to enable per-cell analyses. In
case of host tissue samples or contaminant quantification activities, the reads are first aligned against the host
genome and the contaminant reference index using HISAT2. The host alignment file is saved for downstream
applications and the resulting unmapped reads are forwarded to the main metagenomics/metatranscriptomics
pipeline. Selective alignment is performed on the microbial reads against the reference index, while microbial
abundances are subsequently quantified. A raw quantification table is produced as well as a taxonomic rank table. The
results of the analysis can be used as input to AGAMEMNON’s R-Shiny application, which enables diverse analyses and
investigations from a graphic user interface, including visualizations, dimensionality reduction, differential abundance,
and diversity index analyses

Skoufos et al. Genome Biology           (2022) 23:39 Page 3 of 27



the requested level of the taxonomy tree. Additional modules enable concurrent

deconvolution and quantification of host and microbial RNAs from the same sam-

ples or microbial abundance from host DNA samples, contaminant detection, dif-

ferential abundance analysis between samples, and visual investigations using

AGAMEMNON’s R-Shiny [37] application. Additionally, AGAMEMNON supports

single-cell techniques (host or microbial such as SiC-Seq [38]) right out of the box,

for all analyses modules.

Fig. 2 Schematic representation of AGAMEMNON’s quantification engine. Each black line indicates a
microbial genome. In this example, most reads are unambiguously aligned to a single genome (shown as
short green lines), while 6 reads map to multiple genomes (rounded red, turquoise, purple, orange, gray,
and yellow boxes). Each EM step consists of K iterations (default k = 10). In the first EM step and first
iteration, multi-mapping reads are equally partially assigned to all the genomes that they align against. For
example, the turquoise read that maps to three genomes, G2, G3 and G4, is assigned a base coverage/
probability of 0.33 in each (shown by the same opacity of color in EM Step, first iteration). During EM, read
assignments are resolved through iterations of reassigning the reads based on the abundance of the
genomes/strains observed in the previous iteration. In each iteration, the quantification of each strain, as
estimated based on the current read assignment, is used as the prior for multi-mapping read assignment in
the subsequent iteration. Following each EM step (i.e., K iterations), the set-cover step is also adopted, in
order to resolve special multi-mapping cases that are unsolvable by the EM, called “multi-mapping islands.”
These are groups of highly similar strains with low abundance for which all reads are multi-mapped making
it infeasible for EM to prioritize one strain over another, leading to reporting the whole group of strains
with small abundances, while only few of them exist in the sample of interest, introducing false positives.
The EM step - set-cover step is a looping process until set-cover is unable to remove any further genomes
in which case, EM process iterates until termination. In the last step of the procedure, all the genomes with
abundance values lower than a predefined cutoff are removed. In the figure’s example, the process starts
with six genomes (G1–G6). Throughout the iterations of the first EM step, the read probabilities change but
all six genomes remain in the quantification process. When the first EM step is over, the model continues
with the first set-cover step. In the set-cover step, only the genomes in which all reads are multi-mapped
will be taken into consideration (i.e., G4, G5, G6). Through the set-cover process, we will keep only genome
G4 and remove genomes G5 and G6 aiming for minimum number of strains that explain all multi-mapping
reads. In the second EM step (not shown in the figure), only genomes G1–G4 will participate in the process.
Subsequently, in this particular example, the set-cover step will never be called again because there are no
multi-mapping islands left in the reference. Thus, the EM process will iterate until termination. Finally, after
the whole EM process is done, the heuristic removal step will further remove the genomes whose
abundance is equal to or less than 2 reads, and thus, in this example, genome G1 will also be removed
before reporting the final quantification results
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Results and discussion
AGAMEMNON’s quantification engine

AGAMEMNON uses an expectation maximization (EM) algorithm to probabilistically

resolve the origin of reads (Methods, “Quantification of microbial fragments”) to indi-

vidual references in the second step of the pipeline called “Cedar” (Figs. 1 and 2). This

step contributes to its enhanced quantification accuracy at the species and strain levels.

Unlike methods such as Kraken [17] and Kraken 2 [39] that propagate reads that have

multiple best assignments to a higher taxonomic rank, AGAMEMNON, via the infer-

ence performed in Cedar, makes use of other reads and their probabilistic allocations

to determine the probability that the ambiguous read arises from the different refer-

ences to which it aligns well. Similar to other EM algorithms, in Cedar, we iterate over

these two steps of Expectation and Maximization until the convergence criteria are

met. In each iteration, we calculate the read probability distribution in the Expectation

step and assign the reads across strains to maximize the probability of observed reads

in the Maximization step. Based on the user’s request, the same procedure can be ap-

plied at different levels of the taxonomy tree.

Cedar’s EM procedure is specifically modified according to fundamental properties

and challenges of metagenomic quantification. For instance, in metagenomic indexes,

there is often high similarity among the strain sequences belonging to the same species

[34] (sometimes even across species), which increases the complexity of disentangling

reads at lower levels of the taxonomy. Additionally, reads coming from unknown spe-

cies or unknown strains can be falsely assigned to entries existing in the index, resulting

in false positive non-zero values. As part of the Cedar pipeline, we address these chal-

lenges through iterative, mass-preserving filtering. We look for groups of references

that share the same class of reads and are fully ambiguous without any preference to-

wards a reference over the others to detangle reads in the Maximization step. We call

such a group of references, a “multi-mapping island.” We reduce the problem of multi-

mapping islands to a “set-cover” problem and solve it by adopting an existing approxi-

mate set-cover solution. Essentially, we select minimum number of strains that explain

all multi-mapping reads distributed across the strains of each multi-mapping island.

The remaining strains in each island are removed prior to the next EM step, signifi-

cantly improving the accuracy of the proposed quantification model. Through this ap-

proach, we tackle the problem by sparsifying the solution (i.e., the set of species that

may be assigned a non-zero abundance) in a manner that still retains all mapped reads.

The “set-cover” step is called after every k iterations of EM until there are no multi-

mapping islands left. At this point, EM continues until termination, which happens ei-

ther if (a) it reaches the maximum number of iterations (default = 1000 iterations) or

(b) the genomes abundance change between the two iterations is adequately small.

Cedar procedure is completed by the final step of removing genomes with abundance

values lower than a cutoff threshold (default = 2).

Comparisons with existing methods

We benchmarked AGAMEMNON using simulated [40], synthetic [41], and real data-

sets (Methods, “Simulated, synthetic, and real data sets”) against Kaiju [20], Kraken 2

[39], Bracken [34], MetaPhlAn 3 [18], and meta-Kallisto [22] (Methods, “Benchmark
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details”). Apart from Bracken and Kallisto which aim to tackle the same problem with

AGAMEMNON’s quantification engine and directly derive abundances from read as-

signment, we included in the comparisons representative algorithms from additional

families of implementations, including Kraken 2, Kaiju, and MetaPhlAn. Kraken 2 (as

in the case of Kraken) performs taxonomic assignment and not quantification per se,

but was selected as one of the most cited metagenomic analysis methods and Kraken 2

demonstrated a series of advancements over Kraken and other methods [39]. Further-

more, Bracken uses Kraken’s or Kraken’s 2 results and performs a quantification step

to estimate microbial abundances at the species, genus, or higher levels. Finally, Kaiju

and MetaPhlAn 3 follow different approaches: DNA-to-Protein based taxonomic as-

signment and microbial profiling using clade-specific gene markers, respectively.

To assess the accuracy of the methods, we utilized the Mean Squared Log Error

(MSLE) and the total number of reported false positive (FP) taxa in different read

thresholds (Methods, “Accuracy metrics”). Shortly, MSLE is defined by the following

formula:

L y; ŷð Þ ¼ 1
N

XN
i¼0

log yiþ 1ð Þ− log ŷiþ 1ð Þð Þ2

where y and ŷ are numeric vectors comprising the ground truth and estimated read

counts respectively. N is the total number of reported microbes by each method. It is

practically the squared total difference between actual versus estimated log counts nor-

malized by the total number of reported taxa. The Illumina 400 dataset [40] that was

used in our benchmarks incorporates 400 different microbial genomes. A less complex

version of the dataset (Illumina 100) has been commonly used as a test set in the field

[21, 34, 42]. Furthermore, the synthetic dataset [41] used is a product of a real shotgun

metagenomics sequencing experiment of a predefined mock microbial community. The

mock community comprises 12 bacterial strains spreading over 2 phyla. Subsequently,

we used seven additional samples from three studies [43–45] for which the actual bac-

terial abundances are known and were measured independently prior to sequencing.

The choice of a reference compendium for index creation is an important aspect, since

it can affect the complexity of the task at hand. To simulate real-world scenarios but

also to enable us to assess the effects of reference choice on algorithm outcomes, we in-

corporated four different microbial references to our benchmarks. The first reference

(REF-1) comprises all complete and latest bacterial and archaeal genomes from NCBI

RefSeq database (n = 1840). In this reference, ~ 36% of the genomes present in the Illu-

mina 400 dataset are missing and that allows us to mimic the common scenario of un-

known microbial sequences in metagenomics samples. Such cases can lead to false

positives, by assigning reads of unindexed microbes to the closest match in the index.

The second reference (REF-2) is used for the analyses of the synthetic dataset, and it is

a superset of REF-1, augmented to comprise all microbial genomes of the relevant data-

set (n = 1852 genomes). In this reference, the ratio of present organisms vs all indexed

is even smaller (12 present vs 1852 indexed). Furthermore, the third reference (REF-3)

comprises 44,694 sequences (> 8500 genomes). Importantly, we removed 63% of all ge-

nomes (i.e., 252 entire genomes) from REF-3 that are part of the Illumina 400 dataset.

After the aforementioned removal, reference 3 contains only 148 out of the 400
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genomes that are part of the Illumina 400 dataset. Strain level results for that particular

scenario are calculated by taking into account (a) how accurate the quantification of

the abundances is for the 148 strains that are both part of the reference and present in

the dataset and (b) how many reads are mis-classified into different strains for the 252

strains that are missing from the reference but are part of the dataset. Moreover, in the

relevant test for the synthetic community, all (100%) of the strains and species present

in the synthetic dataset are not included in reference 3. In that scenario, where all the

strains present in the dataset are missing from the reference, we believe it is still in-

formative to calculate metrics of accuracy. In that case, the number of the false positive

strains represents the number of falsely reported taxa (in terms of presence/absence)

and MSLE shows the total error in terms of mis-assigned counts (i.e., the degree of

overestimated abundances for each of the falsely reported taxa). For example, a method

that does not assign reads of missing strains to those present in the index will outper-

form a method assigning falsely the majority of those reads (while keeping all other as-

signments equal). Finally, the fourth reference (REF-4) is a subset of REF-3 and

comprises 38,691 bacterial sequences. These tests were implemented to mimic analyses

where numerous strains present in the assessed dataset are not part of the indexed an-

notation, which is a very common scenario especially in environmental samples. De-

tailed information about all three references can be found in Methods, “Benchmark

details” and Additional file 4: Supplementary Table S4 - “Benchmark references”.

Even though AGAMEMNON is a complete analysis suite and not just a quantifica-

tion or alignment method, its engine shows robust top-of-the-line performance, across

all test sets. Specifically, AGAMEMNON exhibited top performance accuracy in most

of the tests. (Figs. 3, 4, and 5 and Additional file 1: Figs S1 – S7 & Figs S10, S11).

In Fig. 3, we present the results using the Illumina 400 dataset and REF-1. As shown,

AGAMEMNON displayed better performance in terms of mean squared log error

(MSLE) in both genus and species resolution (panels A, B) while at the strain level,

AGAMEMNON and Kallisto had the lowest MSLE (panel C). MetaPhlAn 3 had the

smallest number of false positives (FP) in all tested taxonomic ranks with AGAMEM-

NON following (panels D, E, F). Metaphlan’s small number of false positives despite

the low observed accuracy is expected since it uses a predefined clade-specific marker

database with significantly reduced query space compared to the reference used by Kra-

ken 2, Bracken, Kallisto, and AGAMEMNON. Kaiju was not included in the analyses

presented in Fig. 3, since it only supports analyses using the complete RefSeq as refer-

ence (presented in Fig. 4) and not custom annotations.

Next, we compared the methods using both the Illumina 400 and the synthetic data-

sets against REF-3 index. In terms of MSLE, AGAMEMNON performed better in all

tested cases and taxonomic ranks (Fig. 4, left panel). MetaPhlAn 3 had the smallest

number of false positives (FP) with AGAMEMNON following (Fig. 4, right panel).

Kaiju is included only in the synthetic tests, since its index (which cannot be altered)

already includes the omitted species and strains. We were also not able to run meta-

Kallisto or the REF-3, since the indexing step of REF-3 required more RAM than what

was available in our largest server instance (512 GB).

To assess the concordance of the methods when analyzing shotgun metagenomics se-

quencing experiments, we also quantified the microbial abundances of three human

stool samples originating from the Human Microbiome Project [46] using REF-3. In
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this comparison, we included Kaiju, Bracken, Kraken 2, MetaPhlAn 3, and AGAMEM-

NON (Fig. 5 & Additional file 1: Fig. S2). As shown in Fig. 5, all methods (excepting

MetaPhlAn 3) exhibit a positive Spearman’s rho > 0.5 in almost all samples and both

taxonomic ranks. As expected, the highest correlation is between Kraken 2 and

Bracken, since Bracken utilizes Kraken 2 output as the foundation of its abundance es-

timation calls. AGAMEMNON has a strong positive correlation with both Bracken and

Kraken 2 at both the genus (> 0.7) and species (> 0.5) levels. These results demonstrate

that most of the methods have a relative agreement in three experimentally derived hu-

man datasets. The very large number of species identified by Kaiju, Kraken 2, and

Bracken (Additional file 1: Fig. 2) could be the result of an inflation due to false posi-

tives, since they are significantly larger than our current expectations for the human

microbiome [46, 47]. However, since the ground truth is unknown, it is not possible to

identify the most accurate approach through this evaluation alone.

In terms of execution speed and memory footprint, MetaPhlAn 3 and Kraken 2

proved to be the most efficient algorithms (Additional file 4: Supplementary Table S2 -

“Execution time”). It is worth noting though that AGAMEMNON is the only method

(tested in this study) that performs actual alignments against a full reference. This in-

formation (i.e., SAM files) can be stored locally and used downstream to the quantifica-

tion results. The incorporation of the pufferfish data structure in the quantification

engine enables AGAMEMNON to require ~ 6.5-fold less RAM than Kallisto, a

pseudoalignment-based approach. The differences are also evident during indexing, an

Fig. 3 A–F The mean squared log error (MSLE) and the number of false positive taxa (FP) between true and
estimated read counts at the levels of genus, species, and strain using the Illumina 400 dataset and REF-1. We
measured MSLE (a) using unfiltered results (0 x axis tick) and (b) by removing all instances where the true and
estimated counts were both zero (1 x axis tick). False positive taxa were counted at all read thresholds between
0 and 10. At the read threshold of 0 reads (unfiltered results), all taxa were counted, even those with just 1
assigned read. At the read threshold of 1 read, we counted the taxa with > 1 assigned read and so on. Bracken
and MetaPhlAn 3 produce results up to the species level and thus they were not included in the strain-level
comparisons. Smaller MSLE and smaller numbers of false positives denote better performance
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important bottleneck for this class of implementations, since medium to large-size mi-

crobial compendia could require more than 0.5 TB RAM for indexing, which is not al-

ways available. Specifically, for the indexing step, Schaeffer et al. [21] recommend a

two-step approach; by utilizing Mash [48], the first step screens against a large collec-

tion of genomes to reduce the reference on those that have a nominal match with the

sample of interest. Subsequently, Kallisto is employed for the indexing and quantifica-

tion steps. We reason that sample-specific indexing can become unrealistically time-

and resource-consuming but also introduce quantification biases especially in lowly

abundant taxa whose genomes might be falsely ignored in some samples. We made a

comparison of the execution time and memory footprint required for indexing (Add-

itional file 4: Supplementary Table S1 - “Index benchmark”) between the five methods

in two different reference sizes (Additional file 4: Supplementary Table S3: “Benchmark

references”): (a) REF-1 (1840 genomes) and (b) REF-3 (~ 44,000 sequences).

Microbial quantification in host RNA/DNA-seq samples

AGAMEMNON was also designed to support the quantification of microbial fragments

in host tissue/cell RNA/DNA samples. Such analyses can be useful in numerous sce-

narios, from contaminant identification and quantification to microbiome/viral load

analysis in healthy or diseased tissues. To this end, AGAMEMNON initially separates

the host sequencing reads using HISAT2 [49, 50] and subsequently employs a time and

space-efficient indexing scheme to map the reads failing to align to the host genome/

transcriptome against the microbial genome index. Finally, it uses its quantification en-

gine to calculate abundances of the microbial genomes identified in the sample.

Fig. 4 The mean squared log error (MSLE) and the number of false positive taxa (FP) between true and
estimated read counts at the levels of genus, species, and strain using reference 3. We measured MSLE (a)
using unfiltered results (0 x axis tick) and (b) by removing all instances where the true and estimated counts
were both zero (1 x axis tick). False positive taxa were counted at all read thresholds between 0 and 10. At
the read threshold of 0 reads (unfiltered results), all taxa were counted, even those with just 1 assigned
read. At the read threshold of 1 read, we counted the taxa with > 1 assigned read and so on. Bracken,
MetaPhlAn 3, and Kaiju produce results up to the species level and thus they were not included in the
strain-level comparisons. Smaller MSLE and smaller numbers of false positives denote better performance
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AGAMEMNON provides four ready-to-use curated microbial references (i.e., (a) Hu-

man Microbiome, (b) NCBI Complete Species, (c) Common Cell Biology Contami-

nants, and (d) Expanded Common Contaminants, which is an extension of (c) with

viral vectors. See Methods: “Ready-to-use microbial references” for further informa-

tion). Importantly, the pufferfish-based memory-efficient indexing scheme enables in-

vestigators to create their own microbial indices comprising dozens or even thousands

of species without excessive RAM requirements. We evaluated AGAMEMNON’s host

sample analysis capabilities against GATK PathSeq [27] and the HUMAnN3 [18] pipe-

line (KneadData + MetaPhlAn 3) in host tissue analysis scenarios. Two different mixed

simulated datasets (Methods, “Simulated, synthetic, and real data sets”) were created

using ART [51], which included a high (Dataset ONE, 7.53%) and a low (Dataset TWO,

3.77%) microbial read content in human. In both of the datasets and most of the taxo-

nomic ranks, AGAMEMNON outperformed GATK PathSeq and HUMAnN3 in terms

of Mean Squared Log Error (Fig. 6). HUMAnN3 had the smallest number of false posi-

tives (FP) in all tests with AGAMEMNON following. HUMAnN 3’s small number of

false positives despite the low observed accuracy is expected since it utilizes MetaPhlAn 3

which uses a predefined clade-specific marker database with significantly reduced query

space compared to the reference used by AGAMEMNON and GATK PathSeq. Import-

antly, the percentage of mis-classified microbial reads to the human genome made by

AGAMEMNON has no practical impact on accuracy (< 0.001%). Additionally, we calcu-

lated the number of correctly- and mis-aligned reads to the host by AGAMEMNON

(HISAT2), Kneaddata (bowtie 2), and BWA which is utilized internally by GATK Pathseq

(Additional file 4: Supplementary Table S14 - “Host alignments”). These results indicate

that AGAMEMNON can accurately quantify microbial fragments in host-specific samples

and, at the same time, separate the host sequencing reads for further analysis. This mod-

ule enables users to perform such analyses in different settings, such as contaminant de-

tection (e.g., microbes in cell cultures), local microbiota (e.g., from intestinal mucosa), or

even tissue infiltrating microbes in the tumor microenvironment.

Fig. 5 A–F The pairwise Spearman correlation of each method in three human fecal samples at the levels
of genus and species. Before calculating Spearman correlation values, we removed all instances of zero-
abundant taxa from all methods
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Using 16 publicly available human datasets from the ENCODE consortium [52],

we applied AGAMEMNON to identify microbial species in tissue-specific RNA-

Seq samples (Methods “ENCODE data sets” and Additional file 4: Supplementary

Table S6 - “ENCODE samples”). Due to its high microbial abundance and diver-

sity [53], colon tissues are primary candidates for such analyses, since diet, infec-

tion, inflammation, and pathological conditions can alter the intestinal microbial

content. Furthermore, intestinal permeability can also change, affecting the abun-

dance and types of microbes sequenced along with the host tissue. Importantly,

since microbial and host RNAs are both sequenced from the same sample, we

not only get an accurate glimpse of the local microbiota but can also easily assess

its effects on human tissue gene expression (and/or vice versa) or the effect of

topical somatic mutations. Such localized information can be lost when using mi-

crobial sequencing data from fecal samples. The analysis of the ENCODE samples

revealed a number of highly abundant bacterial species and strains, most of

which are known to be abundant in the human gastrointestinal tract (Additional

file 1: Figs. S8, S9).

Downstream analyses of quantification results with R-Shiny

AGAMEMNON offers a powerful R-Shiny analysis suite (Fig. 7), where users can ex-

plore and visualize small or population-sized datasets as well as perform differential

abundance or expression analyses. This module supports simple and sophisticated ex-

ploratory visualizations including heat maps, boxplots, Manhattan plots, dimensionality

Fig. 6 The mean squared log error (MSLE) and the number of false positive taxa (FP) between true and
estimated read counts at the levels of genus, species, and strain using mixed datasets one and two and the
human-subset reference. We measured MSLE and False positive taxa at read thresholds between 0 and 300
with a step of 5 reads. At the read threshold of 0 reads (unfiltered results), all taxa were counted, even
those with just 1 assigned read. At the read threshold of 5 reads, we counted the taxa with > 5 assigned
reads and the taxa that had < 5 reads assigned were not taken into consideration and so on. Smaller MSLE
and smaller numbers of false positives denote better performance
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reduction methods (principal component analysis (PCA), multidimensional scaling

(MDS)), and diversity indices (Bray-Curtis, Euclidean, Canberra). Users can interact

with the application and select arbitrary phenotypic characteristics and grouping vari-

ables in order to plot and explore their effect on microbial abundances in real time.

Following the grouping variable selection (e.g., healthy/patients, sex), users can also

perform differential abundance (in metagenomics) / expression (in metatranscrip-

tomics) analyses directly from the graphical user interface. Since AGAMEMNON can

support a wide spectrum of research scenarios, the analysis module incorporates

metagenome-specific methods, such as metagenomeSeq [15], as well as generic, and

single-cell methods (i.e., limma [54], DESeq2 [55], edgeR-LRT and edgeR-QLF [56]). Fi-

nally, the application offers a series of interactive data tables presenting the phenotypic

information and full lineages of the microbial genomes identified. Additional files 2 and

3 demonstrate two use-case scenarios employing visualizations and differential abun-

dance analyses using data from the integrated Human Microbiome Project (iHMP) [57]

and Feng et al. [58].

Fig. 7 Screenshots of AGAMEMNON’s Shiny application. (Top row) Visualization of microbial abundances
through the use of Manhattan plots and Boxplots. (Middle row) Heatmap visualization and clustering using
top N (in terms of abundance) microbes and PCA/MDS analysis. (Bottom row) Diversity index analysis and
interactive tables showing the full lineage of microbes identified in the analyzed samples and differential
expression analysis module and results

Skoufos et al. Genome Biology           (2022) 23:39 Page 12 of 27



Single-microbe sequencing analysis

We validated AGAMEMNON’s single-microbe sequencing module against a single-cell

artificial microbial community (Fig. 8 and Methods: “Single-cell artificial microbial com-

munity analyses”) originating from a published single-cell sequencing technique, namely

SiC-Seq [38]. The microbial community comprises 8 bacterial species (5 Gram positive

and 3 Gram negative) and 2 yeasts. The number of sequenced cells (> 50 reads) is close to

48,000. Lan et al. [38] estimated the Read Counting values after counting cells under

bright-field microscopy, and thus, we consider these relative abundances as the ground

truth, as was also performed in the original manuscript. As shown in Fig. 8, AGAMEM-

NON managed to accurately estimate the single-cell bacterial/yeast abundances.

Conclusions
The decreased cost and increased availability of metagenomic and metatranscriptomic

sequencing experiments have revealed the importance of the human microbiome and

its role in shaping health and disease. The accurate identification and quantification of

microbial abundances in such experiments are the first crucial steps in the in silico ana-

lysis of microbial communities.

To this end, we developed AGAMEMNON, a time and space-efficient in silico frame-

work for the analysis of metagenomic/metatranscriptomic samples providing highly ac-

curate microbial abundance estimates at genus, species, and strain resolution. Its novel

indexing scheme and analysis engine enables us to go beyond taxonomic ranks with

the provision of microbial abundance estimates, while bypassing the vast memory re-

quirements of similar alignment-based quantification approaches. AGAMEMNON can

index the whole human microbiome or even the complete NCBI compendium using

CPU/RAM specifications available to most labs. Importantly, the employed iterative,

mass-preserving filtering tackles effectively the very common problem of false positive

Fig. 8 Accuracy of AGAMEMNON against a single-cell microbial community in terms of relative abundance.
As stated in the Sic-Seq article, the Read Counting values emerged after counting cells under bright-field
microscopy, and thus, we consider read counting as the ground truth. Microbial abundance quantification
using AGAMEMNON remains highly accurate even in single-cell samples
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counts in metagenomic analyses. This series of innovations enable AGAMEMNON to

perform hypothesis-free quantification of diverse samples without requiring the cre-

ation of custom-tailored indexes, while exhibiting higher or equally good accuracy be-

tween all the state-of-the-art methods that were tested.

Importantly, on top of AGAMEMNON’s quantification results, an R-Shiny applica-

tion offers numerous downstream analyses modules that will push the envelope further,

enabling users to explore and visualize microbial abundances but also conduct differen-

tial abundance and diversity index analyses through a user-friendly graphical interface.

AGAMEMNON inherently supports the analysis of single-microbe sequencing exper-

iments, such as SiC-Seq, returning abundance estimates concordant to bright light mi-

croscopy. It also comprises additional modules, enabling the detection and

quantification of contaminants as well as the streamlined extraction of microbial abun-

dances with strain resolution directly from host tissue/body fluid RNA-Seq/DNA-Seq

samples. This module provides dramatically increased accuracy compared to GATK

PathSeq, enabling the acquisition of highly accurate microbial abundances from exist-

ing studies lacking a microbial arm.

In summary, AGAMEMNON improves the accuracy of microbial abundance quanti-

fication at the genus, species, and strain level, while being efficient in terms of RAM

and computational time for the alignment-based class of implementations. Its best-in-

class host-specific analysis capabilities and use-case versatility could enable a larger part

of the community to incorporate metagenomic/metatranscriptomic investigations in

their research.

Methods
Mapping and quantification

AGAMEMNON is implemented under a modular approach, where all modules are inter-

connected using the Snakemake workflow management system [59]. This approach en-

ables users also to add functionality or substitute modules based on their needs. The

mapping/quantification modules employ pufferfish to construct the microbial index using

the provided reference and selective alignment to map the sequencing reads. At the quan-

tification step, the abundance of each taxon is reported and we translate the raw results to

a taxonomy-associated results file using the information provided by NCBI taxonomy

database [60]. In cases where AGAMEMNON is applied to host-associated tissue/cell

RNA/DNA samples, HISAT2 [50] is utilized to distinguish host/microbial reads, which

are then forwarded for further analyses. After host read removal, AGAMEMNON per-

forms a second alignment round against the bacteriophage PhiX genome which is com-

monly used for calibration control, as well as for color balancing and quality monitoring

in Illumina sequencing. Users can extend the index of the second step, in order to add

spike-ins or contaminants. After the host and sequencing control reads are removed,

AGAMEMNON will continue with the identification and quantification of microbial frag-

ments as described above using the unaligned sequencing reads.

Indexing of microbial genomes

Pufferfish is an index based upon a compacted colored de-Bruijn graph that is able to

index a large set of reference sequences efficiently [35]. Pufferfish indexes all the
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subsequences of length k (k-mers) of the reference sequences by constructing a mini-

mum perfect hash (MPFH) [61] from the set of all k-mers. For each k-mer, Pufferfish

keeps track of the k-mer’s position in a global contig sequence, from which it is pos-

sible to recover the contig ID in which the k-mer appears, and its relative position on

the contig. This is necessary specifically for verifying the existence of k-mers at the time

of query, since minimal perfect hash functions do not guarantee to reject keys (k-mers)

that were not present in the set on which they were constructed. Furthermore, for each

contig, pufferfish stores the following information: the reference IDs in which the con-

tig appears, the location of the contig in each reference, and the orientation by which

the contig maps to each reference. The pufferfish index utilizes TwoPaco [62] for con-

structing the compacted de-Bruijn graph efficiently from the set of all reference

sequences.

Mapping of sequencing reads

The Pufferfish index enables the rapid mapping of reads from a microbial sample to a

large number of genome references. First, k-mers from a read are queried in the index,

and where they match, they are extended to maximal matches to retrieve all the loca-

tions on the compacted de-Bruijn graph where maximal matching substrings of the

read exist. These matches are called Maximal Exact Matches on a unitig [63] (uni-

MEMs), where a unitig is a contig subtype, defined as the sequence of non-branching

paths (unipaths) in the de-Bruijn graph. Subsequently, the uni-MEMs on the com-

pacted contigs are projected to the reference-based MEMs based on the position of

contigs on the reference sequences in which they exist. On each reference, the MEMs

are chained together by adopting the dynamic programming algorithm introduced in

minimap2 [64] to find high scoring chains of MEMs. High scoring chains tend to in-

clude long matches between the read and the reference. Therefore, selective alignment

[65] only aligns the regions between extended matches to compute the alignment

scores. In this approach, a candidate search space is selected by finding the best MEM

chains which are perfect matches of the read and the reference and later aligning the

remaining gaps between the MEMs or at the two ends of the read to the selected refer-

ence. This hybrid approach increases the accuracy of the final alignment results while

keeping the performance close to the fast and efficient exact mapping tools. The align-

ment of between-MEM regions is calculated by KSW2 [64, 66].

Using the alignment scores, any mapping of the reads which falls below a threshold is

discarded. By default, the alignment score of a mapping should be at least 65% of the

best possible alignment score for a read of the given length. This threshold allows filter-

ing based on the quality of the match between the query and reference, so that only

sufficiently high-quality matches are used for calculating the abundance of genomes.

This can result in more accurate abundance estimation than methods that do not score

and filter the actual alignments implied by exact matches. Furthermore, a higher align-

ment score indicates a higher probability of a read originating from a location, espe-

cially in the case of multi-mapping. In fact, in this model of quantification, the

alignment scores are used for computing the conditional probability of a read being se-

quenced from a specific reference strain. Improving the abundance estimations of mi-

crobial samples by using the alignment information is also explored in other
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quantification methods such as Karp [67] which also considers the base-quality infor-

mation to calculate the conditional probabilities, though we did not find that informa-

tion to considerably improve abundance estimation in our case (data not shown).

Quantification of microbial fragments

We model the problem of estimating the expression of microbial strains by adopting

the generative model introduced in RSEM [68] for quantification of RNA-seq reads. In

that model, each fragment is generated by first selecting a reference sequence and then

a position on the reference. Therefore, if we assume the same model for generating mi-

crobial reads, we can write the likelihood of observing the set of fragments given a dis-

tribution for the strain expressions as follows:

L θ : Fð Þ ¼
Y
f jϵF

XM
i¼1

Pr rijθð Þ Pr f jjri
� �

where M is number of the strains, F is set of all fragments in the sample, and θ is the

parameter showing the strains expression estimation, Pr(ri| θ) is the prior probability of

selecting strain ri and Pr(fj| ri) is the conditional probability of generating fragment fj
from reference ri.

To compute Pr(fj| ri), we evaluate the compatibility of fragment fj with the reference

ri by considering the alignment score computed by PuffAligner [69]. Furthermore, we

also consider the effective length and coverage ratio of the reference for computing the

prior probability of selecting a strain to be sequenced.

In this step of the pipeline, we use the expectation maximization (EM) algorithm for es-

timating θ, abundances at the level of strains. We apply this iterative algorithm over a re-

duced representation of the data provided by rich equivalence classes [70] until the

parameter estimates converge or we reach the maximum allowed number of iterations.

This reduction makes the optimization of the objective function practically tractable by

decreasing the amount of computation for the large space of fragment associated vari-

ables. As per definition, two fragments fi and fj are equivalent if they align to the exact

same set of references, in which case, they belong to the equivalence class that is labeled

by those references. In the new optimization process, the likelihood objective function

that is optimized is the probability of observing the set of equivalence classes rather than

read fragments with the frequency of each equivalence class defined by total number of

reads belonging to that class. Subsequently, we adjust the objective function for different

biases in the data such as variation of coverage for references belonging to the same

equivalence class, an identical process to the one followed in Salmon [70], as well as by

applying the range factorization improvement to break the equivalence classes into more

fine-tuned and accurate approximations of the fragment distributions without the loss of

tractability and performance, as explained in Zakeri et al. [71]. The likelihood function

after representing all the fragments as range factorized equivalent classes is:

L θ : Fð Þ �
Y
F q∈C

X
ri∈Ω F qð Þ Pr rijθð Þ Pr f jF q; rið Þ

� �Nq

where C is the set of all equivalent classes, ΩðF qÞ is the set of all strains in equivalent

class F q , Nq is the number of fragments in the equivalent class F q , and ð f jF q; riÞ is
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the conditional probability of observing a fragment from strain ri in equivalent class

F q . As shown by the equation, we treat all the Nq fragments in the equivalent class F q

equally and assign the same conditional probabilities to them given each strain. Sum-

marizing the fragments into equivalent classes reduces the number of updates required

in each EM iteration and therefore improves the efficiency of the EM algorithm.

In many metagenomic quantification tasks, considering the depth of the high-

throughput sequencing techniques and the large amount of sequence similarity across

genomes, low abundance sequences or taxa are usually discarded from the quantifica-

tion results. One solution proposed to avoid reporting a large number of false positive

genomes is having a post-filtering step to discard references with abundances smaller

than a predefined cutoff value or discard all the multi-mapped reads [34, 67]. This

post-filtering results in losing the reads that were mapped to those discarded refer-

ences. However, in our pipeline, rather than discarding these reads, we keep and dis-

tribute them among the remaining references. This can help better estimate the counts

of the remaining references based on the following principles:

1. Each read is supposed to be the output of a sequencing process and contains

information, so discarding the read implies losing information.

2. Each read can be multi-mapped to the true origin and some other references in

case of no errors in the sequencing.

3. The sequencing error rate is low and if the mapping tool allows sub-optimal map-

pings, we can rely on the fact that we almost always have the true genome of origin

among the set of references for a multi-mapped read.

Considering these observations, we augment the EM algorithm with an iterative,

mass-preserving thresholding step.

Iterative thresholding is the solution we propose to tackle the problem of sparsifying

the abundance report at which we arrive without the loss of reads. Throughout the EM

process, at the beginning of every k iterations (default k = 10), we go over the following

four steps of thresholding:

1. Mark references as potentially removable (PR): We examine all references and

mark a reference as potentially removable if it has a count smaller than or equal to

the given cutoff. Our main goal is to discard as many references as possible from

the list of potentially removable references without losing any reads.

2. Remove safe PR references immediately: A read will be lost if all the references

that are equivalent over this read are discarded as the equivalence class that the

read belongs to will contain no remaining references. Therefore, out of the list of

the PR references, those for which there is a non-PR reference belonging to each

equivalence class in which this reference appears in the label can be safely

removed.

3. Solve the set-cover problem for unsafe PR references: For any reference in the

remaining set of PR references, there exists at least one equivalence class such that

all of its references are PR, including . We call such equivalence classes critical

equivalence classes, and according to our goal, we want to determine a minimum
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number of PR references that can cover all critical equivalence classes, while still

assuring that each aligned read can still be allocated to a retained reference. The

problem can be easily reduced to set-cover. Each reference represents a set of crit-

ical equivalence classes (those that it is part of), and we want to select the mini-

mum number of sets (i.e., references) that can explain all the set members (i.e.,

critical equivalence classes). Set-cover is NP-Hard [72]; therefore, we employ the

greedy approximation algorithm to obtain a set of retained references. The

remaining elements (i.e., genomes) at the end of the set-cover process are those

that cannot be removed. For the rest of the list, we can safely remove them without

losing any reads.

4. Update equivalence classes: In the last step, we need to update all equivalence

classes that have lost any reference and the weights of the references for the next

iterations of EM.

We would like to mention that even tough modifying the list of genomes through it-

erative thresholding introduces a new likelihood function at each EM step, the EM al-

gorithm’s termination is still guaranteed. When we perform a set-cover step, either it is

idempotent, and so the set of references remains the same, and the termination of the

procedure follows from the termination of the EM, or we remove at least one reference.

But we can remove a reference at most N times (N = number of references). So, this

procedure must always terminate.

Simulated, synthetic, and real data sets

To evaluate the accuracy of AGAMEMNON in a setting where the true microbial

abundance levels are known, we used both a simulated [40] and a synthetic dataset [41]

of a predefined mock microbial community (mock), but also constructed two mixed

host-microbiome simulated data sets using ART [51]. Moreover, we used three shotgun

metagenomics sequencing experiments from human stool samples. Finally, we used

seven real samples from three [43–45] additional studies for which the actual bacterial

abundances were measured independently prior to sequencing. The simulated dataset

Illumina 400 is a publicly available complex simulated microbial community compris-

ing more than 240 microbial genera belonging to more than 350 different species scat-

tered in 400 sub-species/strains. It consists of ~ 20 million paired-end reads with an

average read length of 75 bp. The synthetic dataset is publicly available and produced

by conducting a real shotgun metagenomics sequencing experiment in a predefined

mock microbial community. It comprises 12 bacterial strains belonging to 2 phyla. It

consists of 215 million paired-end reads with a read length of 150 bp.

We also constructed two mixed host-microbiome simulated data sets comprising

reads originating from the human genome (GRCh38 primary assembly), and 18 bacter-

ial genomes. The two simulated data sets comprise ~ 64 million and ~ 67 million,

paired-end reads, respectively, with a read length of 125 bp. The fragment mean size

was set to 300 bp and the standard deviation of fragments was set to 50 bp. Finally, in

order to simulate the sequencing error and the per base-quality scores, we used an

empirical-error model of the Illumina HiSeq 2500 system, as implemented in ART [73].

The fraction of microbial reads in relation to the total number of reads for each of the
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two data sets, is equal to 7.53% and 3.77%, respectively. On a real experiment, we ex-

pect sequencing reads to appear in random order, and thus, all of the simulated data-

sets above were randomly shuffled once prior to benchmarking. Finally, we quality-

checked, pre-processed, and used three real shotgun metagenomics sequencing samples

(with unknown abundances) to assess the potentiality of the methods in experimentally

derived, human gut datasets and seven real shotgun metagenomics sequencing samples

with known bacterial abundances. After the pre-processing step, the three samples

comprise ~ 111 million, ~ 82 million, and ~ 92 million, paired-end reads, respectively,

with an average read length of 101 bp. The seven (paired-end) samples comprise ~ 4.M,

~ 6M, ~ 5.4M, ~ 19M, ~ 26M, ~ 2.5 M, and ~ 5.4 M reads respectively. The range of

their read length is between 40 and 150. Their accession numbers are listed in Add-

itional file 4: Supplementary Table S9 - “BENCHMARK-Real samples.”

Benchmark details

We benchmarked AGAMEMNON against MetaPhlAn 3 [18], Kraken 2 [39], Bracken

[34], Kallisto [21, 22], and Kaiju [20] using simulated, synthetic, and real datasets. For the

simulated dataset [40], we mapped the sequencing reads against two references (REF-1

and REF-3, Additional file 4: Supplementary Table S3 - “Benchmark references”) for Kra-

ken 2, Bracken, and AGAMEMNON. We were not able to run meta-Kallisto in the Illu-

mina 400/REF-3 test since the indexing step of REF-3 required more RAM than what was

available in our largest server instance (512 GB), and thus, it was only included in the Illu-

mina 400/REF-1 scenario. Also, Kaiju was not considered at the Illumina 400 dataset

comparisons since its index already includes the omitted genomes. The REF-1 reference

incorporates all of the representative, reference bacterial, and archaeal genomes from

NCBI RefSeq. In this reference, ~ 36% (143 out of 400) of the microbial genomes present

in the simulated dataset are missing. The total number of complete genomes for REF-1 is

1840. The REF-3 reference incorporates all of the complete/assembled microbial genomes

from NCBI RefSeq (44,694 sequences, ~ 8600 genomes). Importantly, 63% of all genomes

(i.e., 252 entire genomes) from reference 3 that are part of the Illumina 400 simulated

dataset have been removed. After the aforementioned removal, reference 3 contains only

148 out of the 400 genomes that are part of the Illumina 400 dataset. Furthermore, 100%

of all genomes and species present in the synthetic dataset (i.e., 12 out of 12 strains/spe-

cies) are not included in the REF-3 index.

For the synthetic dataset [41], we used two references (REF-2, REF-3, Additional file

4: Supplementary Table S3 - “Benchmark references”) for Kraken 2, Bracken, and

AGAMEMNON. For the aforementioned reasons, meta-Kallisto was not included in

the Synthetic dataset/REF-3 test and Kaiju was not considered in the Synthetic/REF-2

scenario. The REF-2 reference incorporates all of the representative, reference bacterial,

and archaeal genomes from NCBI RefSeq and all microbial genomes present in the syn-

thetic dataset.

For the seven real samples with known abundances, we used REF-3 and REF-4. Refer-

ence 3 was used against all seven samples while REF-4, which is a subset of REF-3, was

used on one (SRR2726667). REF-4 was constructed by completely removing all the ge-

nomes belonging to 9 species present in sample SRR2726667. In these comparisons, we

were not able to run meta-Kallisto since the indexing step for REFs 3 and 4 required
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more RAM than what was available in our largest server instance (512 GB). Kaiju was

not considered in the REF-4—sample SRR2726667 comparison since its index already

includes the omitted species.

Prior to benchmarking, we quality-checked and pre-processed the simulated, syn-

thetic, and real datasets using FastQC [74] and cutadapt [75]. We mainly focused on

the trimming of low-quality bases (i.e., trimming bases with a Phred score < 10 and

keeping only reads with minimum length > 35 bp).

For all accuracy tests mentioned above, we used the Mean Squared Log Error (MSLE)

accuracy metric and the number of false positive taxa identified by each method. In

order to calculate the metrics between the true and estimated counts and to produce

the manuscript plots, we used R versions 3.6 and 4.0.

Finally, we benchmarked AGAMEMNON against GATK PathSeq [27] and

HUMAnN3 (KneadData + MetaPhlAn 3) using two mixed host-microbiome simulated

datasets. GATK PathSeq’s output contains (a) read counts for all of the TaxID’s

(strains, sub-species) with at least 1 assigned read and (b) all other taxonomic ranks

(species, genus, family, etc.) up to the root node of the lineage by summing up read

counts of the lower taxa. In order to calculate GATK PathSeq’s results at the TaxID

level (strains, sub-species), we selected all common TaxID’s between the reference,

GATK PathSeq’s output, and AGAMEMNON’s output and for all of the higher taxo-

nomic ranks, we grouped them appropriately and summed them up until we reach the

rank of interest. In addition, for every taxon, GATK PathSeq contains two read count

fields, the first refers to unambiguous reads and the second to all reads (ambiguous, un-

ambiguous). In the results, the “reads” field is reported, since it refers to all reads, com-

prising uniquely and multi-mapped reads. For all three methods, in all scenarios, we

used the GRCh38 primary assembly genome and a subset of the human-specific refer-

ence (human-subset, Additional file 4: Supplementary Table S3 - “Benchmark refer-

ences”) to map the host’s and microbiome reads respectively. We measured the

execution time and peak RAM memory using Linux bin/time. All tests were performed

on a CentOS Linux release 7.5.1804 server with two Intel Xeon processors (12 cores

each, 48 threads total) and 512 GB of RAM.

Accuracy metrics

The mean squared log error (MSLE) was computed using the following formula:

L y; ŷð Þ ¼ 1
N

XN
i¼0

log yiþ 1ð Þ− log ŷiþ 1ð Þð Þ2

where y and ŷ are numeric vectors comprising the ground truth and estimated read

counts respectively. N is the total number of reported microbes by each method. In

Figs. 3 and 4 and Additional file 1: Fig. S1 and Figs. S3-S7, we first calculated MSLE (a)

using results without any filtering (0 x axis tick) and (b) by removing all microbial in-

stances where the true and estimated read counts were both zero (1 x axis tick). The

filtering step conducted in (b) prior to MSLE calculation, affects the y and ŷ vectors

(i.e., it removes the values that are zero-abundant in both the ground truth and the esti-

mated counts from the vectors) but also changes N (i.e., it reduces it to the new total

number of observations after removal of the zero-abundant taxa). In Fig. 6, the same
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procedure was followed, but this time we started by using results without any filtering

up to the threshold of 300 reads using 5 read step increments. For instance, when the

read threshold is 25, all microbial taxa with < 25 assigned reads are removed from both

y and ŷ vectors and MSLE is re-calculated with the updated vectors and the updated N

value.

The number of false positive taxa was counted for sequential read thresholds between

0 and 10 (1 read step increment) for Figs. 3 and 4 and Additional file 1: Fig. S1 and

Figs. S3-S7 as well as between 0 and 300 (5 read step increment) for Fig. 6. At the zero

read threshold (no filtering), all false positive taxa were counted, even those with only 1

read assigned to them. As the read threshold increases, only the taxa reaching and ex-

ceeding it are taken into account.

ENCODE data sets

The analysis presented in Additional file 1: Figs S8, S9 was performed using 16 samples

originating from Peyer’s patch, sigmoid colon, stomach, and transverse colon tissues

from publicly available ENCODE data. The accession numbers and associated informa-

tion are listed in Additional file 4: Supplementary Table S6 - “ENCODE samples.” All

samples were analyzed using AGAMEMNON’s host-associated tissue-specific mode.

Since we analyzed human samples, we used AGAMEMNON’s ready-to-use human mi-

crobial reference. All sequencing datasets have been produced by the same laboratory

(Thomas Gingeras Lab, CSHL). As stated in the protocol section of the sequencing ex-

periments, Ambion mix 1 spike-ins were utilized for sequencing control, and thus, the

second alignment round of AGAMEMNON was used to remove these spike-ins and

not the default PhiX. All utilized ENCODE data sets were quality-checked and pre-

processed using FastQC [74] and cutadapt [75] once prior to the analysis.

Single-cell artificial microbial community analyses

We used AGAMEMNON to analyze an artificial microbial community originating from

a microbial single-cell sequencing technique (SiC-Seq) [38]. The community consists of

8 bacterial species and 2 yeasts. We created a reference comprising 116 complete ge-

nomes (278 sequences) including the genomes used to create the synthetic community.

The rest of the genomes were microorganisms belonging to the same genera as the spe-

cies used for the construction of the synthetic microbial community (Additional file 4:

Supplementary Table S5 - “single-cell genomes”). We quality-checked and pre-

processed the SiC-Seq dataset by grouping the reads under the barcode they belong

and removed all barcodes with < 50 reads, yielding a little more than 48,000 unique

barcode groups (cells). We then applied AGAMEMNON to identify and quantify the

abundances of the microbial species. Finally, similarly to the analyses conducted in Lan

et al. [38], we considered the most commonly mapped species (in terms of read counts)

as the species from which the cell originates. We then counted the number of cells per

species, divided with the total number of cells and multiplied by 100 to acquire the spe-

cies’ relative abundances. We utilized the bright-field microscopy results from SiC-Seq

paper as the reference annotation for this dataset and to derive AGAMENON’s accur-

acy in single-cell data.
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Ready-to-use microbial references

AGAMEMNON supports a wide variety of research settings including investigations of

microbial abundance (Genus, Species, sub-Species) in host-derived samples (tissue/cell

RNA/DNA, fecal). Therefore, we created 4 distinct indices to support different analysis

scenarios: (A) Human microbiome: a manually curated dataset for use in human-

specific investigations. This human-specific reference comprises ~ 2233 bacterial and

10 archaeal genomes, mainly retrieved from the Human Microbiome Project [2] and a

manually curated corpus of independent studies which comprised samples from differ-

ent human body sites (Additional file 4: Supplementary Table S4 - “Ready-to-use refer-

ences”). (B) NCBI Complete Species: the second ready-to-use reference has a more

generic nature, comprising all of the NCBI’s complete species and reference bacterial

genomes, amounting to ~ 1687 bacterial genomes, 138 reference archaeal genomes, and

17 eukaryotic genomes (Additional file 4: Supplementary Table S4 - “Ready-to-use ref-

erences”). (C) Common Cell Biology Contaminants: the third reference contains ~ 120

common contaminant microbial organisms derived from curating the literature to sup-

port analyses where AGAMEMNON is used for contaminant detection (Additional file

4: Supplementary Table S4 - “Ready-to-use references”). (D) Expanded Common Con-

taminants: Finally, the fourth and final reference consists of the dataset C), expanded

with ~ 1300 viral vector sequences (Additional file 4: Supplementary Table S4 -

“Ready-to-use references”).

Visualizations and data exploration modules

Using R-Shiny, we developed a graphical user interface for the interactive visualization

and exploration of the results produced by AGAMEMNON (Fig. 7). Apart from the vi-

sualizations and exploratory modes, AGAMEMNON also hosts a set of meta-analysis

modules that can be executed on-the-fly. The application supports heatmaps, boxplots,

and Manhattan plots of the microbial abundances and/or expression, taxa identified,

and the detection rates per sample, or any other phenotypic characteristic upon selec-

tion. Users can select grouping variables and perform exploratory investigations in real

time. The meta-analysis modules include diversity index analyses (Shannon, Simpson),

principal component analysis (PCA), and multidimensional scaling (MDS) while sup-

porting between different types of distances (Bray-Curtis, Euclidean, Canberra, etc.).

Importantly, users can perform differential abundance/expression analyses using differ-

ent models and methods directly from AGAMEMNON. Finally, the application offers a

series of interactive data tables containing the phenotypic information and full lineages

of the microbial genomes identified. Under the hood, our Shiny application is devel-

oped in R using a series of R libraries including Shiny, metagenomeSeq, and biomfor-

mat [76].

Differential abundance/expression analysis statistical models

The differential abundance and expression analysis module is implemented in R and

designed to support a wide spectrum of research settings and scenarios. The default

method is the Zero-Inflated Log-Normal distribution mixture-model with posterior

probability weighing from metagenomeSeq package (fitFeatureModel) [15]. AGAMEM-

NON also supports limma with mean-variance modelling at the observational level
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(voom) for generalized linear model analyses, as well as limma with precision weights

per sample to account for variations in precision between different observations [77].

DESeq2 [55] has been incorporated as a robust negative-binomial distribution-based

method. For single cell or datasets with high numbers of dropouts or sparsity, we im-

plemented the likelihood ratio test (LRT) or quasi-likelihood F-tests (QLF) from the

edgeR package (in R) which have been shown as quite robust in such scenarios [56].

Single-cell metagenomics analysis

The single-cell module is responsible to split reads into read groups (e.g., cells or wells

depending on the library preparation) and to keep track of them across the mapping

and quantification engine. Users can provide read structure and/or an index table (de-

pending on the prep). Due to the nature of the single-cell library-prep protocols, there

is a strong possibility that some cells will end up with a small number of sequencing

reads. Users can select a threshold parameter for cells to be forwarded to downstream

analyses and visualizations. AGAMEMNON takes into account the sparsity of single-

cell approaches also in the differential abundance analyses, whereas mentioned in the

relevant section above, it offers methods shown to be robust in such settings such as

edgeR-LRT and edgeR-QLF [56].

Software versions, options, data acquisition

All tests were performed with Kaiju v1.8, MetaPhlAn v3, Kallisto v0.44.0, Kraken 2

v2.0.8, Bracken v2.0 GATK PathSeq, KneadData, and AGAMEMNON-v0.1.0. All of the

methods, including AGAMEMNON, were run with default parameters. Genomes were

downloaded from NCBI on Nov 27 2019 (for REF-1 and REF-2) and on May 4 2021

(for REF-3, REF-4).
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