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Epidemiological data suggests increased prevalence of asthma in females than males,
suggesting a plausible role for sex-steroids, especially estrogen in the lungs. Estrogen
primarily acts through estrogen-receptors (ERa and ERb), which play a differential role in
asthma. Our previous studies demonstrated increased expression of ERb in asthmatic
human airway smooth muscle (ASM) cells and its activation diminished ASM proliferation
in vitro and airway hyperresponsiveness (AHR) in vivo in a mouse (wild-type, WT) model of
asthma. In this study, we evaluated the receptor specific effect of circulating endogenous
estrogen in regulating AHR and remodeling using ERa and ERb knockout (KO) mice.
C57BL/6J WT, ERa KO, and ERb KO mice were challenged intranasally with a mixed-
allergen (MA) or PBS. Lung function was measured using flexiVent followed by collection
of broncho-alveolar lavage fluid for differential leukocyte count (DLC), histology using
hematoxylin and eosin (H&E) and Sirius red-fast green (SRFG) and detecting asmooth
muscle actin (a-SMA), fibronectin and vimentin expression using immunofluorescence (IF).
Resistance (Rrs), elastance (Ers), tissue-damping (G) and tissue-elasticity (H) were
significantly increased, whereas compliance (Crs) was significantly decreased in WT,
ERa KO, and ERb KO mice (males and females) challenged with MA compared to PBS.
Interestingly, ERb KO mice showed declined lung function compared to ERa KO and WT
mice at baseline. MA induced AHR, remodeling and immune-cell infiltration was more
prominent in females compared to males across all populations, while ERb KO females
showed maximum AHR and DLC, except for neutrophil count. Histology using H&E
suggests increased smooth muscle mass in airways with recruitment of inflammatory
cells, while SRFG staining showed increased collagen deposition in MA challenged ERb
KO mice compared to ERa KO and WT mice (males and females), with pronounced
effects in ERb KO females. Furthermore, IF studies showed increased expression of a-
SMA, fibronectin and vimentin in MA challenged populations compared to PBS, with
prominent changes in ERb KO females. This novel study indicates ERb plays a pivotal role
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in airway remodeling and AHR and understanding the mechanisms involved might help to
surface it out as a potential target to treat asthma.
Keywords: estrogen receptor alpha, sex difference, mixed allergen, flexiVent, fibronectin, collagen, vimentin,
a-smooth muscle actin
INTRODUCTION

Asthma is a chronic respiratory disorder causing significant
morbidity and mortality worldwide. It is an intricate disorder
involving diverse pathophysiologies affecting respiratory structure
and thereby function (Townsend et al., 2012a; Prakash, 2013; Raju
et al., 2014; Prakash, 2016; Raju et al., 2016). Asthma is
characterized by inflammation and remodeling in the airways
contributing to airway hyperresponsiveness (AHR) leading to
episodic bronchoconstriction’s (Holgate et al., 2009; Prakash,
2013; Prakash and Martin, 2014; Sathish et al., 2015b; Prakash,
2016). Epidemiological data suggests a role of sex in a variety of
lung diseases, especially asthma (Riffo-Vasquez et al., 2007; Antunes
et al., 2010; Bonds and Midoro-Horiuti, 2013; Lingappan et al.,
2016; Wang et al., 2016; DeBoer et al., 2018; Fuentes and Silveyra,
2018; Fuentes and Silveyra, 2019a; Naeem and Silveyra, 2019).

In addition to genetic and environmental factors, sex/gender
difference plays a pivotal role in the pathophysiology of asthma
(Clough, 1993; Weiss and Gold, 1995; de Marco et al., 2000;
Caracta, 2003; Carey et al., 2007b; Card and Zeldin, 2009; Woods
et al., 2010; Townsend et al., 2012a; Cabello et al., 2015; Mishra
et al., 2016; Fuentes et al., 2018; Fuentes and Silveyra, 2019b;
Kalidhindi et al., 2019b). Incidence of asthma is more common
in pre-pubescent boys and adult women and the severity of
asthma is increased during pregnancy (de Marco et al., 2000;
Caracta, 2003; Carey et al., 2007b; Bonds and Midoro-Horiuti,
2013). In this context, multiple studies have explored and
suggested a role for sex hormones in airway biology, especially
estrogen (Keselman and Heller, 2015; Sathish et al., 2015a;
Ambhore et al., 2018; Fuentes and Silveyra, 2018; Ambhore
et al., 2019a; Ambhore et al., 2019b; Bhallamudi et al., 2019;
Fuentes et al., 2019; Fuentes and Silveyra, 2019a). However, there
is still a debate on the contradicting role of estrogen as few
studies suggest its role in reducing inflammation (Myers and
Sherman, 1994; Lieberman et al., 1995; Haggerty et al., 2003),
while others suggest estrogen to induce AHR and inflammation
(Riffo-Vasquez et al., 2007; Sakazaki et al., 2008). This warrants a
more meticulous study involving receptor specific signaling of
estrogen to understand its role in the pathophysiology of asthma.

Estrogen primarily acts through estrogen receptors (ER) ERa
and ERb, which are widely considered to be nuclear receptors
(Altucci and Gronemeyer, 2001). Multiple studies suggest both
ERa and ERb signal through different cell signaling pathways
eliciting different effects on cellular functions (Kuiper et al., 1996;
Clarke et al., 2003; Heldring et al., 2007; Edvardsson et al., 2011;
Williams and Lin, 2013; Aravamudan et al., 2017; Ambhore et al.,
2018; Ambhore et al., 2019b; Bhallamudi et al., 2019; Fuentes and
Silveyra, 2019a). ER’s are expressed on a wide array of cells and
our group has recently showed differential ER expression in
human ASM cells, which is upregulated during inflammation/
in.org 2
asthma (especially ERb) (Aravamudan et al. , 2017).
Furthermore, we have also shown that ERb activation inhibits
PDGF induced proliferation in primary human ASM cells via
AKT/ERK/p38 pathways (Ambhore et al., 2018). Many studies
have shown the impact of ER signaling on asthma in vitro
(Townsend et al., 2010; Townsend et al., 2012b; Martin et al.,
2015; Sathish et al., 2015a; Aravamudan et al., 2017; Ambhore
et al., 2018; Ambhore et al., 2019b; Bhallamudi et al., 2019);
however, very few studies have explored the role of estrogen in
asthma in vivo (Carey et al., 2007a; Carey et al., 2007c; Riffo-
Vasquez et al., 2007; Dimitropoulou et al., 2009; Jia et al., 2011).
Few studies reported down-regulated AHR upon administration
of estrogen in females and OVX mice; however, the receptor-
specific role of estrogen has not been explored (Riffo-Vasquez
et al., 2007; Matsubara et al., 2008; Dimitropoulou et al., 2009).
Our recent study in wild type C57BL6/J mice shows that ERb
activation using pharmacological agonists alleviates AHR and
airway remodeling in a mixed allergen-induced mouse model of
asthma (Ambhore et al., 2019a).

Although, pharmacological agonists specifically activate the
respective receptors, there happen to be various artifacts
influencing the outcomes. In the advent of recent advancements
in genome engineering and the arrival of receptor-specific
knockout mice, we wanted to confirm our hypothesis using
ERa and ERb specific knockout mice. In the context of
estrogen receptor-specific knockout and its effect on asthma,
Carey et al. (2007a) have performed a study in ER specific
knockout mice, but have mainly focused on ERa KO mice and
have reported limited data on ERbKOmice. An interesting fact to
note here is that ERb expression is increased multifold during
asthma when compared at baseline (Aravamudan et al., 2017),
justifying the need for in vivo study in the context of asthma.
Considering these facts, we performed a comprehensive study to
identify the role of ER specific signaling of endogenous estrogen
during asthma in a mixed allergen (MA) induced murine model
of asthma in ER specific knockout mice (ERa and ERb). In this
study, we found that ERb knock out mice show exacerbated AHR
and remodeling, while ERa knock out mice show reduced AHR
and remodeling upon MA challenge when compared to wild type
mice. Interestingly, in comparison between male and female mice,
females from all study population showed a higher degree of AHR
and airway remodeling compared to males.
MATERIALS AND METHODS

Animals
Animal study protocol in this study was approved by the
Institutional Animal Care and Use Committee at North
February 2020 | Volume 10 | Article 1499
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Dakota State University and conducted in accordance with
guidelines derived from the National Institutes of Health’s
Guide for the Care and Use of Laboratory Animals. ERa
(Stock No: 004744, B6.129P2-Esr1tm1Ksk/J) and ERb (Stock No:
004745, B6.129P2-Esr2tm1Unc/J) knock out heterozygous
breeding pairs of C57BL/6J background were procured from
Jackson Labs (Bar Harbor, ME). All the mice used in this study
were homozygous obtained from in-house breeding using ERa
or ERb knock out heterozygous breeding pairs. Obtained litters
were separated based on genotyping and the resultant wild type
mice and knockout mice were used for the study. Mice were
always housed under constant temperature and 12 h light and
dark cycles provided with food and water ad libitum. Mice from
either gender were used in this study with a minimum of 5–6
mice in each group.

Genotyping
The pups obtained from the breeding process were subjected to
genotyping after 7 weeks using a tail biopsy method following
instructions provided by Jackson laboratories (Bar Harbour,
ME). The genomic DNA from mouse-tails were isolated by a
hotshot method. Briefly, the collected tail snips were
homogenized in alkaline buffer (75 µl of 25mM NaOH and
0.2mM EDTA pH 8 solution) followed by heating at 95 °C for 30
min and immediately cooling at 4°C for 15 min. Later
Neutralizing buffer (75µl of 40mM Tris HCL) was added and
the resultant DNA was used for PCR using following primer
sequences; for ERa (WT 5′GTAGAAGGCGGGAGGGCCGG
TGTC-3′, Common 5′-TACGGCCAGTCGGGC ATC-3′,
Mutant 5′-GCTACTTCCATTTGTCACGTCC-3′) and ERb
(WT 5′-GTTGTGCCAGCCCT GTTACT-3′, Common 5′- TC
ACAGGACCAGACACCGTA-3′, Mutant 5′- GCAGCCTCT
GTTC CACATACAC-3′). The obtained cDNA then subjected
to agarose gel electrophoresis in a 2% gel and viewed in a LICOR
gel imaging station. Mice DNA samples showing 2 bands (300 bp
and 234 bp for ERa and 160 bp and 106 bp for ERb) were
designated as heterozygous, samples showing a single band at
160 bp for ERb and 300 bp for ERa were designated as Knockout
Frontiers in Pharmacology | www.frontiersin.org 3
and DNA samples showing 234 bp and 106 bp were designated
as wild type (Figures 1B, C).

Mixed Allergen (MA) Exposure
Mice allotted to mixed allergen (MA) group were administered
intranasally with a mixture of equal amounts (10 mg) of
ovalbumin (Sigma Aldrich, USA), and extracts from Alternaria
alternata, Aspergillus fumigatus, and Dermatophagoides farinae
(Greer labs, USA) for 4 weeks in phosphate-buffered saline
(PBS), while PBS alone was administered as a vehicle for 28
days on every alternate day (Figure 1A) (Iijima et al., 2014;
Yarova et al., 2015; Ambhore et al., 2019a; Britt et al., 2019;
Loganathan et al., 2019).

Lung Function Using Flexivent
All mice were subjected to flexiVent (Scireq, Montreal, Canada)
analysis on day 28 to determine respiratory resistance (Rrs),
compliance (Crs), elastance (Ers), tissue damping (G) and tissue
elastance (H) according to previously published techniques
(Aravamudan et al., 2012; Yarova et al., 2015; Ambhore et al.,
2019a). The flexiVent based lung function analysis in murine
models works similar to spirometry used to analyze lung
function in humans, except for the fact that it is an invasive
method (Devos et al., 2017). Male and female (WT, ERaKO and
ERbKO) mice were anesthetized using ketamine and xylazine
(100 mg/kg and 10 mg/kg i.p. respectively) and immediately
ventilated mechanically using flexiVent system. Respiratory
resistance (Rrs), elastance (Ers), compliance (Crs), tissue
elastance (H) and tissue damping (G) and were measured
and recorded at baseline (0 mg/mL Methacholine, MCh)
followed by increasing doses of nebulized MCh (6.25, 12.5,
25.0, 50.0 mg/ml, respectively) delivered at 5 min intervals.
The body temperature of mice was consistently maintained at
37°C with a heating pad placed underneath the mice and a bulb
placed above at a 45° angle. Electrocardiogram (ECG) was
monitored throughout the procedure. Mice were euthanized
with an overdose of pentobarbital at the end of the experiment
followed by a collection of broncho-alveolar lavage fluid (BALF).
FIGURE 1 | (A) Experimental design of the study. Genotyping was performed at the age of 7 weeks and mice were grouped according to their genotype. Mixed
allergen (OAAH: 10 mg each of Ovalbumin, Alternaria Alternata, Aspergillus Fumigatus and Dermatophagoides farinae (house dust mite; i.n., intranasal) was
administered on alternate days for 28 days while control mice received phosphate buffer solution as vehicle. (B) Representative image of ERa KO genotyping.
(C) Representative image of ERb KO genotyping.
February 2020 | Volume 10 | Article 1499
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Following this, lungs were inflated with Carnoy’s solution
(100% Ethanol, Chloroform, Glacial acetic acid in a ratio of
6:3:1 with added ferric chloride) and used for histology and
immunofluorescence studies.

Total and Differential Leukocyte Count
in BALF
Estimation of total and differential leukocyte count (DLC) in
BALF was performed following previously published methods
(Thompson et al., 1996; Raju et al., 2014; Ge et al., 2015;
Ambhore et al., 2019a; Kalidhindi et al., 2019a). BALF was
centrifuged at 2000 rpm for 5 min at 4°C and the supernatant
was discarded. The resultant cell pellet was re-suspended in 100
µl of PBS and total leukocyte count was performed using
Countess-II FL cell counter (ThermoFisher, USA). Following
this, a smear was prepared using cytospin and the air dried
smeared slide was stained with Differential Quick Staining Kit
(Modified Giemsa, EMS, USA) and washed with distilled water
for 8 min. The differential cell count was carried out using a
digital light microscope (Olympus, USA) at 100x magnification
by oil immersion technique. At least 200 cells were differentiated
on each slide.

Histopathology Using Hematoxylin and
Eosin (H&E) and Sirius Red and Fast
Green (SRFG) Stains
Standard techniques were employed for histopathological studies
using H&E for morphological analysis (Aravamudan et al., 2012;
Raju et al., 2014; Liu et al., 2017; Ambhore et al., 2019a; Britt
et al., 2019). For SRFG staining to detect collagen deposition
standard technique was followed as per manufacturer’s
instructions (Chrondex, Inc., USA). Stained sections were
scanned using Motic Easy Scan (Motic, Canada). Regions of
interest were captured on the acquired H&E stained images
(20X) using Motic DS Assistant Lite software (Motic, Canada)
followed by analyzing them for ASM thickness using image J
macros (Image j, NIH, USA). ROI’s in SRFG stained sections
were subjected to a blind review and scored on a scale of 1 to 5
with one being minimal collagen deposition and five being
maximum collagen deposition by three independent persons.

Immunofluorescence
Paraffin embedded tissue blocks of mice lungs were sectioned
into 6 µm thick sections using a microtome and transferred onto
a slide. Slides were then incubated at 56°C for 2 h (De-
paraffinization). Following this, antigen retrieval was
performed by steaming the slides for 40 min using Sodium
Citrate Buffer and left to cool down to room temperature for
30 min. Sections were washed with PBS, permeabilized using
0.1% TritonX-100 in PBS for 15 min and blocked using 10% goat
serum for 1 hour at room temperature. Following blocking,
sections were incubated with fibronectin (sc-9068, Santa Cruz
Biotech, USA), vimentin (V5255, Sigma Aldrich, USA) and a-
smooth muscle actin (A2547, Sigma Aldrich, USA) antibodies
overnight at 4°C. The following day, sections were washed with
PBS and incubated with either AF-488 or AF-555 tagged
Frontiers in Pharmacology | www.frontiersin.org 4
secondary antibodies raised against mouse or rabbit for 1 hour
at room temperature. The slides were then washed with PBS and
mounted with coverslips using mounting media loaded with
DAPI. Control slides were subjected to the same process, except
for the addition of primary antibody. Images were captured using
Lionheart Fx imaging station (Biotek, USA) at 10X
magnification. The obtained images were analyzed for total
fluorescence intensity for each protein (Fibronectin, a-smooth
muscle actin and Vimentin) using ImageJ 1.50i version (NIH).

Statistical Analysis
A total of 72 mice were used for this study. Wild type, ERa KO
and ERb KO mice of C57BL/6J background (24 mice in each
group) were sub-divided into two separate subpopulations
based on gender (12 males and 12 females). Each sub-
population was further divided into two groups: PBS and MA
challenged group consisting of six mice in each group. Overall,
the study was performed focused on 3 variables: 1) genetic
background (WT, ERa KO and ERb KO); 2) gender (Male
and Female) and 3) disease condition (PBS and MA-induced
asthma). “n” values represent number of animals. Statistical
analysis was performed using two-way ANOVA followed by
Bonferroni post-hoc multiple comparisons using GraphPad
Prism version 8.1.0 for Windows (GraphPad Software, San
Diego, California USA, www.graphpad.com). All data are
expressed as mean ± SEM. Statistical significance was tested at
the minimum of p < 0.05 level.
RESULTS

Role of Differential ER Signaling on Airway
Resistance (Rrs)
Role of differential ER signaling in mouse lung in vivo was
determined using the flexiVent FX1 module with an in-line
nebulizer (SciReq, Montreal, Canada). The experimental plan
and confirmation of genotyping (representative images) are
shown in Figures 1A, B and C respectively. Mice from all
three-study populations (WT, ERa, and ERb KO) showed a
dose-dependent effect in lung function parameters after
MCh challenge.

Rrs indicates the dynamic resistance of the airways and
quantitatively assesses the level of constriction in the lungs.
Male and female mice from all three-study populations (WT,
ERa KO and ERb KO) showed a significant increase in Rrs after
MCh challenge in MA exposed groups compared to PBS
(Figures 2A–D). ERb KO male and female (p < 0.05) mice
showed a significant increase in Rrs compared to WT mice at
baseline, while ERa KO mice (male and female) did not show
any changes in the Rrs at baseline, rather showed a slight but not
significant decrease compared to WT mice. MA challenged mice
from all three study populations showed a significant increase in
Rrs in males (p < 0.05 for WT; p < 0.001 for ERa KO and ERb
KO) and in females (p < 0.001 for WT, ERa KO and ERb KO)
compared to PBS challenged mice of respective populations with
maximum changes observed in ERb KO mice (both males and
February 2020 | Volume 10 | Article 1499
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females; Figures 2C, D). Interestingly, ERb KO females (p <
0.001) mice showed a significant increase in Rrs compared to
ERa KO mice in the presence of MA (p < 0.001; Figures 2C, D).

Role of Differential ER Signaling on Airway
Compliance (Crs)
Crs depicts the ease with which respiratory system can be
extended and provides insights into the overall elastic property
of the respiratory system that is needed to overcome during tidal
breathing and is inversely proportional to resistance. Male (p <
0.05) and female (p < 0.01) ERb KO mice showed a significant
decrease in compliance at baseline compared to ERa KO,
whereas no significant changes were observed when compared
to WT mice. ERa KO mice did not show any significant changes
compared to WT mice (Figures 3A–D). All three study
populations (WT, ERa KO and ERb KO) challenged with MA
showed significant decrease in Crs in males (p < 0.01 for WT and
ERa KO) and in females (p < 0.05 for WT and p < 0.001 for ERa
KO) compared to respective PBS challenged mice (Figures 3C, D).
Notably, due to the decreased Crs in ERb KO mice at baseline, we
did not see any significant changes in Crs following MA challenge
in either gender.

Role of Differential ER Signaling on Airway
Elastance (Ers)
Airway elastance is related to the elastic stiffness of the
respiratory system following an inhaled dose of MCh. Ers is
often considered the reciprocal of Crs and vice versa and it
captures the elastic stiffness of the airway. Ers also depicts the
Frontiers in Pharmacology | www.frontiersin.org 5
energy conservation in the alveoli to relax to a normal state. Ers
was significantly increased at baseline in ERb KO male (p <
0.001) and female mice (p < 0.05) compared to respective WT
mice (Figures 4A–D). Furthermore, a significant increase in Ers
was observed in ERb KO male (p < 0.001) and female mice (p <
0.01) at baseline compared to ERa KO mice. Moreover, MA
challenge has significantly increased Ers in males (p < 0.01 for
ERb KO and p < 0.001 for WT and ERa KO) and females (p <
0.01 for ERa KO, p < 0.001 for ERb KO and WT) compared to
PBS challenged mice across all three study populations with a
maximum increase observed in WT males and females and ERa
KO males (Figures 4C, D). ERb KO mice challenged with MA
showed significant increase in Ers in males (p < 0.05) and females
(p < 0.001) compared to MA challenged ERa KO mice.

Role of Differential ER Signaling on Tissue
Damping (G)
Tissue damping (G) is a parameter of the constant phase model
(CPM) that depicts energy dissipation in the alveoli. It is closely
related to tissue resistance and will increase with the contraction
of the ASM. MA challenged mice from all three study
populations showed a significant increase in G in males and
females (p < 0.001 for WT, ERa KO, and ERb KO) compared to
PBS challenged mice with maximum changes observed in ERb
KO mice (both males and females; Figures 5A–D). Moreover,
ERb KOmale and female mice showed a significant increase (p <
0.001) in G compared to ERa KO and (p < 0.01) compared to
WT mice in the presence of MA. Interesting finding here is
neither ERb KO nor ERa KO mice showed any significant
FIGURE 2 | Effect of estrogen receptor (ER) signaling on airway resistance (Rrs) in the lungs of (A) male and (B) female mice (wild type, WT vs. ERa KO vs. ERb
KO) exposed to phosphate buffered saline (PBS) and mixed allergen (MA). Max Rrs was used to compare WT, ERa KO and ERb KO in (C) males and (D) female
mice exposed to PBS and MA. Data represented as mean ± SEM of at least 5-6 mice per treatment group; #p < 0.05, ###p < 0.001 vs. PBS of respective groups
(MA effect), *p < 0.05, ***p < 0.001 vs. WT of PBS/MA (ER specific KO effect) and $p < 0.05, $$$p < 0.001 vs. ERa KO of PBS/MA (ERb vs. ERa effect).
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FIGURE 3 | Effect of ER signaling on compliance (Crs) in the lungs of (A) male and (B) female mice (WT vs. ERa KO vs. ERb KO) exposed to PBS and MA. Max
Crs was used to compare WT, ERa KO and ERb KO in (C) male and (D) female mice exposed to PBS and MA. Data represented as mean ± SEM of at least 5-6
mice per treatment group; #p < 0.05, ###p < 0.001 vs. PBS of respective groups (MA effect) and $p < 0.05, $$p < 0.01 vs. ERa KO of PBS/MA (ERb vs. ERa effect).
FIGURE 4 | Effect of ER signaling on elastance (Ers) in the lungs of (A) male and (B) female mice (WT vs. ERa KO vs. ERb KO) exposed to PBS and MA. Max Ers
was used to compare WT, ERa KO and ERb KO in (C) male and (D) female mice exposed to PBS and MA. Data represented as mean ± SEM of at least 5-6 mice
per treatment group; ##p < 0.01, ###p < 0.001 vs. PBS of respective groups (MA effect), *p < 0.05, ***p < 0.001 vs. WT of PBS/MA (ER specific KO effect) and
$p < 0.05, $$p < 0.01, $$$p < 0.001 vs. ERa KO of PBS/MA (ERb vs. ERa effect).
Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 10 | Article 14996
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changes in G at baseline condition compared to WT mice
(Figures 5C, D). No changes in G were observed at baseline.

Role of Differential ER Signaling on Tissue
Elastance (H)
The extent of energy conservation in the alveoli is depicted by
tissue elastance (H) and it also indicates the elastic recoil of the
lung or tissue stiffness that permits its return towards an initial
form. Tissue elastance was significantly increased in male (p <
0.05 for WT, p < 0.01 for ERa KO and p < 0.001 for ERb KO)
and female (p < 0.05 for WT, p < 0.01 for ERa KO and ERb KO)
mice challenged with MA compared to respective PBS
challenged mice across all three study populations (Figures
6A–D). The extent of increase in H upon MA challenge was
found to be highest in ERb KO male mice compared to all other
groups. Furthermore, ERb KOmice challenged with MA showed
significant increase in H in males (p < 0.01) and females (p <
0.05) compared to MA challenged WT mice. Similar to G,
neither ERb KO nor ERa KO mice showed any significant
changes in the H at baseline condition compared to WT mice
(Figures 6C, D). Moreover, ERb KO mice of either gender did
not show any significant changes in H when compared to ERa
KO mice.

Effect of ER Signaling on Total and
Differential Leukocyte Count
At baseline (PBS), WT and ERa KO mice of either gender did
not show any significant changes in total or differential cell
Frontiers in Pharmacology | www.frontiersin.org 7
count; however, a notable increase in total and differential count
was observed in ERb KO mice, especially males, when compared
to WT mice, although not significant. Mice from all three study
populations showed a significant increase (p < 0.001 for WT and
ERa KO, and p < 0.01 for ERb KO in males; p < 0.001 for WT,
ERa KO and ERb KO in females) in the total cell count upon
MA challenge when compared to respective PBS challenged mice
(Figures 7A, B). Macrophage count in the BALF was
significantly increased upon MA challenge (p < 0.001 for WT
males, p < 0.01 for ERa KO and ERb KO males; p < 0.01 for WT
and ERb KO females, p < 0.05 for ERa KO females) compared to
respective PBS challenged mice (Figures 7C, D). At baseline,
ERb KO males showed significant increase in lymphocyte count
compared to WT males (p < 0.001) and ERa KO males (p <
0.001). Lymphocyte count was significantly increased upon MA
challenge (p < 0.001 for WT, ERb KO and ERa KO males; p <
0.01 for WT females and p < 0.001 for ERa KO and ERb KO
females) compared to respective PBS challenged mice (Figures
7E, F). Furthermore, a significant increase in lymphocyte count
was observed in MA challenged ERb KO mice compared to MA
challenged WT mice (p < 0.001) and MA challenged ERa KO
mice (p < 0.01). Recruitment of neutrophils was significantly
increased upon MA challenged mice (p < 0.001 for WT and ERa
KO males, p < 0.01 for ERb KO males; p < 0.001 WT, ERa KO
and ERb KO females) compared to respective PBS challenged
mice (Figures 7G, H). Eosinophilic infiltration was significantly
increased in MA challenged mice (p < 0.001 for WT, ERa KO
and ERb KO males and females) compared to respective PBS
FIGURE 5 | Effect of ER signaling on tissue damping (G) in the lungs of (A) male and (B) female mice (WT vs. ERa KO vs. ERb KO) exposed to PBS and MA. Max
G was used to compare WT, ERa KO and ERb KO in (C) male and (D) female mice exposed to PBS and MA. Data represented as mean ± SEM of at least 5-6
mice per treatment group; ###p < 0.001 vs. PBS of respective groups (MA effect), **p < 0.01 vs. WT of PBS/MA (ER specific KO effect) and $$$p < 0.001 vs. ERa
KO of PBS/MA (ERb vs. ERa effect).
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challenged mice (Figures 7I, J). Notably, MA challenged ERb
KO mice showed a significant increase in eosinophil count
compared to MA challenged WT mice (p < 0.05 for males and
p < 0.01 for females) as well as MA challenged ERa KOmice (p <
0.05 for males and p < 0.001 for females).

Effect of ER Signaling on Lung Histology
H&E staining showed increased thickness of the airway
epithelium and ASM layer in MA challenged WT, ERa KO
and ERb KO male and female mice compared to respective PBS
challenged mice, with higher magnitude observed in ERb KO
female mice (Figure 8A). Furthermore, the infiltration of
inflammatory cells was increased in the airways of MA
challenged WT, ERa KO and ERb KO mice (both males and
females), with a robust increase in inflammatory cells was
observed in ERb KO mice (Figure 8A). In addition, Sirius
red and fast green (SRFG) stained lung sections showed
significant increase in collagen deposition (red staining) in the
airways of ERb KO male (p < 0.001 vs. WT and ERa KO) and
female (p < 0.01 vs. WT and p < 0.001 vs. ERa KO) mice at
baseline (PBS) (Figures 8C, D). MA challenged WT mice
showed a significant increase in collagen deposition (p <
0.001) in females but not in males compared to PBS
challenged mice. ERa KO and ERb KO female mice (both
male and female) compared to respective PBS challenged
mice with profound changes observed in ERb KO mice
(Figures 8C, D).
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Effect of ER Signaling on Fibronectin,
Vimentin, and a-SMA
Fibronectin, vimentin, and a-SMA are characteristic markers for
ECM deposition, fibrotic changes in the lungs and ASM
phenotype respectively. At baseline, WT and ERa KO mice of
either gender did not show any significant changes in
fibronectin, vimentin and a-SMA. However, ERb KO mice
showed significantly increased fibronectin (p < 0.001 for
females) and a-SMA (p < 0.005 for males and p < 0.001 for
females), but not vimentin at baseline compared to WT
mice.Moreover, ERb KO female mice showed a significant
increase in fibronectin (p < 0.001) and aSMA (p < 0.001)
compared to ERa KO mice at baseline. MA challenge
significantly increased fibronectin (p < 0.05 for WT, p < 0.005
for ERa KO and p < 0.001 for ERb KO in males; p < 0.001 for
WT, ERa KO and ERb KO in females), a-SMA (p < 0.05
for WT, p < 0.001 for ERa KO and ERb KO in males; p < 0.005
for WT, p < 0.001 for ERa KO and ERb KO in females) and
vimentin (p < 0.05 for WT and ERa KO, p < 0.001 for ERb KO
in males; p < 0.001 for WT, ERa KO and ERb KO in females)
compared to respective controls (Figures 9A–I).
DISCUSSION

Airway inflammation, remodeling and AHR are considered as
cardinal features of asthma leading to obstruction of airways
FIGURE 6 | Effect of ER signaling on tissue elasticity (H) in the lungs of (A) male and (B) female mice (WT vs. ERa KO vs. ERb KO) exposed to PBS and MA.
Max H was used to compare WT, ERa KO and ERb KO in (C) male and (D) female mice exposed to PBS and MA. Data represented as mean ± SEM of at least
5-6 mice per treatment group; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. PBS of respective groups (MA effect) and *p < 0.05, **p < 0.01 vs. WT of PBS/MA (ER
specific KO effect).
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FIGURE 7 | Effect of ER signaling on total and differential leukocyte count. Dot blots showing total cell count in (A) males and (B) females; Macrophage count in
(C) males (D) females; Lymphocyte count in (E) males and (F) females; Neutrophils count in (G) males and (H) females and Eosinophils count in (I) males and
(J) females. Data represented as mean ± SEM of at least 6 mice per treatment group; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. PBS of respective groups (MA effect)
and *p < 0.05, **p < 0.01 vs. WT of PBS/MA (ER specific KO effect) and $p < 0.05, $$p < 0.01, $$$p < 0.001 vs. ERa KO of PBS/MA (ERb vs. ERa effect).
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(Holgate et al., 2009; Prakash, 2013). Asthma is a multifaceted
and intricate disease involving diverse pathologies, which makes
it challenging to identify and address the core mechanisms
involved (Hershenson et al., 2008; Raju et al., 2014; Sathish
et al., 2015b; Prakash, 2016). Akin to clinical data, sex differences
and sex steroids play a crucial role in the incidence and severity
of asthma (Clough, 1993; Redline and Gold, 1994; Weiss and
Gold, 1995; Caracta, 2003; Carey et al., 2007c; Card and Zeldin,
2009; Antunes et al., 2010; Woods et al., 2010; Townsend et al.,
2012a; Bonds and Midoro-Horiuti, 2013; Sathish et al., 2015b;
Sathish and Prakash, 2016). Considering the fact that women are
more prone to the occurrence of asthma than men (de Marco
et al., 2000; Melgert et al., 2005; Carey et al., 2007b; Matsubara
et al., 2008; Vink et al., 2010; Dursun et al., 2014; Fuseini and
Newcomb, 2017; Pignataro et al., 2017; Han et al., 2018),
identifying the role of sex steroids, especially estrogen in
airways might shed some light on the pathology of asthma.

Estrogen has a systemic role beyond the reproductive system
and the evidence suggests a wide array of roles for estrogen in both
males and females in regulating cell growth and differentiation,
intracellular calcium regulation and inflammation (Townsend
et al., 2010; Townsend et al., 2012a; Townsend et al., 2012b;
Sathish et al., 2015a; Sathish and Prakash, 2016). Given the facts
Frontiers in Pharmacology | www.frontiersin.org 10
about estrogen and the lack of consensus whether it is pro-
inflammatory vs. anti-inflammatory and to define the
consequences in structural cells of the airways, it is important to
understand the mechanisms involved in estrogen signaling. In
order to identify the role of estrogen signaling in asthma in vivo,
multiple studies have been performed in the past; however, none
of them have been able to provide a complete picture (Carey et al.,
2007a; Carey et al., 2007c; Riffo-Vasquez et al., 2007; Jia et al.,
2011; Itoga et al., 2015; El-Desouki et al., 2016). Most of these
studies have largely focused on the role of estrogen per se (Carey
et al., 2007c; El-Desouki et al., 2016), but did not focus on the
receptor specific effects involved. Moreover, very limited data is
available on the receptor-based mechanisms of estrogen in vivo,
which are either based on Penh or focused on ERa, completely
disregarding ERb (Carey et al., 2007a; Riffo-Vasquez et al., 2007).

In our previous studies, we showed differential expression of
ER’s in asthmatics and nonasthmatics, which is upregulated
(especially ERb) during asthma or inflammation (Aravamudan
et al., 2017). Furthermore, we also showed that activation of ERb
(using an ERb specific pharmacological agonist, WAY200070)
downregulated human ASM proliferation in vitro (Ambhore et al.,
2018). In addition, our recent in vivo study also shows that ERb
activation using pharmacological agonist downregulated AHR and
FIGURE 8 | (A) H&E stained mice lung sections show increased thickness of the airway epithelium and ASM layer in MA challenged WT and ERb KO male and female
mice, while ERa KO mice did not show any prominent changes. In addition, the infiltration of inflammatory cells was increased in the airways of MA challenged WT, ERa
KO and ERb KO mice (both male and female), with a robust increase observed in ERb KO mice. (B) Sirius red and fast green stained lung sections showing increased
collagen deposition (green staining) in the airways of MA challenged WT, ERa KO and ERb KO mice (both male and female). Scoring values of SRFG stained sections of
(C) males and (D) females showing the extent of collagen deposition. Data represented as mean ± SEM of at least 6 mice per treatment group; ###p < 0.001 vs. PBS of
respective groups (MA effect), **p < 0.01, ***p < 0.001 vs. WT of PBS/MA (ER specific KO effect) and $$$p < 0.001 vs. ERa KO of PBS/MA (ERb vs. ERa effect).
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remodeling in MA challenged WT mice (Ambhore et al., 2019a).
Although pharmacological agonists used in our earlier study had
high affinity to their designated receptors, there is still a minor
Frontiers in Pharmacology | www.frontiersin.org 11
possibility of cross-reactivity. In connection to this, in order to
establish the comprehensive role of physiological estrogen in the
airways and to avoid the cross-reactivity of the pharmacological
FIGURE 9 | Effect of ER signaling on expression of fibronectin, a-SMA and vimentin. Representative images of airway sections probed with fibronectin (A),
quantification of relative fluorescence intensity (RFI) of fibronectin in males (B) and females (C). Representative images of airway sections probed with a-smooth
muscle actin (a-SMA, D), quantification of RFI of a-SMA in males (E) and females (F). Representative images of airway sections probed with vimentin (G),
quantification of RFI of vimentin in males (H) and females (I). Data in b, c, e, f, h and i represented as mean ± SEM of at least 6 mice per treatment group. #p < 0.05,
##p < 0.01, ###p < 0.001 vs. PBS of respective groups (MA effect) and **p < 0.01, ***p < 0.001 vs. WT of PBS/MA (ER specific KO effect) $p < 0.05, $$p < 0.01, $$$p < 0.001,
vs. ERa KO of PBS/MA (ERb vs. ERa effect).
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receptor agonists, we employed ERaKO and ERbKOmice, which
will provide valuable insights into the receptor-based effects of
endogenous estrogen on AHR and airway remodeling.

In this study, we employed MA induced model of asthma, as
it is considered to be robust and the most effective model of
mimicking human asthma in murine models (Aravamudan et al.,
2012; Iijima et al., 2014; Yarova et al., 2015; Ambhore et al.,
2019a; Britt et al., 2019). Airway mechanics were determined
using the forced oscillation technique (FOT) of the FlexiVent Fx1
module, which is an invasive endpoint technique that delivers
parameters like airway resistance (Rrs), compliance (Crs),
elastance (Ers), tissue elasticity (H) and tissue damping (G),
which together depict the overall lung function (Aravamudan
et al., 2012; Ambhore et al., 2019a). Our study shows that ERb
KO mice show deteriorated lung function compared to WT and
ERa KO in both the genders at baseline, with prominent changes
observed in females compared to males, which correlates with
earlier clinical findings suggesting females are susceptible to
asthma (Weiss and Gold, 1995; Angele et al., 2000; de Marco
et al., 2000; Caracta, 2003; Melgert et al., 2005; Carey et al.,
2007b; Matsubara et al., 2008; Takeda et al., 2013; Han et al.,
2018). Interestingly, ERa KO mice of either sex showed no
changes in lung function compared to WT mice at baseline,
which can be attributed to the protective role of ERb or
detrimental role of ERa in the airways, especially in ASM
(Ambhore et al., 2018; Ambhore et al., 2019a). In addition,
MA challenged mice of all three populations (WT, ERa KO,
and ERb KO) showed a significant decline in lung function
compared to respective PBS treated mice. Here, female mice
exposed to MA in all three study populations showed prominent
decline compared to males, which corroborates with clinical data
suggesting increased severity of asthma in females (Weiss and
Gold, 1995; de Marco et al., 2000; Melgert et al., 2005; Vink et al.,
2010; Han et al., 2018). In addition, the severity of MA induced
AHR and remodeling was found to be more pronounced in ERb
KO mice compared to WT and ERa KO. This corroborates with
our previous findings where we have shown that activation of
ERb using WAY200070 (an ERb selective agonist) resulted in
improved lung function in WT mice challenged with MA
compared to MA alone (Ambhore et al., 2019a).

One of the cardinal features of asthma is infiltration of
inflammatory cells like lymphocytes, monocytes/macrophages,
neutrophils and eosinophils into the airways, especially
eosinophilic infiltration, which is associated with the
development and aggravation of AHR (Gleich, 2000; Wardlaw
et al., 1988; Gupta et al., 2014). Lymphocytes, both T and B play a
crucial role in coordinating inflammatory response in asthma
(Mosmann and Sad, 1996; Gould et al., 2000). T-lymphocytes
are often considered to express a distinctive pattern of cytokines,
especially Th2 cytokines, which contribute to remodeling and AHR
(Mosmann and Sad, 1996); whereas, Blymphocytes secrete IgE and
the factors regulating IgE secretion, which result in recruiting
inflammatory cells into the airways, eventually contributing to
airway inflammation (Gould et al., 2000). Neutrophils are not a
predominant cell type observed in the airways of patients with mild
to moderate chronic asthma, whereas they appear to be a more
Frontiers in Pharmacology | www.frontiersin.org 12
prominent cell type in the airways and induced sputum of patients
with more severe asthma (Wenzel et al., 1997; Jatakanon et al.,
1999; Gibson et al., 2001). Evidence suggests experimentally
activated eosinophils induce airway epithelial damage (Yukawa
et al., 1990). In this study, we found that MA exposure significantly
increased the total and differential leukocyte count in the airways of
mice, especially in females with prominent changes in ERb KO
mice which concurs with clinical evidence (Melgert et al., 2005;
Blacquiere et al., 2010; Fuseini and Newcomb, 2017; Pignataro
et al., 2017; DeBoer et al., 2018) and our own pre-clinical findings
(Aravamudan et al., 2017; Ambhore et al., 2018; Ambhore et al.,
2019a) indicating females are more susceptible to asthma and that
ERb plays a protective role in regulating inflammatory cell
infiltration. Very little information is available on the ER specific
effects on inflammatory cells in the lung during asthma, which
warrants more in depth immune cell based studies in the future.

Histology studies using H&E stain show no prominent
changes across all three-study populations at baseline; however,
upon MA challenge significant changes in the thickness of the
epithelium and ASM were observed in all three study
populations (especially females), with maximum changes
observed in ERb KO mice, which corroborates with our earlier
findings, where we showed ERb activation downregulates ASM
proliferation (Ambhore et al., 2018). Furthermore, the increase
in inflammatory cells infiltration observed in ERb KO mice
challenged with MA concurs with our previous study, where
ERb activation resulted in reduced infiltration of inflammatory
cells in the airways suggesting ERb plays a crucial role in
regulating inflammation (Ambhore et al., 2019a). In addition,
SRFG stained lung sections showed increased collagen
deposition in mice exposed to MA across all three-study
populations with prominent changes observed in ERb KO
mice. Increased collagen deposition is an indicator for an
increase in ECM deposition, which leads to airway remodeling
(Hocking, 2002; Chakir et al., 2015). These observations are in
accordance with previous clinical histology findings, which
indicate increased epithelial dysplasia, blood vessels, ASM mass
and extracellular matrix (ECM) deposition lead to airway wall
thickening (Colvillenash et al., 1995; Burgess, 2009).

Fibronectin, like collagen is another ECM protein marker that
indicates the extent of airway remodeling (Shoji et al., 1990; Shiels
et al., 1999). Vimentin is considered as a marker for detecting
fibrosis, which indicates phenotype changes in ASM to fibroblast
(Wang et al., 2006; Wang et al., 2007; Slats et al., 2008; Tang and
Gerlach, 2017); whereas, a-SMA is a smooth muscle specific
marker, ASM in this case (Ambhore et al., 2019a; Britt et al.,
2019; Loganathan et al., 2019). Immunofluorescence studies of
mice lung sections indicate increased expression of fibronectin,
vimentin and a-SMA in mice from all three-study populations
exposed to MA, especially in ERb KO mice, indicating significant
remodeling of the airways in the absence of ERb implicating a
crucial role for ERb in regulating airway remodeling.

In conclusion, the results from this study suggest the
importance of ER’s and their signaling in the lungs and their
role in regulating the overall lung function. In addition, this
study implicates the differential role of ERa and ERb in airway
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physiology during asthma, especially in the context of AHR and
remodeling. Considering the “protective role of ERb” during
asthma, it is noteworthy to identify ERb as a potential target to
develop novel lead molecules that can be used as alternative
therapies to treat asthma.
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