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Abstract: The intake of adulterated and unhealthy oils and trans-fats in the human diet has had
negative health repercussions, including cardiovascular disease, causing millions of deaths annually.
Sadly, a significant percentage of all consumable products including edible oils are neither screened
nor monitored for quality control for various reasons. The prospective intake of adulterated oils
and the associated health impacts on consumers is a significant public health safety concern,
necessitating the need for quality assurance checks of edible oils. This study reports a simple,
fast, sensitive, accurate, and low-cost chemometric approach to the purity analysis of highly refined
peanut oils (HRPO) that were adulterated either with vegetable oil (VO), canola oil (CO), or almond
oil (AO) for food quality assurance purposes. The Fourier transform infrared spectra of the pure
oils and adulterated HRPO samples were measured and subjected to a partial-least-square (PLS)
regression analysis. The obtained PLS regression figures-of-merit were incredible, with remarkable
linearity (R2 = 0.994191 or better). The results of the score plots of the PLS regressions illustrate pattern
recognition of the adulterated HRPO samples. Importantly, the PLS regressions accurately determined
percent compositions of adulterated HRPOs, with an overall root-mean-square-relative-percent-error
of 5.53% and a limit-of-detection as low as 0.02% (wt/wt). The developed PLS regressions continued
to predict the compositions of newly prepared adulterated HRPOs over a period of two months,
with incredible accuracy without the need for re-calibration. The accuracy, sensitivity, and robustness
of the protocol make it desirable and potentially adoptable by health departments and local
enforcement agencies for fast screening and quality assurance of consumable products.

Keywords: peanut-oil; food-analysis; peanut-oil-adulteration; infrared-spectroscopy; partial-least-
regression-analysis; food-quality-assurance

1. Introduction

An increase in world population and industrial development has resulted in high demand for
consumable products including edible oils. Edible oils are used for domestic cooking, deep frying
in fast food restaurants, and for other industrial applications [1,2]. Edible oils are composed of
triglyceride molecules, which are required, in certain amounts, in the human diet for energy production
and energy storage [3,4]. However, high demand for edible oils such as highly refined peanut
oils (HRPOs) has resulted in adulteration of edible oils with cheap, unhealthy, or synthetic oils.
Municipalities, health departments, and regulatory agencies, including the United States Food and
Drug Administration (FDA), the United State Department of Agriculture, the European Commission,
the European Food Safety Authority, and the World Health Organization, are relentless in their efforts
to curtail the sales of fake, substandard, and/or adulterated consumable products [5–14]. For instance,
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efforts have been made by FDA and World Health Organization to prohibit the sale of unhealthy
oils and to eliminate trans-fats in the human diet by 2018 and 2023 [15]. Nonetheless, a significant
percentage of all consumable products, including edible oils, are neither screened nor monitored for
quality control and quality assurance for various and diverging reasons.

Counterfeiting and/or the adulteration of consumable products is even more problematic,
rampant, and worrisome in developing countries, where most regulatory agencies lack the
infrastructure, skilled inspectors, and/or financial resources to enforce the screening of consumable
products. The loopholes and deficiencies in the global monitoring scheme make numerous consumable
products highly susceptible to and easy targets for adulteration and/or trafficking. The prospective
adulteration of edible oils raises concern about the production of safe edible oils for human
consumption. The potential intake of fake and adulterated oils and its associated health impacts
are also a nightmare, raising a public health safety concern. For instance, the intake of adulterated
and unhealthy oils, and trans-fats in the human diet has had negative health repercussions,
including cardiovascular disease, causing millions of deaths annually [15].

To address these concerns, efforts have been devoted to the development of analytical strategies
including the use of a high performance liquid chromatography (HPLC), mass spectrometry,
electronic nose, isotopic dilution, biomarkers and sensors, nuclear magnetic resonance,
deoxyribonucleic acid (DNA) barcoding, and electroanalytical techniques for quality control and
assurance of consumable products and edible oils [16–29]. Regardless of the high sensitivity and
good accuracy of these techniques, they have inherent challenges and drawbacks such as long
analysis times, high cost of instrumentation, and required special training. In addition, some of
these methods are not portable, limiting their wider applicability for routine in situ field screening of
consumable products. Raman and infrared spectroscopy are non-destructive and rapid techniques
that require a small sample size and are capable of solid and liquid sample analysis with little or no
sample preparation, making them ideal for fingerprinting, determination of authenticity, and quality
assurance of consumable products including edible oils [30–50]. Besides, Raman and infrared
spectrometers are portable and fairly inexpensive, allowing affordable and fast in situ field screening
of consumable products. Moreover, a combined use of molecular spectroscopy, including Raman,
infrared, and fluorescence spectroscopy, and multivariate analyses, has increasingly been used in recent
years for sample and instrument calibrations, purity analysis, and quality assurance of consumable
products [30–50].

Research from our laboratory [51,52] and from other research laboratories [30–50] has revealed the
potential utility of the combined use of molecular spectroscopy and multivariate regression analysis
for food purity analysis and quality assurance of adulterated edible oils and essential oils. However,
numerous edible oils of high dietary importance and market values such as highly refined peanut oil
(HRPO) that are susceptible to adulteration and/or trafficking are yet to be investigated. This study
reports a simple, fast, sensitive, accurate, and low-cost chemometric approach to the quality assurance
of HRPOs that were adulterated either with edible vegetable oil (VO), canola oil (CO), or almond oil
(AO). Specifically, the combined use of Fourier transform infrared spectroscopy (FTIR) and multivariate
partial-least-square (PLS) regression for detection, purity analysis, and quality assurance of adulterated
HRPOs was investigated.

Peanut oil is derived from the peanut (Arachis hypogaea), a legume that is rich in proteins, vitamins,
phytochemicals, anti-oxidants, polyphenols, polyunsaturated, and fiber [53–56]. In addition to edible
oil production, peanuts have a wide range of other industrial utilities, including the production of
peanut butter, peanut flour, animal feed, groundnut cakes, animal protein supplements, and poultry
rations [55,57]. The global production of peanut oil is estimated at 5.88 million metric tons in 2018
with multimillion dollar annual global peanut oil sales [55,57]. Highly refined peanut oil is a healthy
choice and is widely used for domestic cooking, deep frying in fast foods restaurants, and as salad oils
around the world. For instance, Chick-fil-A, one of the leading North American fast-food restaurants,
with approximately 2200 restaurants in USA and Canada with $8 billion dollar in revenue, only uses
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100% refined peanut oil for all of its cooking and deep frying. Other notable fast-food restaurants
including Five Guys, Jimmy Johns, and Subway only use HRPO on their French fries, kettle cooked
chips, and carved turkey, respectively. Highly refined peanut oil undergoes several industrial processes
including the extraction of protein allergen, discoloration through bleaching, and deodorization [55],
making it relatively more expensive than the crude peanut oil. The sale of fake-peanut oil and
adulterated HRPO with edible vegetable oils or synthetic oil with a peanut aroma is quite frankly a
global challenge, causing economic losses to producers of authentic HRPO.

2. Materials and Methods

2.1. Material and Supplies: Regression Analysis

Highly refined (100%) peanut oil (HRPO) and adulterant vegetable oil (VO), canola oil (CO),
and almond oil (AO) were purchased from a local grocery store in Fort Smith, Arkansas, USA.

2.2. Preparation of Adulterated HRPO Samples, FTIR Measurement, PLS Regression, and Multivariate
Data Analysis

Twenty-five training sets and calibration samples of adulterated peanut samples were used
for each study conducted with vegetable oil, canola oil, and almond oil adulterants. The training
set and calibration samples (n = 25) of varying compositions of adulterated HRPO with either VO,
CO, or AO, ranging from 1–90% (wt/wt), were prepared in sample vials. The samples were kept
at room temperature for approximately 48 hours to facilitate homogenization of HRPO and the
adulterant oils. The FTIR spectra of the adulterated HRPOs were measured using an ATR-FTIR
spectrometer (Thermo Scientific NiCOLET iS5, Waltham, MA, USA). The FTIR spectrum of each
sample was scanned 25 times with a resolution of 4 cm−1 over a 600 cm−1 to 4000 cm−1 wavenumber
range. Partial-least-regression and chemometric data analysis was performed using the software The
Unscrambler (CAMO Software, 9.8, Oslo, Norway).

3. Results and Discussion

3.1. Physical Examination and FTIR Property of Pure and Adulterated HRPO Oils

The initial study involved the physical and FTIR spectroscopic examination of pure edible highly
refined peanut oil (HRPO), vegetable oil (VO), canola oil (CO), almond oil (AO), and adulterated
HRPOs. Highly refined peanut oil is pale-yellow, with no apparent peanut odor. The physical
appearance and the color of pure HRPO, VO, CO, and AO are very similar and indistinguishable.
Similarly, the physical appearance, including the color, of pure HRPO and adulterated HRPOs
counterparts is identical, making it challenging to use ordinary visual examination for the detection of
a suspected adulterated HRPO.

The FTIR spectra of pure HRPO, VO, CO, and AO samples showing the notable and characteristic
C–CH2 asymmetric stretch (C–H) stretching (~2921 cm−1); CH2 symmetric stretching (C–H)
(~2853 cm−1); ester C=O stretching (~1745 cm−1); CH2 wagging (~1160 cm−1); symmetric H–C–H
bending (~1380 cm−1); and CH2 scissoring (~1460 cm−1) of triglyceride component of HRPO, VO,
CO, and AO [32,33] are shown in Figure 1. Expectedly, pure HRPO, VO, CO, and AO have similar
FTIR absorption profiles, primarily because all edible oils contain the triglyceride molecules that are
responsible for FTIR absorptions [32,33]. Also, edible oils contain triglyceride molecules that are
required, in certain amounts, in the human diet for energy production, utility, and energy storage [3,4].
Figure 2 shows the cross sections of FTIR spectra of the training set and calibration samples with
varying % composition of HRPO adulterated with VO, CO, and AO adulterants. Although the physical
appearance of the pure HRPOs and adulterated HRPOs are indistinguishable, the profile of FTIR
spectra of pure HRPO and adulterated HRPO differ and vary with the percentage compositions of the
adulterated HRPO samples. The observed variations and changes of FTIR spectra with compositions
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of adulterated HRPOs is an indicative of interactions of the HRPO with adulterant oils as a result
of hydrophobic interactions and/or through hydrogen bonding involving the triglyceride carbonyl
group. Differences in the FTIR spectra profile of pure HRPO and adulterated HPPO can, therefore,
be used for quick screening for the detection of adulterated peanut oils.Foods 2018, 7, x FOR PEER REVIEW  4 of 13 
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Figure 1. FTIR spectra of pure highly refined peanut oil, vegetable oil (VO), canola oil (CO), and almond
oil (AO).
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Figure 2. Cross section of FTIR spectra of the training set and calibration samples of: (A1,A2) highly
refined (100%) peanut oil (HRPO) adulterated with vegetable oil, (B1,B2) HRPO adulterated with
canola oil, (C1,C2) HRPO adulterated with almond oil.
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3.2. PLS Regression Modeling

The complexity, variation, and spectral overlapping at multiple wavenumbers observed in Figure 2
preclude the likely use of ordinary visual examination for adulterated HRPO pattern recognition or the
use of univariate spectral analysis (spectral analysis at one wavenumber) to achieve any meaningful
sample calibrations or regression analysis for purity analysis and determination of percent composition
of adulterated HRPO samples. The use of multivariate analysis (spectral analysis over a range of
wavenumbers) such as partial-least-square (PLS) is more desirable and capable of complex spectral
data analysis for sample calibration. The PLS can capitalize on the changes and variability, such as
those observed in Figure 2, to extract the most valuable information that is required for sample
calibration and for PLS regression modelling to determine the compositions of adulterated HRPOs.
The most valuable information in the spectral data set is invariably accompanied with the directions
that contains the most substantial variability. The detailed PLS mathematical expressions have been
comprehensively discussed and reported elsewhere [58–62].

Generally speaking, the goal of any PLS regression is to decompose the original data matrix
A into two components, a “structure component” and a “noise component” that can be represented by
Equation (1).

A = TPT + E (1)

where A is the original k × n data matrix of FTIR % transmittance data of adulterated HRPOs
in this study, T and P are two new matrices that must be evaluated and determined, and E is a
k × n residual matrix that represents the unexplained variance or “noise component” in the model.
The “structure component” of A is given by TPT where the superscript T denotes the transpose of P,
achievable by substituting rows for columns. Each PLS component is a variance-scaled vector that
accounts for a certain amount of variability in the data set.

Partial-least-regression modelling also aims to determine a regression vector, which constitutes
the mathematical model that relates the FTIR spectral data in this study to the % compositions of
adulterated HRPOs. In the case of a single sample, the relationship between the dependent variable
(y-variable, % composition of adulterated HRPOs) and the independent variable (x-variables, the FTIR
spectral data) can be expressed mathematically using Equation (2).

yi = b0 + x1bi1 + x2bi2 + x3bi3 + . . . . . . . . . xnbin (2)

where yi is the value of y predicted by the PLS regression model for the ith sample, the bi are the
regression coefficients that constitute the regression vector, and the xiλ terms represent the FTIR
intensities for the ith sample over the wavenumber index from 1 to n. Equation (2) can further be
expressed in matrix notation as shown in Equation (3).

Y = Xb (3)

where Y contains the matrix values of the dependent variables for all samples, X is a matrix composed
of values of the independent variables of all samples, and b contains the regression vector. As soon as
a regression model has been established and optimized, it can be utilized to calculate yi for any series
of unknown samples exclusively from their spectra using Equation (3).

The predictive ability of any PLS regression model for the y-variable invariably relies on the
assumption of no co-linearity among the x-variables, which is an invalid assumption for a PLS
regression involving spectral data analysis. Hence, the initial task in any PLS regression modeling
is to carefully eliminate any inherent co-linearity in the spectral data or x-variables. Removal of
co-linearity among x-variables is achievable by transforming the original data matrix A from the initial
xyz-coordinate system (made up of n variables) into a new variance-scaled eigenvector coordinate
system with fewer variables, where each new variable is orthogonal to the others. The use of PLS
is desirable because it reduces the data dimensionality from n to a significantly smaller value.
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Additionally, the actual number of vectors required to construct the new variable space is adjustable
to fit the expected “noise” level of the original data matrix A. The new variance-scaled eigenvector
coordinate system is thus composed of a smaller number of orthogonal vectors known as the partial
least square (PLS) component. The first PLS component of a dataset usually accounts for most of
variance in the data. Each successive PLS component accounts for a lesser variance in the dataset.
Therefore, only a few PLS components often contain the most valuable information in a dataset.
After the first few PLS components are evaluated and determined, the remaining variance is summed
together into the E matrix (noise component) that is not accounted for by the PLS model is eliminated.

3.3. Figures-of-Merit of PLS Regression Model, Limit-of-Detection (LOD), and Limit-of-Quantitation (LOQ)

The result of the PLS regression models developed for adulterated HRPOs using VO, CO, and AO
adulterants using a full cross validation is shown in Figure 3. In Figure 3, plots A1, A2, and A3
illustrate the regression coefficients as a function of wavenumber for the PLS regression models
constructed for adulterated HRPO with VO, CO, and AO adulterant, respectively. The contribution
of the magnitude of the coefficients according to wavenumber varies widely. Some wavenumbers
contributed positively to the PLS regression, while other wavenumbers contributed negatively to the
PLS regression model. The score plot of PLS1 versus PLS2 is shown in Figure 3B. The number of the
adulterated HRPO samples (n = 25 in this study) used for the training set and calibration samples
is small in comparison with the FTIR spectral data points (>3600). In theory (n − 1), PLSs can be
used for data analysis, therefore 24-PLSs can be used in this study. However, the first two PLSs
accounted for 100% of the variability in the FTIR spectral data (x-variable) and 97% of the percent
composition of adulterated HRPO samples. Thus, 2-PLS components are appropriate to represent the
data, thereby significantly reducing the data dimensionality. Interestingly, the score plots of PLS showed
the grouping of the adulterated HRPO samples into two notable and different categories. The samples
containing higher percent compositions of VO in the adulterated HRPOs were conspicuously grouped
on the right hand side corner (first and second quadrants) of the score plot. In contrast, the samples
containing higher percent compositions of HRPO in the adulterated samples were grouped on the
left hand side (third and fourth quadrants) of the score plot. Figure 3(C1) shows the plot of the actual
versus the percent compositions of adulterated HRPO with VO determined by the PLS regression.
Obviously, the predicted percentage compositions of adulterated HRPO samples favorably compared
with the actual percentage composition of adulterated HRPO of the training set and calibration samples.
The outcomes of the PLS regression including the score plot of the adulterated HRPO with CO and AO
adulterants showed similar pattern recognition data.

A summary of the developed PLS regression models figures-of-merit including the square
correlation coefficients (R2), limits-of-detection (LOD), and limits-of-quantification (LOQ), are shown
in Table 1. The figures-of-merit of the PLS regressions were incredible, with remarkable linearity
(R2 = 0.994191 or better). The LOD and LOQ values were calculated as 3 s/m and 10 s/m, respectively,
where s is the standard deviation of the FTIR intensity of the blanks and m is the slope of the PLS
regression calibration curve. The LOD ranged between 0.02% wt/wt for HRPO adulterated with CO
and 0.27 % wt/wt for HRPO adulterated with VO, demonstrate the capability of the developed PLS
regressions for detection of adulterated HRPO at low levels of adulteration.

Table 1. Figures-of-merit of partial least squares (PLS) regression calibration curves.

Wavenumber
(cm−1) Offset Slope R2 LOD

(%wt/wt)
LOQ

(%wt/wt)

HRPO-VO 2235–3300 0.572672 0.988415 0.994191 0.27% 0.90
HRPO-CO 2235–3300 0.075944 0.998477 0.999238 0.02% 0.05
HRPO-AO 400–4000 0.154691 0.996644 0.998321 0.02% 0.07

R2—correlation coefficients; LOD—limits-of-detection; LOQ—limits-of-quantification. HRPO—highly refined (100%) peanut
oil; VO—vegetable oil; CO—canola oil; AO—almond oil.
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3.4. Determination of Percentage Compositions of Adulterated HRPO Samples

The validation studies were conducted to assess the performance and predictive ability of the
PLS regression models for the determination of the percent composition of adulterated HRPO samples.
Twenty (22) validation samples each were used for HRPOs that were adulterated with VO and CO.
However, 21 validation samples were used for HRPOs adulterated with AO. The FTIR spectra of
the adulterated HRPO validation samples using VO, CO, and AO adulterants are shown in Figure 4.
It must be highlighted that while the range of the percent compositions of adulterated HRPO in
the training set and validation samples are the same, the compositions of adulterated HRPO of
the training set and validation samples are totally autonomous. The summary of the results of the
validation study conducted for adulterated HRPO showing the actual and the determined compositions
of adulterated HRPOs using VO, CO, and AO adulterants are shown in Tables 2–4, respectively.
The obtained low percent relative error (%RE) of the determined compositions of adulterated HRPOs
obviously demonstrates the accuracy of the protocol. The predictive ability of the PLS regression model
was further assessed by root-mean-square-relative-percent-errors (RMS%RE) for the determination
of percent compositions of adulterated HRPOs. The PLS regression models determined percent
compositions of adulterated HRPO with VO, CO, and AO with low RMS%RE of determination of
2.77%, 5.51%, and 8.32%, respectively, with an overall average RMS%RE of 5.53%.
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Figure 4. Cross section of FTIR spectra of validation samples of the following: (A1,A2) HRPO
adulterated with vegetable oil, (B1,B2) HRPO adulterated with canola oil, (C1,C2) HRPO adulterated
with almond oil.

Table 2. Validation conducted for highly refined peanut oil (HRPO) adulterated with vegetable oil (VO).

Sample % HRPO Predicted Actual % HRPO %RE % VO Predicted Actual % VO %RE

V1 90.8 89.1 −1.95 9.2 10.9 15.9
V2 85.6 85.1 −0.58 14.4 14.9 3.30
V3 82.5 82.4 −0.07 17.5 17.6 0.33
V4 77.8 79.1 1.63 22.2 20.9 −6.19
V5 72.0 74.0 2.62 28.0 26.0 −7.45
V6 69.2 69.8 0.88 30.8 30.2 −2.02
V7 63.8 64.4 1.04 36.3 35.6 −1.88
V8 61.1 60.4 −1.12 38.9 39.6 1.72
V9 56.5 57.7 1.98 43.5 42.3 −2.69
V10 56.0 54.4 −2.90 44.0 45.6 3.47
V11 52.2 51.6 −1.06 47.8 48.4 1.13
V12 49.3 48.4 −1.96 50.7 51.6 1.84
V13 46.2 45.1 −2.51 53.8 54.9 2.06
V14 43.0 42.7 −0.87 57.0 57.3 0.65
V15 38.6 39.7 2.53 61.4 60.3 −1.66
V16 37.0 37.8 1.94 63.0 62.2 −1.18
V17 34.5 35.8 3.67 65.5 64.2 −2.04
V18 31.4 32.8 4.29 68.6 67.2 −2.09
V19 27.7 29.7 6.76 72.3 70.3 −2.85
V20 27.2 27.2 −0.23 72.8 72.8 0.09
V21 22.9 23.5 2.51 77.1 76.5 −0.77
V22 19.6 20.8 5.79 80.4 79.2 −1.52

RMS%RE 2.77 4.37

RE—relative error.



Foods 2018, 7, 122 9 of 13

Table 3. Validation conducted for highly refined peanut oil (HRPO) adulterated with canola oil (CO).

Sample % HPPO Predicted Actual % HPPO %RE % CO Predicted Actual % CO %RE

V1 89.8 87.9 −2.07 10.2 12.1 15.1
V2 84.0 84.3 0.37 16.0 15.7 −2.01
V3 80.2 82.7 2.96 19.8 17.3 −14.1
V4 77.9 77.2 −0.91 22.1 22.8 3.08
V5 71.0 74.0 4.03 29.0 26.0 −11.5
V6 68.7 70.8 3.00 31.3 29.2 −7.29
V7 63.7 64.3 1.04 36.3 35.7 −1.88
V8 60.5 61.1 0.88 39.5 38.9 −1.38
V9 55.5 58.0 4.36 44.5 42.0 −6.03
V10 54.6 56.0 2.45 45.4 44.0 −3.12
V11 51.5 51.2 −0.68 48.5 48.8 0.71
V12 49.4 48.4 −2.09 50.6 51.6 1.96
V13 46.2 46.4 0.38 53.8 53.6 −0.33
V14 46.3 43.5 −6.45 53.7 56.5 4.97
V15 40.0 41.0 2.31 60.0 59.0 −1.61
V16 37.7 38.5 1.98 62.3 61.5 −1.24
V17 33.8 36.9 8.47 66.2 63.1 −4.96
V18 32.8 34.4 4.64 67.2 65.6 −2.43
V19 29.6 31.5 5.89 70.4 68.5 −2.70
V20 26.3 28.6 8.07 73.7 71.4 −3.23
V21 26.0 25.0 −3.96 74.0 75.0 1.32
V22 20.8 20.9 0.66 79.2 79.1 −0.17

RMS%RE 5.51 5.87

Table 4. Validation conducted for highly refined peanut oil (HRPO) adulterated with almond oil (AO).

Sample % HRPO Predicted Actual % HRPO %RE % AO Predicted Actual % AO %RE

V1 89.6 88.3 −1.50 10.4 11.7 11.3
V2 85.7 85.9 0.24 14.3 14.1 −1.44
V3 82.3 83.7 1.66 17.7 16.3 −8.54
V4 77.9 79.8 2.45 22.1 20.2 −9.71
V5 76.0 76.7 0.89 24.0 23.3 −2.92
V6 70.3 71.4 1.51 29.7 28.6 −3.76
V7 62.1 64.9 4.25 37.9 35.1 −7.85
V8 58.4 58.7 0.43 41.6 41.3 −0.62
V9 51.3 51.8 0.99 48.7 48.2 −1.06
V10 46.3 44.4 −4.17 53.7 55.6 3.33
V11 39.8 42.5 6.47 60.2 57.5 −4.79
V12 37.3 36.9 −0.97 62.7 63.1 0.57
V13 34.1 33.0 −3.56 65.9 67.0 1.75
V14 28.1 29.4 4.22 71.9 70.6 −1.75
V15 28.1 23.2 −20.77 71.9 76.8 6.29
V16 23.5 20.9 −12.34 76.5 79.1 3.27
V17 21.2 17.7 −19.46 78.8 82.3 4.19
V18 16.8 16.3 −3.13 83.2 83.7 0.61
V19 14.2 14.7 3.42 85.8 85.3 −0.59
V20 11.5 12.3 6.51 88.5 87.7 −0.91
V21 8.3 10.0 17.42 91.7 90.0 −1.95

RMS%RE 8.32 4.86

Although AO is relatively more expensive than HRPO, our study has demonstrated that the purity,
authenticity, and percent compositions of adulterated HRPOs can be accurately determined regardless
of the edible oil used as adulterant. It must be highlighted that our protocol was not only capable of
determining the percentage composition of HRPO in adulterated HRPOs with AO with good accuracy,
but it was also capable of determination of the compositions of AO in the adulterated HRPOs with
an RMS%RE of 4.86% (Table 4). This capability is commendable and appealing, demonstrating the
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extensive applicability of the protocol for purity analysis of a wide range of edible oils of high dietary
and market values.

In order to assess the robustness and reliability of the developed PLS regressions for the
determination of percent compositions of future samples of adulterated HRPOs, a set of newly
prepared adulterated HRPO samples was prepared over a period of two months. The FTIR spectra
of the samples were collected and the originally developed PLS regressions were used to predict
the percent compositions of adulterated HRPOs. Interestingly, the developed PLS regression models
continued to predict the compositions of newly prepared adulterated HRPOs over a period of two
months with incredible accuracy without the need for re-calibration, indicating the robustness of the
protocol for purity analysis of adulterated HRPOs.

The result of the study is adoptable and can possibly be used by municipal health departments
and local enforcement agencies for rapid, in situ, and field screening of a suspected adulterated HRPO.
For instance, the FTIR spectra of pure and adulterated HRPOs can be collected and stored in the
database. Hand-held IR spectrometers can be used in situ on the field to rapidly obtain an IR spectrum
of a suspected adulterated HRPO. The FTIR spectrum profile of a suspected adulterated HRPO can
then be compared with the FTIR spectrum of the adulterated HRPO in the database for similarities or
differences. The obtained FTIR spectrum of the adulterated HRPO can be subjected to PLS regression
on a laptop computer in the field and optimized. The location of the suspected adulterated HRPOs
on the PLS regression score plot can be further used for rapid pattern recognition. The developed PLS
regression can subsequently be used for purity analysis of the suspected adulterated HRPO samples
on the field.

4. Conclusions

The result of the combined use of Fourier transform infrared spectroscopy and multivariate
partial-least-square (PLS) regression models for rapid purity analysis of highly refined peanut oils
(HRPO) that were adulterated with either vegetable oil (VO), canola oil (CO), or almond oil (AO) for
food quality assurance purposes is reported. The figures-of-merit of the PLS regression models were
incredible with desirable linearity, sensitivity, and robustness. The results of the score plots of the PLS
regressions illustrate pattern recognition of the adulterated HRPO samples. The PLS regression models
determined compositions of adulterated HRPO with excellent accuracy and low-detection-limits,
allowing detection of adulterated HRPO in small quantities. Most importantly, the developed PLS
regression models continued to predict the compositions of newly prepared adulterated HRPOs over
a period of two months with incredible accuracy without the need for re-calibration, indicating the
robustness of the protocol for purity analysis of adulterated HRPOs. The low-cost, non-destructive
property; the small sample requirement, high accuracy, and sensitivity; and the simplicity of the
protocol make it appealing for quick, in situ, and field screening of suspected adulterated oils by
municipalities, health departments, and local enforcement agencies for quality assurance and safety of
consumable products.
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