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Carbonized lignin has been proposed as a sustainable and
domestic source of activated, amorphous, graphitic, and nano-
structured carbon for many industrial applications as the
structure can be tuned through processing conditions. How-
ever, the inherent variability of lignin and its complex
physicochemical structure resulting from feedstock and pulping
selection make the Process-Structure-Property-Performance
(PSPP) relationships hard to define. In this work, radial
distribution functions (RDFs) from synchrotron X-ray and

neutron scattering of lignin-based carbon composites (LBCCs)
are investigated using the Hierarchical Decomposition of the
Radial Distribution Function (HDRDF) modelling method to
characterize the local atomic environment and develop quanti-
tative PSPP relationships. PSPP relationships for LBCCs defined
by this work include crystallite size dependence on lignin
feedstock as well as increasing crystalline volume fraction,
nanoscale composite density, and crystallite size with increasing
reduction temperature.

1. Introduction

Since today’s energy market is focused on reducing pollution
and providing more efficient and sustainable energy storage
devices, energy technologies manufactured with bio-based and
sustainable materials are necessary.[1] The incorporation of bio-
based materials into energy technologies comes with significant
challenges, usually due to their often disordered and complex
nature compared to their inorganic counterparts. Recently,
researchers have developed methods to tune these features to
their advantage and have made significant strides in the
development of nanostructured and bio-based materials for
cathodes,[2] electrolytes,[2b,c,3] anodes,[4] super capacitors,[5] and
fully organic batteries,[6] resulting in the development of safer,
longer lasting, and higher charge density batteries, super
capacitors, and fuel cells for use in electric vehicles, mobile
electronics, large scale grid applications, and so forth.[7]

A primary area of interest lies in generating a sustainable
and domestic source of carbon for the energy, manufacturing,
and technology industries. Lignin is an amorphous, cross-linked

structure of aromatic polymers derived from woody plants and
grasses and is the world’s largest source of renewable carbon.
Recent research has stated that lignin can be used to
manufacture high quality carbon composites that can be tuned
through processing conditions for use in lithium/sodium battery
anodes and super capacitors.[4a,5,8] The structure and properties
of carbonaceous products manufactured from lignin result from
the choice of processing conditions and the relative percen-
tages of the primary monomeric units (syringyl, guaiacyl, and p-
hydroxyphenyl) that constitute lignin.[9] However, developing a
predictive processing – structure – property – performance
(PSPP) relationship between lignin and carbonaceous products
presents a significant challenge given that the relative fractions
of monomeric units are highly variable between feedstocks and
that the environmental and processing conditions largely effect
the resultant structure and properties. These factors combined
make developing a predictive PSPP relationship a complex
process and increases the difficulty of manufacturing a consis-
tent nanostructured material from amorphous precursors.

Previous research has found that carbonization of lignin
produces a heterogeneous two-phase carbon composite com-
prised of nanoscale graphitic domains and domains of
randomly oriented amorphous graphene fragments.[9] The
structure and properties of this two-phase carbon composite is
highly dependent upon reduction temperature with reduction
temperatures near 1000 °C producing a mostly amorphous
graphene composite with small graphitic domains and temper-
atures near 2000 °C producing large graphitic domains em-
bedded in an amorphous graphene matrix.[9] Anodes synthe-
sized from lignin-based carbon composites (LBCCs) reduced at
1050 °C have delivered a charge capacity of 444 mAh/g with
coulombic efficiency of 98% over extended galvanostatic cycles
in Li-ion coin cell batteries.[4a] Recent simulation work has found
that lithium and sodium storage mechanisms are fundamentally
different in LBCCs and has suggested that LBCC anodes in
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sodium ion batteries would possess high charge capacities,
high cycling performance, and high diffusion rates due to the
unique nanostructure of LBCCs.[10] In order to optimize LBCCs
for performance as sustainable anodes and across multiple
technologies, we require unambiguous knowledge of the nano-
structure. Previous work with lignin and LBCCs has revealed the
relative fractions of monomeric units present in each feedstock
and further characterization experiments using TEM, XRD,
Raman, XPS, and NMR have developed excellent qualitative
information on the LBCC nanostructure as well as trends in
PSPP relationships between reduction temperature and
nanostructure.[9] However, the detailed quantitative information
on LBCC local structure such as phase volume fraction, phase
density, particle shape, and particle size are only attainable
through a combination of modeling and experiment.

Traditionally, determining the local structure of complex
nanomaterials with large amorphous components is accom-
plished through the hypothesis of a model structure based on
experimentally observed features and simulation using large-
scale molecular dynamics (MD) to capture the mesoscale
structure of the material. Since the radial distribution function
(RDF) is an effective function for evaluating the local structure
of powder, single-crystal, or liquid materials containing amor-
phous or crystalline domains in isotropic or anisotropic
orientation,[11] model analysis usually includes comparison of
the experimental neutron or X-ray RDFs and the simulated
RDF.[12] This method allows researchers to directly attribute a
complex nanomaterial’s structural characteristics to features
present in the simulated RDF,[11,13] and in battery specific
research it can define local order changes from cycling, nano-
phase quantifications, and ion storage mechanisms.[9,10b,12,13b,14]

While this method is effective for testing specific composites, it
produces a bottleneck when researching materials where small
changes in processing have large effects in the resultant
structure and the subsequent performance of the material in
application. Such problems would be better solved with a
process where the model’s structural parameters are refined
iteratively; however, this is impractical with MD simulations as
complex nanomaterials are generally computationally expen-
sive due to the large system sizes required to capture the nano
and meso-scale order.[15] This problem presents the need for a
computational tool to quickly model and iteratively refine
complex nanostructured materials without a severe computa-
tional cost.

Although there are many, some of the current endeavors in
developing a generalized tool for structural analysis of complex
materials include the Diffpy-Complex Modelling Framework, the
TOPAS-Academic software package, DISCUS, and RMCprofile.[16]

Due to the size of model needed to accurately capture the
mesoscale order of LBCCs, the fact that every clear RDF peak
arises from a plane of graphene, and the inherent complex
nature of LBCCs, it was deemed necessary to employ a different
modelling approach to accurately determine the local and
mesoscale structure of LBCCs. In 2016 Oyedele et al. proposed a
novel, physics-based model for RDF studies known as the
hierarchical decomposition of the radial distribution function
(HDRDF) method where atomistic and mesoscale models and

theory are combined to construct the total RDF without
arbitrary fitting parameters.[17] This method of modelling also
allows researchers to distinguish features in the RDF from
ordered or disordered domains of a complex, multiphase
material. The aim of HDRDF is to fill a need in the scientific
community for a quick and computationally efficient method to
determine the local structure of complex nanomaterials. HDRDF
3 was created to address the major needs of previous versions
and incorporate arbitrary domain geometries, mesoscale
(a)symmetry, and automated parameter optimization. A thor-
ough explanation of the theory and process by which HDRDF 3
generates RDF models and iteratively determines structural
features can be found in the experimental section. In this work
we employ HDRDF 3 together with TEM images and synchro-
tron X-ray RDFs to determine the crystalline and amorphous
particle shapes and sizes, component volume fractions, as well
as component and composite densities for an array of LBCCs
synthesized from four unique lignin feedstocks processed under
a range of reduction temperatures. This accurate description of
the local structure allows us to quantitatively define the PSPP
relationships of lignin and further develop sustainable carbona-
ceous products.

2. Results and Discussion

2.1. Model Validation

In order to validate HDRDF 3 (henceforth referred to as HDRDF),
as well as showcase the increased accuracy and functionality of
this iteration of HDRDF, we apply it to neutron scattering (NS)
RDF data of three hardwood derived carbon composites shown
in Figure 1. The NS data used for HDRDF model validation was
previously gathered and analyzed via MD by McNutt et al.,
experimentally characterized by Tenhaeff et al., and modeled
with a previous version of HDRDF by García-Negrón et al.[13a,17,18]

A systematic analysis of crystalline domain shape, size, and
volume fraction was conducted for the three samples, where

Figure 1. (Top) Neutron scattering RDFs of hardwood LBCCs synthesized by
Tenhaeff et al.[8] with increasing carbonization temperature. (Bottom) HDRDF
3 modelled RDFs of carbon composites.
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crystallite size and crystalline volume fraction were varied for
right parallelepiped, rod, sphere, and ellipsoid particle shapes
and compared for best fit to the neutron scattering RDF data.
Results from this analysis agreed well with the structural
parameters found in the previous version of HDRDF published
by García-Negrón et al., which showed the best model for this
data uses spherical particles with increasing particle radius and
decreasing crystalline volume fraction with the increasing
carbonization temperature of the three carbon composites.[18]

The RDFs for the three composites with their respective HDRDF
models are shown in Figure 1 below with the optimized
structural parameters shown in Table 1. We can see from
Figure 1 that the magnitude of the peaks in the HDRDF model
are consistent with the peak magnitudes from NS experiments.
Since all peak positions are represented by HDRDF, it confirms
that the graphene fragments used to model the atomic
contribution for the amorphous phase are correct; if the
amorphous phase contained sp3 bond hybridization then peak
positions in the HDRDF model would not match the NS
experiments. The density for the crystalline and amorphous
domains were input as 2.26 and 0.95 g/cm3 respectively,
consistent with literature values for crystalline graphite and
both 2D and 3D amorphous graphene with sp2 bonding.[19] It is
important to note that the HDRDF modeled RDFs are calculated
directly and thus have no short or long-range oscillations
(Fourier ripples) that arise from the Fourier transform used to
convert the experimental scattering function S(Q) to the RDF,
and contains no artifacts from equipment effects or sample
inhomogeneity as occurs in experimentally obtained RDFs. This
implies that every peak in a HDRDF modeled RDF arises due to
material structure. It should also be noted that the peak widths
of RDFs modeled with HDRDF are slightly narrower than the
experimental comparisons due to peak broadening that occurs
for several reasons, including ball milling of graphitic
structures.[20] In order to give a more accurate measure of
agreeability between the NS data and HDRDF models, the
mean absolute error reported in Table 1 was calculated for r
between 3.59 and 20.0 Å as to not include error from Fourier
ripples present below 3.59 Å.

2.2. Modelling Carbon Composites

The remainder of this work models synchrotron X-ray RDF data
of LBCC samples synthesized and experimentally analyzed by
García-Negrón et al..[9] It is important to note that the crystallites
in the LBCC samples synthesized by García-Negrón et al.[9] are
slightly more than an order of magnitude larger than the
crystallites in the Hardwood LBCCs synthesized by Tenhaeff
et al.[8] which were used for HDRDF model accuracy verification.
The size difference in crystallite domains can be attributed to
differing lignin feedstock, synthesis methods, and post-syn-
thesis ball milling procedure. From visual inspection of the TEM
images in Figure 2 and the 1050, 1500, and 2000 °C RDFs in
Figure 3, it is evident that the local structure of the carbon
composites is not only dependent upon carbonization temper-
ature but also lignin feedstock. The RDFs of the woody species
of lignin feedstocks, including kraft softwood (KSW), organosolv
Southern yellow pine (YP), and organosolv hardwood (HW),

Table 1. Optimized structural features for Hardwood LBCCs synthesized by Tenhaeff et al.[8]

Optimization Parameters Previous Model HDRDF 3

Reduction Temperature [ °C] 1050 1500 2000 1050 1500 2000
Crystallite Shape Sphere Sphere Sphere Sphere Sphere Sphere
Crystallite Radius [Å] 5 7 17 5 7 17
Crystalline Volume Fraction [%] 90 50 10 85 50 20
Composite Density [g/cm3] 1.94 1.51 1.38 2.07 1.61 1.21
Graphene Fragment Major Radius [Å] 2.5 24 15 5 15 15
Graphene Fragment Minor Radius [Å] 2.5 4 15 3 5 15
Intraplanar Thermal Noise [Å] 0.025 0.025 0.025 0.030 0.030 0.030
Interplanar Thermal Noise [Å] n/a n/a n/a 0.050 0.050 0.050
Mean Absolute Error (MAE)
(3.59< r<20.0 Å)

n/a n/a n/a 0.061 0.074 0.089

Figure 2. HR-TEM images of hard carbon composites produced from kraft
softwood (KSW) and switchgrass (SG) lignin feedstocks with reduction
temperatures of 1050 and 2000 °C.
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share greater similarities, relative to the organosolv switchgrass
(SG) samples, which have a comparably different structure for
the 1000 and 1500 °C samples. This differing local structure can
be attributed to the varying concentrations of p-hydroxyphenyl
(H), guaiacyl (G), and syringyl (S) phenolic units that compose
the cross-linked, amorphous structure of lignin. The LBCCs
increase in crystallinity as reduction temperature is increased
and the 2000 °C samples show the greatest similarity implying
the structures have become more graphitic in nature. The third
(2.87 Å) and fourth (3.29 Å) peaks represent the third nearest
neighbor and interlayer spacing respectively as shown in the
diagram in Figure 3. The evolution of the third peak from a
shoulder to a distinct peak shows the transformation of the
mostly disordered amorphous carbon composite to a more
graphitic C6 type structure. The stark increase in distinction of
the fourth peak for 1500 and 2000 °C conveys that the carbon
composite structure becomes more graphitic as planes of
graphene grow and align into their equilibrium interplanar
distance. Further, the increasing peak intensity past 7 Å for each
increase in reduction temperature denotes longer range order
implying increased crystallinity. To reveal more about the local
structure other than trends in crystallinity, we turn to modelling
the carbon composites with HDRDF, with comparisons shown

in Figures 4 and 5, and HDRDF optimized structural features
shown in Table 2.

It is also important to note that there are peaks in the
experimentally obtained data that do not correspond to graph-
ite or any of its allotropes and have been confirmed through
elemental analysis as varying amounts of oxygen from ether
linkages that persisted through pyrolysis as well as iron
contamination from the ball milling process.[9] Since we did not

Figure 3. Synchrotron X-ray RDFs of LBCCs grouped by carbonization
temperature. (Top) Diagram identifying atomic pairs and the peak to which
they correspond as measured from Atom 0. Atom 0 to Atom 4 represents
the interplanar spacing of graphitic planes.

Figure 4. Synchrotron X-ray RDFs of LBCCs reduced at 1050 and 1500 °C
plotted with their respective HDRDF models.

Figure 5. Synchrotron X-ray RDFs of LBCCs reduced at 1050 °C plotted with
their respective HDRDF models.
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include models in HDRDF for the contaminants, the modeled
RDFs do not perfectly fit the experimental data. However, there
is still much qualitative and quantitative information to be
gleaned from the model that include shape and size for
crystalline domains and the amorphous graphene fragments,
component volume fractions, composite densities, and how
trends in these structural features can aid in the understanding
of the PSPP relationships. Optimized structural features for each
model can be found in Table 2.

2.3. Particle Shape and Size

HDRDF models were made for all samples with a reduction
temperature of 1050 °C as well as the KSW and HW samples
reduced at 1500 °C. The remaining samples with reduction
temperatures of 1500 and 2000 °C possessed crystalline do-
mains greater than 140 Å. Since these crystalline domains are
much larger than the experimental RDF length of 50 Å, no
meaningful crystallite shape analysis could be conducted with
HDRDF and they are not modeled in this work. Experimentally,
it is well established that an increase in reduction temperature
leads to a corresponding increase in size of the graphitic
nanocrystallites.[9] Experimental evidence regarding the relation-
ship between nanocrystallite shape and reduction temperature
is less clear. However, the TEM work of García-Negrón et al.
suggests that the larger graphitic nanocrystallites that appear at
high reduction temperatures are more likely to contain
distinctly non-spherical geometry, presumably due to aniso-
tropic growth of graphite in the directions parallel (100 and
010) and normal (001) to the stacked sheets. To our knowledge
there is limited understanding of how choice of lignin feedstock
impacts crystallite size. García-Negrón reports two nuanced
observations in this regard. First, principal component analysis
of RDFs suggests that differences in LBCC local structure,
resulting from variation in the distribution of lignin monomers
in the source plant, tend to disappear as the reduction
temperature is increased. In other words, all lignin materials will
eventually form an increasingly graphitic structure if the
temperature is sufficiently high. Second, differences in the size
of the resulting crystallites are most obvious at the highest
reduction temperatures, with KSW and SG yielding larger
crystallites than HW and YP.[9] We make a third observation

upon review of García-Negrón’s elemental analysis of the
“other” column for pyrolyzed and reduced lignin, where the
“other” column is strongly considered to be mainly oxygen
from ether linkages with trace amounts of ash and iron
contamination from pyrolysis and ball milling respectively.[9]

Evidence for ether linkages persisting post pyrolysis is present
in the experimental RDFs as there is a relatively high intensity
plateau centered near 4.6 Å that decreases in intensity with
increasing reduction temperature. This plateau can be observed
between peaks 6 and 7 in the KSW comparison in Figure 3 and
is present in varying degrees for the other feedstocks as well.
Since the all-carbon HDRDF models produce a low intensity
valley in the model RDF near 4.6 Å (visible in Figure 4) we can
infer that this feature arises from a source other than the
crystalline and amorphous graphene domains. The interatomic
distances of an array ether linkages and lignin monomeric units
were reviewed and the very common β-O-4 ether linkage,
which accounts for a minimum of 50% of all inter-monomeric
linkages in lignin,[21] has a carbon-carbon separation in the
range of 4.56–4.67 Å in the carbon-oxygen-carbon ether linkage
according to the molecular modelling work performed by
Besombes et al., which would account for the high intensity
plateau centered at 4.6 Å.[22] The decrease in intensity of this
region as reduction temperature increases is consistent with
the dissociation of ether linkages at higher reduction temper-
atures and confirms that some ether linkages persist through
reduction at 1050 and 1500 °C. Additionally, given that there
are only trace amounts of contamination in all samples, simple
subtraction between feedstocks in the “other” column shows
that there is at least 25–50% more oxygen in the KSW and SG
samples reduced at 1050 °C compared to the HW and YP
samples.[9] We suggest that the greater amount of ether
linkages in the KSW and SG samples provide a degree of order
and serve as a scaffold along which the graphitic crystallites can
grow larger at an increased rate as reduction temperature
increases. The large graphitic crystallites of KSW and SG samples
reduced at 2000 °C can be seen in the HR-TEM images in
Figure 2 and the considerably smaller crystallites of HW and YP
samples reduced at 2000 °C can be found in HR-TEM images of
García-Negrón et al.[9]

A systematic shape and size analysis was conducted for
each of the modeled composites where sphere, ellipsoid, rod,
and right parallelepiped shapes were tested and the dimen-

Table 2. Structural features of LBCCs calculated through HDRDF.

Reduction Temperature 1050 °C 1500 °C
Lignin Feedstock KSW

Kraft Softwood
HW
Hardwood

YP
Yellow Pine

SG
Switchgrass

KSW
Kraft Softwood

HW
Hardwood

Crystallite Shape Sphere Sphere Sphere Sphere Ellipsoid Ellipsoid
Crystallite Radius [Å] (x,y,z) 22 23 24 28 28, 24, 32 33, 30, 42
Crystalline Volume Fraction [%] 20 15 20 20 45 40
Composite Density [g/cm3] 1.94 1.92 1.94 1.81 2.04 2.02
Graphene Fragment Major Radius [Å] 10 12 14 16 18 21
Graphene Fragment Minor Radius [Å] 8 8 11 12 14 13
Intraplanar Thermal Noise [Å] 0.04 0.04 0.04 0.04 0.04 0.04
Interplanar Thermal Noise [Å] 0.06 0.06 0.06 0.06 0.06 0.06
Mean Absolute Error (MAE) 0.063 0.073 0.076 0.098 0.093 0.098
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sions for each shape were optimized via conjugate gradient
(CG) optimization and the resulting RDFs were compared for
best fit via least squares error between the experimental and
modeled RDFs. Since modelled peaks at low radial distances
(below 10 Å) are narrower and taller than experimental peaks
due to instrumental peak broadening and inherent sample
inhomogeneity/disorder not captured by HDRDF, a weighting
function was applied to the least squares error calculation
which emphasized the differences at longer radial distances
(above 10 Å) in order to help determine particle shape and size
more accurately. In Table 2, the mean absolute error between
the data and models is reported. All samples reduced at 1050 °C
possessed spherical particle shapes consistent with validation
data of smaller crystallites from previous neutron scattering
experiments. The modeled spherical crystallites for the 1050 °C
samples ranged from 4.4 to 5.6 nm in diameter depending on
the feedstock. As the reduction temperature increased, the
HDRDF analysis confirms growth of the crystallite size and an
increase in crystalline volume fraction. Furthermore, the shape
of the crystallites deviates from spherical. The 1500 °C samples
were best fit with prolate ellipsoidal crystallites with the
interplane direction acting as the major radius of 3.2–4.2 nm
and the in-plane directions acting as minor radii of 2.4–3.3 nm.
As reduction temperature is increased the graphene planes
align and equilibrate into an interplanar distance of 3.35 for
KSW and 3.44 nm for all other samples as can be seen by the
examination of the fourth peak in the experimental RDFs in
Figure 3 as well as the HDRDF fits in Figures 4 and 5. The
adoption of surrounding amorphous planes of graphene into
crystallites contributes to the change in crystallite shape from
spheres to ellipsoids. The modeled crystalline domain sizes are
in good agreement with the Scherrer analysis performed on the
scattering data by García-Negrón et al.[9] Amorphous graphene
fragments with circular and elliptical shapes were tested with
the result of 2D ellipses having the better fit. The 2D ellipses
possessed smaller major and minor radii than the crystallites,
consistent with previous models and our physical understand-
ing of the composite.

The HR-TEM of KSW and SG samples reduced at 2000 °C in
Figure 2 show primarily crystalline graphitic domains with large
polygonal onion-like nanocrystallites, as well as large, elongated
rod like structures that could be multi-walled carbon nanotubes
or collapsed carbon nanotubes based on similarities in TEM
patterns found in literature.[9,23]

2.4. Crystalline Volume Fraction

From visual inspection of the HR-TEM images reported by
García-Negrón et al.[9] and the images in Figure 2, there is a
definite increase in the crystalline volume fraction for each
feedstock with increasing reduction temperature. Samples
reduced at 1050 °C show a primarily amorphous structure with
small amounts of nanocrystallites while samples reduced at
2000 °C show primarily graphitic and ordered structures which
are most easily observed in the kraft softwood and switchgrass
samples. Nanocrystallites in the pine and hardwood samples

reduced at 1050 °C and 2000 °C are somewhat difficult to make
out visually; however, the XRD and Scherrer analysis confirm
their presence with new peaks forming in the XRD pattern as
reduction temperature is increased.[9]

HDRDF models for the 1050 °C samples range from 15%
crystalline volume fraction for hardwood to 25% crystalline
volume fraction for switchgrass. Models for the 1500 °C samples
found an increase in crystalline volume fractions up to 45%.
These results agree well with the HR-TEM and XRD – Scherrer
analysis conducted by García-Negrón et al.;[9] however, they are
in partial disagreement with the trends modeled by McNutt
et al.[13a] who states that for the LBCCs synthesized from
hardwood lignin by Tenhaeff et al.,[8] crystalline volume fraction
decreases with increasing reduction temperature. They ob-
served larger crystallites at higher reduction temperatures, but
a lower total crystalline volume fraction.

2.5. Composite Density

Results from analysis of Figure 2 and the HR-TEM and X-ray
diffraction analysis conducted by García-Negrón et al. show an
increase in graphitic structure as well as a reduction in
amorphous regions with increasing reduction temperature for
all feedstocks.[9] This would suggest a monotonic increase in the
local composite density at the nanoscale with increasing
reduction temperature; however, since the composite densities
were not determined experimentally there is a degree of
uncertainty. For HDRDF modeled composites the density for the
crystalline and amorphous domains were input as 2.26 and
1.76 g/cm3 respectively, except for the switchgrass sample
reduced at 1050 °C which was better fit with an amorphous
phase density of 1.69 g/cm3. The amorphous carbon density
was found to be greater in the models for the García-Negrón
et al. composites when compared to the amorphous carbon
density of the composites synthesized by Tenhaeff et al. We
believe that the difference in the modeled amorphous phase
density between the Tenhaeff et al. composites and the García-
Negrón et al. composites can be attributed to the differences in
the used feedstocks, as well as the differences in processing
and carbonization process of the lignin. As reduction temper-
ature increased the modelled composite density also increased
towards the density of crystalline graphite as would be
expected with a larger crystalline volume fraction. The reported
composite densities in Table 2 are likely slightly overestimated
since porosity and sample packing density present in exper-
imental samples is not captured by the model. In future updates
to the HDRDF software, we plan to improve this area by
including customizable options for various states of porosity in
the mesoscale model.

2.6. HDRDF 3 Limitations

As with many other modelling techniques, HDRDF 3 has limits
on the size of a system that it can model effectively. For HDRDF
3 the limit is dependent upon the length of the experimental
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RDF and the size of the crystalline domains. Since the RDF is
used for local structure determination, if the average particle
size is much greater than the length of the experimental RDF
accurate modelling becomes difficult. When modelling nano-
materials with HDRDF 3, the peak heights, widths, and
mesoscale features of modeled RDFs are sensitive to changes in
particle size and component volume fractions; however, when
crystallites have domains greater than nanoscale size, the RDFs
no longer contain the information which would allow the
determination of particle size or shape and the modeled RDFs
resemble multiphase bulk materials instead of nanoscale
composites as it is in our case for the composites reduced at
2000 °C as well as the SG and YP samples reduced at 1500 °C.

As currently written, HDRDF contains only two magnitudes
of thermal noise, one for pairs of atoms within the same plane
and a second for pairs of atoms in different planes. Because the
thermal ellipsoid depends upon the local environment, the
thermal noise is properly a function of the atomic potential
around the equilibrium position. While there are no atomic
potentials in HDRDF, molecular dynamics simulations have
shown greater configurational disorder as the size of the
nanocrystallite decreases.[15] Therefore, it is conceivable to
implement thermal broadening as an empirical function of
distance from the edge of the crystallite, where the noise
approaches a bulk value for sufficiently large crystallites. This
feature is not explored in this work because of the overall
disorder of the system. There are not sufficiently accurate
targets to justify the additional parameters needed to create
the configurational thermal noise function.

In the comparison of simulated and experimental RDFs, very
modest changes in atomic coordinates can create pronounced
changes in the RDF, including the merging of peaks, peak width
or apparent shifting of peaks. When atomic models are
available, techniques such as Reverse Monte Carlo (RMC) can be
used to create precise matches between simulation and
experiment.[24] With a strictly atomic model, RMC could
preferentially adjust coordinates of atoms at the edges of
crystallites to capture changes in the RDF due to configurational
disorder. In HDRDF, we can imagine an analogous procedure in
which RMC adjusts the coordinates of the atomic models for
each phase, while leaving the mesoscale contribution intact.

3. Conclusion

The neutron and X-ray scattering data of the lignin-based
carbon composites (LBCCs) generated by Tenhaeff et al. and
García-Negrón et al. respectively were successfully modeled
using HDRDF 3 and granted both quantitative and qualitative
understandings of the complex material structure in addition to
the identification of nanoparticle shape. With the aid of HDRDF
3, trends in PSPP relationships were identified as increasing
crystallite size, crystalline volume fraction, and composite
density as well as the transformation from spherical crystalline
particles to ellipsoids as reduction temperature was increased
and the composites became more graphitic in nature. Through
modelling with HDRDF 3 it was found that the amorphous

carbon phase of SG reduced at 1050 °C is less dense compared
to other feedstocks and for all feedstocks the nanoscale
composite density of LBCCs increases with increasing reduction
temperature. The average interplanar distance in crystallites
was found to be 3.44 nm for all feedstocks at all reduction
temperatures except for KSW samples which had an interplanar
distance of 3.35 nm, like that of AB stacked graphite. Through a
combination of modelling with HDRDF 3 and visual analysis of
HR-TEM images, the crystalline volume fraction was determined
to increase with increasing reduction temperature for all
feedstocks which become partially graphitic at a reduction
temperature of 2000 °C. The crystalline volume fraction varied
between 15–20% for feedstocks reduced at 1050 °C and 40–
45% for feedstocks reduced at 1500 °C. The transition from
spherical to ellipsoidal particle shapes as reduction temperature
was increased from 1050 to 1500 °C was attributed to the
adoption of amorphous graphene particles into the crystalline
nanoparticles. It is also suggested that the higher oxygen
content found in the KSW and SG samples is due to higher
amounts of ether linkages that persisted through pyrolysis. The
ether linkages that survived pyrolysis acted as a scaffold,
providing structure for crystallites to grow into larger graphitic
structures more rapidly. Further, inspection of the HR-TEM of
kraft softwood and switchgrass reduced at 2000 °C suggests
that the large rod-like crystallites could be multiwalled carbon
nanotubes.

The HDRDF 3 software can now be used on parallel
architectures and allows models with arbitrary domain geo-
metries. Structural parameters are optimized via conjugate
gradient optimization and crystalline/amorphous domain
shapes can be identified via least-error analysis, greatly
reducing the human time, effort, and error of hand-eye fitting
that was present in previous models. HDRDF 3 achieved a
reduction in computational cost of five orders of magnitude
compared to molecular dynamics simulations of these LBCCs.
HDRDF 3 can now be considered a generalized physics-based
tractable model for rapid modelling and understanding of the
local structure of complex composite materials with only a
small computational cost. Plans for future updates involve
modules for including crystalline and amorphous polydispersity,
customizable states of porosity in the mesoscale model as well
as multiple crystalline and amorphous phases.

The quantitative results on LBCC structure from this work
are being used to direct current work on optimizing LBCCs for
use as sustainable hard carbon anodes in lithium and sodium
ion batteries.

Experimental Section

Data Collection

The RDF data for this work was gathered at room temperature from
the 11-ID� B beamline at The Advanced Photon Source (APS) with
0.2113 Å wavelength. For the hardwood, pine, and switchgrass
materials, lignin was extracted from the plant matter via the
organosolv process.[25] The kraft softwood lignin was created
through the kraft process.[26] The lignin feedstocks were carbonized
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according to the procedure of García-Negrón et al., with reduction
temperatures of 1050, 1500, and 2000 °C for each feedstock.[4a,9]

Samples were prepared in capillaries in triplicates for the scattering
experiments to account for possible sample inhomogeneity. The
RDF, or g(r), for each sample were calculated from the X-ray
scattering data with the xPDFsuite software with lower and upper
limits on the Fourier transform integral of 0.1 and 22.0 Å� 1,
respectively and a value of 0.8 for the polynomial smoothing
function (rpoly).[27] Fourier ripples are a result of the Fourier
transformation from reciprocal space to real space and are
considered noise in the experimental data. The Fourier ripples arise
as artificial peaks in low r and long scale oscillations in high r. These
ripples have been removed for r<3.0 Å in our experimental data as
to not introduce a significant source of error when the experimen-
tal and modeled RDFs are compared during the structural feature
optimization step of HDRDF.

The neutron scattering data was gathered by McNutt et al. at the
Nanoscale-Ordered Materials Diffractometer (NOMAD) beamline at
the Spallation Neutron Source (SNS) at Oak Ridge National
Laboratory (ORNL).[13a] The three LBCC samples were loaded in
quartz capillaries and placed in the beamline for 2 h with an argon
atmosphere at room temperature. Scattering from a solid vanadium
rod provided data for background subtraction and normalization.
RDFs were obtained by Fourier transform of S(Q) with Qmax of 30 Å.

High Resolution Transmission Electron Microscopy (HR-TEM)

HR-TEM was used to gain visual evidence and qualitative
information of the effects of feedstock and reduction temperature
on the local structure of lignin-based carbon composites. The
lignin-based carbon composites were first powdered and mixed
with methanol at 0.2 :99.8 wt%. To achieve separation of particles
the mixture was then sonicated for 20 minutes. The mixture was
then pipetted onto the surface of a lacey carbon 200 mesh copper
grid (Cat. # LC200-CU) as specified for TEM from EMS. Images were
gathered using the Libra 200 MC with an accelerating voltage of
200 kV and vacuum pressure lower than 2.0×10� 6 mbar.

Hierarchical Decomposition of the RDF

The hierarchical decomposition of the RDF occurs in stages with
the first stage separating phases of a complex material. For a
composite composed of two phases, labeled a for amorphous and
c for crystalline, total RDF, gtot , can be expressed at the first level of
the decomposition as linear combination of the pair-wise compo-
nents, gaa, gcc, and gac ¼ gca, weighted by the relative atom
fractions, xa and xc [Eq. (1)]:

gtot rð Þ ¼ x2
agaa rð Þ þ 2xaxcgac rð Þ þ x2

cgcc rð Þ (1)

Subsequent stages of decomposition occur to a point at which
each component of the RDF can be represented with a tractable
physics-based model. A detailed and rigorous explanation of the
hierarchal decomposition theory is available in works by Oyedele
et al. and García-Negrón et al.[17–18] In this implementation of
HDRDF, the following procedure is adopted. For RDF components
representing scattering by atoms within the same phase, the
second level of decomposition is into atomistic and mesoscale
components [Eq. (2 and 3)]:

gaa rð Þ ¼ gatom
aa rð Þ þ gmeso

aa rð Þ (2)

gcc rð Þ ¼ gatom
cc rð Þ þ gmeso

cc rð Þ (3)

For RDF components representing scattering by atoms within
different phases, the second level of decomposition is strictly a
mesoscale component [Eq. (4)]:

gac rð Þ ¼ gmeso
ac rð Þ (4)

The practical motivation for this choice of decomposition has two
origins. First, previously published molecular simulation work on
LBCCs has associated all sharp peaks with features arising from
pairs of atoms contained within a single graphitic crystallite in the
crystalline domain or a single graphene fragment in the amorphous
domain.[13a] These contributions fall within gaa and gcc. Second, static
models of the graphitic crystallites or graphene fragments are
readily generated from existing crystal structure databases; there-
fore, the atomic contribution is tractable. The same degree of
catalogued knowledge does not extend to the interfaces, making
an atomic model for gac a more suitable topic for the more
computationally intensive molecular simulation approach. Fortu-
nately, for the materials studied here, the empirical evidence
supports this level of decomposition.

Specifically, the five components of the decomposition are 1)
discrete atomic contribution from pairs of atoms inside a crystallite,
gatom
cc rð Þ, 2) discrete atomic contributions from pairs of atoms in the

amorphous phase, gatom
aa rð Þ, 3) mesoscale contribution between pairs

of crystallites, gmeso
cc rð Þ, 4) mesoscale contribution between amor-

phous domains, gmeso
aa rð Þ, and 5) mesoscale contribution between

crystalline and amorphous domains, gmeso
ac rð Þ. The total RDF is then

calculated from a weighted sum of each component, where the
weight for each component of the hierarchical decomposition of
the RDF is determined by the component volume fraction and
density of each phase and ensure that the total RDF converges to
unity as the separation between atoms approaches infinity. Each of
these contributions are detailed in Figure 6. In Figure 6, clearly
sharp features arise from contributions to the RDF with atomic
resolution, while broader features are associated with mesoscale
components.

Advances from Previous Implementations of HDRDF

The primary improvement in the current version of HDRDF is the
discretization of the model at the mesoscale. As shown in Figure 6,
the area enclosed within the red surfaces is designated as the
crystalline phase and the contiguous area outside the red surfaces
is designated as the amorphous phase. In previous works, analytical
solutions were derived and employed to rapidly evaluate the six-
dimensional integral generating the mesoscale RDF between
spherical crystallites and the four-dimensional integral generating
the mesoscale RDF between parallel circular fragments of gra-
phene. The analytical elegance was not readily amenable to
arbitrary crystallite shapes or even polydispersity of spheres. In
HDRDF 3, the analytical solutions have been replaced with a fully
spatially discretized model of the composite in which the multi-
dimensional integrals are evaluated via Monte Carlo (MC) integra-
tion. While stochastic integration is certainly more computationally
demanding compared to evaluation of analytical functions, it still
requires several orders of magnitude less computational resources
than the alternative, which is molecular dynamics simulation.
Moreover, numerical integration opens the door to modelling
composites with arbitrary particle shape, orientation (for non-
spherical particles), polydispersity and mesoscale structure (e.g.
crystallites distributed on an ordered lattice versus randomly
distributed crystallites).

The spatial discretization also eliminated the need of creating
empirical ways to deal with experimental data that was not well
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modeled by spherical crystallites as was necessary in previous
efforts. The analytical approach worked well for composites when
the crystalline volume fraction was low and the separation between
particles high. However, when the crystalline volume fraction was
high, the particles began to be packed together, resulting in a flat
interface between two otherwise spherical crystallites. This geome-
try required a sharp increase in mesoscale crystalline-crystalline
component, not possible with the analytical solution. In previous
versions of HDRDF, this feature in highly crystalline composites was
modeled with a parameterized erfc function. This ad hoc approach
is no longer necessary with the MC integration of a spatially
discretized model.

As a minor note, the previous use of HDRDF to examine carbon
composites contained a third level of decomposition, separating
the atomic crystalline-crystalline component into contributions
arising from C atoms within the same plane and C atoms in two
different planes of graphite.[18] In this work, the graphitic nano-
crystallite is represented as a single atomic structure. The ability to
vary the d-spacing in graphite is retained by allowing the c vector
of the unit cell to vary.

Insights from Mesoscale Contributions

Radial distribution function features that define particle shape and
size are difficult to determine when viewing a total RDF but are

easily constructed with the HDRDF technique. The mesoscale
contributions from the hierarchal decomposition play an important
role in the identification of particle shape and size and in addition
can aid in the determination of mesoscale symmetry of crystalline
domains in composite materials. In Figure 7 below, various particle
shapes, sizes and symmetry are shown with their corresponding
intercrystallite mesoscale contributions, gmeso

cc rð Þ; to the total RDF.
The plots in Figure 7 show the mesoscale intercrystallite contribu-
tion to the RDF for a set of similarly sized particle shapes, a set of
differently sized crystallite nanospheres, and a set of simple cubic
arranged nanospheres vs. randomly placed nanospheres (no
symmetry). These plots are included to highlight the differences in
the mesoscale contribution to the total RDF and show that the
isolation and analysis of gmeso

cc rð Þ can lead to qualitative and
quantitative information when modelling sets of experimental
samples. The mesoscale contributions are zero until after 3 Å since

Figure 6. Hierarchical decomposition of the RDF with components 1) cc
atomic: atomic crystalline intraparticle, 2) aa atomic: atomic amorphous
intraparticle, 3) cc meso: mesoscale crystallite interparticle, 4) aa meso:
mesoscale amorphous interparticle, 5) ac meso: mesoscale crystalline-
amorphous interparticle (Top).Mesoscale model with 50% crystalline volume
fraction and 1.5 nm diameter spherical crystallites (red) and an encapsulating
amorphous matrix (white) (Bottom).

Figure 7. Intercrystallite mesoscale contributions, gmeso
cc rð Þ; to the total RDF

aid in particle shape determination (top), particle size determination
(middle), and mesoscale particle symmetry in the composite (bottom).
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distances shorter than 3 Å are included in the discrete atomic
contributions to the RDF.

Model Creation and Optimization

In this section we describe the flow and methods of operation for
the HDRDF 3 software. Crystalline phases (three dimensional
volumes cut from a bulk graphite structure) and amorphous base
units (represented by graphene fragments) are input into HDRDF
with their respective particle shape, lattice vectors and angles, and
fractional coordinates. To handle arbitrary geometries of crystalline
and amorphous domains, HDRDF allows custom cartesian coordi-
nate inputs. These atomic models are then used to compute the
atomic contributions to the RDF from the crystalline and amor-
phous phases by constructing a histogram of all interatomic
distances and applying gaussian type anisotropic thermal noise.
Next, the crystallite particles are arranged in a 3-dimensional
structure according to user input (i. e., simple cubic formation, close
packed, random placement, etc.) and the component-wise volume
fractions. The 3-dimenstional mesoscale model is projected to a
digitized 3-d mesh with 0.2 Å resolution as shown in Figure 6.
Sections of the mesh that are not defined with crystalline particles
can be defined as an encapsulating amorphous matrix. The
mesoscale model is a box whose size is generated to be greater
than twice the length of the experimental RDF length used for
comparison. This model sizing technique avoids artifacts in the
modeled RDF that could arise by using a smaller mesoscale model
with periodic boundary conditions. The mesoscale components of
the RDF decomposition are then constructed with Monte Carlo
integration performed on the digitized mesh where the number of
sample points for each mesoscale contribution are based on
component volume fraction and component density. The meso-
scale components, gmeso rð Þ; are then linearly interpolated to the
experimental resolution (usually 0.01 Å) and the total RDF is formed
from the weighted sum of the atomic and mesoscale contributions
as seen in Figure 6. The total modeled RDF is then compared to
experiment and a least-squares error is calculated to measure
goodness of fit. Iterative optimization of structural parameters is
then carried out via BFGS conjugate gradient method until the
specified convergence criteria are met.[28]

HDRDF Output

After convergence of the iterative optimization, HDRDF outputs the
optimized structural parameters as well as the total modeled RDF
and each component of the hierarchical decomposition. In addition,
there are options to allow HDRDF to output the crystalline,
amorphous, and mesoscale 3D models for visualization.

Previous Versions of HDRDF

The first iteration of this method developed by Oyedele et al. used
analytical solutions to six-dimensional integration and could only
be employed for spherical crystallites due to the difficulty of
complex integration over arbitrary geometries. The first application
of this method was used to successfully model both the total
neutron scattering (NS) RDF of a carbon-composite and on a
component-by-component basis against MD models of the afore-
mentioned carbon-composites.[13a,17] The second generation of the
hierarchical decomposition method was developed in MATLAB by
García-Negrón et al. and was implemented on a series of three
hardwood-lignin-based carbon-composites (LBCCs) with increasing
reduction temperature.[18] García-Negrón’s model allowed iterative
by-hand optimization of structural parameters such as crystallite
domain size, crystalline and amorphous volume fractions, and

density.[18] Modeled RDFs were compared on a component-by-
component basis versus three lignin-based carbon composite MD
models of 10, 50, and 90% crystallinity which emulated the carbon-
composites for hardwood lignin pyrolyzed and reduced at 1050,
1500, and 2000 °C respectively.[13a,18] This second implementation of
the hierarchical decomposition method maintained the reduction
in computational cost by six orders of magnitude compared to the
computational cost in obtaining the modeled RDF via MD
simulation.
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