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Abstract

Background: The error in estimating meal carbohydrates (CHO) amount is a critical mistake committed by
type 1 diabetes (T1D) subjects. The aim of this study is both to investigate which factors, related to meals and
subjects, affect the CHO counting error most and to develop a mathematical model of CHO counting error
embeddable in T1D patient decision simulators to conduct in silico clinical trials.
Methods: A published dataset of 50 T1D adults is used, which includes a patient’s CHO count of 692 meals,
dietitian’s estimates of meal composition (used as reference), and several potential explanatory factors. The
CHO counting error is modeled by multiple linear regression, with stepwise variable selection starting from 10
candidate predictors, that is, education level, insulin treatment duration, age, body weight, meal type, CHO,
lipid, energy, protein, and fiber content. Inclusion of quadratic and interaction terms is also evaluated.
Results: Larger errors correspond to larger meals, and most of the large meals are underestimated. The linear
model selects CHO (P < 0.00001), meal type (P < 0.00001), and body weight (P = 0.047), whereas its extended
version embeds a quadratic term of CHO (P < 0.00001) and interaction terms of meal type with CHO (P =
0.0001) and fiber amount (P = 0.001). The extended model explains 34.9% of the CHO counting error variance.
Comparison with the CHO counting error description previously used in the T1D patient decision simulator
shows that the proposed models return more credible realizations.
Conclusions: The most important predictors of CHO counting errors are CHO and meal type. The mathematical
models proposed improve the description of patients’ behavior in the T1D patient decision simulator.

Keywords: Type 1 diabetes, Insulin therapy, Carbohydrates, Carbohydrate counting error, Mathematical
modeling, Simulation.

Introduction

Therapy for type 1 diabetes (T1D) consists of exoge-
nous insulin administrations, aimed at maintaining blood

glucose (BG) concentration within a safe range.1 Meal in-
sulin doses are tuned according to the amount of carbohy-
drates (CHO) ingested at meals.2 In particular, the American
Diabetes Association recommends the carbohydrate count-
ing, or CHO counting approach, which consists of estimating

the amount of CHO in the meal and administering an insulin
dose proportional to this amount.3 Accurate CHO count-
ing requires specific training and knowledge about the
CHO content of different foods and meals. Consequently,
CHO counting is a difficult task for T1D subjects, who fre-
quently commit errors. Remarkably, the smartphone appli-
cations proposed in the literature as an automatic aid for
counting CHO4–6 are, at present, only used by a minority of
patients.
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Currently, little quantitative knowledge is available in the
literature regarding the accuracy of CHO estimations made
by patients and the impact of CHO counting errors. One
common practice is to consider an error of –10 g per meal or
snack acceptable, based on the study performed by Smart
et al.,7 which demonstrated that a –10 g error in the estimate
of 60 g of CHO (i.e., a relative error of 17%) did not lead to
any difference in postprandial glycemic control. Never-
theless, several studies have suggested that patients in reality
make much larger errors.8–14

Other literature has investigated the impact of CHO
counting errors on glycemic control, through both in vivo15–17

and in silico11,12,18,19 clinical trials and has shown that CHO
counting errors can strongly influence postprandial BG
excursions: CHO underestimation can cause postprandial
hyperglycemia, whereas CHO overestimation can lead to
hypoglycemic episodes.

To extensively assess the effect of CHO counting errors
on the quality of glycemic control via computer simulations
and, more in general, to perform more reliable in silico trials,
an accurate model of the CHO counting error is needed. One
of the most recently presented tools for performing in silico
trials is the T1D patient decision simulator,20 which com-
plements the UVA/Padova model of glucose, insulin, and
glucagon dynamics in T1D patients21 with a model of T1D
patients’ behavior when making treatment decisions. The
latter includes a very simple CHO counting error description,
that is, a probability density function, which does not take into
account any correlation of the CHO counting error with any
patient or meal covariates that might influence the accuracy of
CHO counting. Nevertheless, apart from this simple model, to
the best of our knowledge, no other model of the CHO
counting error has, as yet, been proposed in the literature.
Indeed, a new, more accurate model of the CHO counting
error is needed so as to improve the description of patient
behavior when making treatment decisions and so be able to
simulate T1D treatment scenarios even more realistically.

The main goals of this work are: (i) to study the factors that
can influence the CHO counting error, including both patient
and meal characteristics; (ii) to develop a model of the CHO
counting error that takes these characteristics into account; and
(iii) to incorporate the new model in the T1D patient decision
simulator.20 To achieve these aims, we used the dataset already
published in Brazeau et al.,10 which, uniquely, offers very rich
information about meals (e.g., accurate estimates of meal nu-
trient content) and patients (e.g., level of education, duration of
insulin treatment, body weight, etc.), which, to the best of our
knowledge, has not been published in any other literature
studies. After a first exploratory analysis of the available meals
and of CHO counting error data, CHO counting error models
are developed by using multiple linear regression with step-
wise variable selection applied on 10 candidate predictors and
their interaction and quadratic terms. The generalizability
of the findings is assessed by using a leave-one-out cross-
validation strategy. The models developed are then incorpo-
rated into the T1D patient decision simulator.20

Methods

Dataset description

The available data come from a published study10 that
involved 50 T1D adults who estimated their CHO quantity in

meals for about 3 days, while maintaining their usual physical
activities and food habits. Participants wore a continuous
glucose monitoring (CGM) sensor throughout the study.
Participants were 48% women, 42.7 – 11.1 years old, 26% of
whom had attended Secondary School, 22% Collège d’en-
seignement général et professionnel (CEGEP), and 52%
university. Participants had a mean diabetes duration of
21.4 – 12.7 years, HbA1c of 7.6 – 1.2% (60 – 10 mmol/mol),
body weight of 72.7 – 14.8 kg, and body mass index (BMI) of
25.1 – 3.6 kg/m2.

The data are:

� the CHO amount estimated by each subject for all
meals, including breakfast, lunch, dinner, and snacks;

� the CHO amount of each meal determined by an expert
dietitian using a computerized analysis program;

� other covariates regarding meal composition (e.g.,
proteins, energy content, lipids, and fibers), information
on subjects and therapies (e.g., age, level of education,
duration of T1D, body weight, BMI, HbA1c, etc.), and
glucose variability metrics extracted from CGM sensor
data.

The food diaries completed by each participant were an-
alyzed by a dietitian using the Food Processor SQL (ESHA
Research, Salem, OR) with the 2007 Canadian Nutrient File
and, if or when necessary, food label information was added
to the database. The analyses were verified by an independent
expert.10

A total of food records of 692 meals (146 breakfasts, 156
lunches, 146 dinners, and 244 snacks) are available for, on
average, 13.8 – 3 meals per subject. Both the median and
interquartile range of the macronutrient content for differ-
ent types of meals are reported, for reasons of space, in
Supplementary Table S1.

Exploratory analysis of meals and CHO counting errors

We calculated the CHO estimation error, gCHO, as:

gCHO¼ dCHO�CHO ð1Þ

that is, the difference between the patient’s CHO estimate
( dCHO) and the CHO amount determined by the dietitian
(CHO), which was considered as the reference CHO count.
An exploratory analysis of the meals consumed and the CHO
counting errors committed by subjects was performed by
using both boxplots and scatterplots.

Developing of a CHO counting error model

Linear model. A CHO counting error model was devel-
oped by using the multiple linear regression approach. For
our purpose, the CHO counting error, gCHO, is the dependent
variable; whereas the other variables of the dataset (e.g., level
of education, duration of insulin treatment, meal CHO con-
tent, fiber amount, type, and others) are the independent
variables. The coefficients of the model are estimated by
using the linear least-squares approach.22,23

At first, the full model, that is, the model with all the pre-
dictors taken into account, was fitted and statistical tests were
performed to investigate which coefficients are significantly
different from zero. In particular, an F-test with null
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hypothesis H0: all the slopes of the linear model are equal to
0 and a t-test for each of the model’s coefficients with null
hypothesis H0: the coefficient is equal to 0 were performed
with a 5% level of significance.22,23 If the F-test detected that
at least one of the regressors was related to the response, and
the t-tests showed that not all the coefficients were signifi-
cantly different from 0, the model complexity could be re-
duced by selecting the most important predictors to explain
the response. The reduction of model complexity was per-
formed by using stepwise variable selection with bidirec-
tional elimination.22,23 The stopping rule employed adopted
the P-value of an F-statistic, so as to test models both with
and without a potential variable at each step. The threshold
on the P-value for entering was set at 0.05, whereas on the
P-value for removing, it was set at 0.1.

Model with interactions and quadratic terms. The linear
model considered may be restrictive. A simple way of in-
troducing more flexibility into the model would be to add
interaction and polynomial terms.22,23

In our case, we extended the linear model by introducing
interaction and quadratic terms. In our investigation, we
performed the same statistical tests and methods to reduce
model complexity as those used for the linear model case (see
Linear Model section). The coefficient of determination, R2,
and the adjusted R2 parameter, that is, R2 adjusted for the
number of predictors in the model, were used to compare
the amount of CHO counting error variance explained by the
different models developed.

Selection of the regressors

Given the large number of possible regressors (risk of
overfitting) and the fact that they are correlated (making the
interpretation of the coefficients difficult), when developing
the model we restricted our analysis to a subgroup of re-
gressors, manually selected, to remove the redundant terms
and covariates not relevant for the CHO counting error.

First, we removed variables strictly correlated with each
other, to reduce collinearity. Thus, from a group of highly
correlated variables, we kept only those that best explained
the others, so as to preserve as much information as possible.
For example, this was done for the variables related to obe-
sity, that is, body weight, BMI, waist, and lean body mass,
which are strongly correlated with each other. Among these,
only body weight was kept. Variables relating to macronu-
trient meal content (i.e., CHO, lipids, energy, and fiber) are
correlated with each other, but the correlation is not high
enough to assume collinearity, except for the energy content,
which has a Pearson correlation coefficient of 0.79 with
CHO, 0.86 with proteins and 0.89 with lipids. We decided to
keep all the variables related to meals in the model and per-
form a check of collinearity once the CHO counting error
model had been developed (see Test of Collinearity section).

Then, since the regression technique is not able to give
information about the direction of the cause-and-effect rela-
tionship between the CHO counting error and the available
covariates, some variables that seemed to be more the effect,
rather than the cause, of the error, that is, the number of units
of rapid insulin and HbA1c level, were dropped. The same
was done for glycemic control metrics, also because these
metrics were calculated as the mean over 72 h of the study;

thus, they represent glycemic control over the entire duration
of the experiment, not just before meals.

Assessment of the generalizability of the models
through cross-validation

A second independent dataset, including all the covariates
used as explanatory factors of the CHO counting error, that
could have been used for the purpose of model validation
is not available in the published literature, at least to the best of
our knowledge. Therefore, the models developed in this ar-
ticle are validated by a cross-validation strategy. More pre-
cisely, we performed a leave-one-out cross validation ‘‘per
subject,’’ that is, at each iteration we used the data of one
subject as a test set, whereas data of all the other 49 subjects
were adopted as the training set. In this way, at each iteration,
the test set was composed of data on a subject that were not
used for training the models. For each iteration, the Root
Mean Square Error (RMSE) was computed on the test data as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ntest

+
ntest

i¼ 1

�
yi� ŷi

�2

s
(2)

where yi is the ith observation, that is, the CHO counting
error, of the test set; ŷi is the estimate of the ith observation
obtained with the model trained on the training set; and ntest is
the cardinality of the test set.

The estimate of the test error was obtained by computing
the mean and 95% confidence interval of the RMSE obtained
in the 50 iterations.

Incorporation in the T1D patient decision simulator

Both the linear and extended models are incorporated in
the T1D patient decision simulator.20 To take into account the
variability of the CHO counting error generated by factors
not included in the models, we added a white Gaussian noise
to each equation, with zero mean and constant variance cal-
culated on the residuals obtained in the least-square iden-
tification of the final models. Then, we performed 3
simulations on 100 virtual subjects for 7 days with 3 meals
per subject-day (i.e., breakfast, lunch, and dinner) and ther-
apy based on nonadjunctive CGM use. For each simulation, a
total of 2100 meal CHO data were generated, with the cor-
responding CHO counting errors generated by different
models. In the first simulation, the ‘‘old’’ model, which was
already present in the simulator, was used. This simple model
consisted of a Student’s t probability density function fitted
on the percentage CHO estimation error extracted from the
Brazeau et al.10 dataset. In the second simulation, the ‘‘new’’
linear model, derived as in the Linear Model section, was
used; whereas in the third simulation, the CHO counting error
was generated by using the ‘‘new’’ extended model, derived
as in the Model with Interactions and Quadratic Terms sec-
tion. For each simulation, the meal CHO amount was gen-
erated by using a meal distribution similar to that of the real
data produced by Brazeau et al.10

Lastly, the CHO counting error, generated by the ‘‘old’’
model used in Vettoretti et al.20 and the ‘‘new’’ models de-
veloped in this article, were plotted versus meal CHO to
qualitatively assess whether the models could capture the
relationship between the CHO counting error and the meal
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CHO observed in real data. In addition, a quantitative indi-
cator of model accuracy in capturing this relationship is
provided by fitting regression lines against both real and
simulated data and by comparing their parameters. The
general equation of each regression line is as follows:

gCHO¼b0þb1CHO (3)

where b0 is the intercept and b1 is the coefficient repre-
senting the correlation between CHO and the error gCHO.

Results

Exploratory analysis of meals and CHO counting error

Figure 1A shows the boxplots of meal CHO content in
different types of meal. The average CHO content is 58.18 –
26.06 g for breakfast, 77.97 – 35.13 g for lunch, 80.57 –
37.64 g for dinner, and 36.53 – 30.10 g for a snack. Hence,
lunch and dinner seem, on average, to be larger meals than
breakfast and snacks. Quantitatively similar boxplots were
obtained for the other meal variables, that is, energy, lipids,
proteins, and fiber (details are not reported here for reasons
of space). These results are in line with the expectations
generated by the fact that participants’ food consumption
was typical of the Canadian population’s habits, where the
smallest meal is breakfast and the largest is dinner.10

To understand the extent to which individuals tend to eat the
same amount of CHO at different meals (intra-subject vari-
ability) and what the difference is in the meal habits of the
subjects (inter-subject variability), the CHO amount eaten by
each subject for different types of meal is shown in Figure 2
(note that subjects are ordered according to the individual av-
erage daily CHO amount, shown in panel E). It is clear that there
is some intra- and inter-subject variability. However, different
behaviors in the CHO amount eaten by subjects can also be
discerned. For example, patient #14 tends to eat the same
amount of CHO for each of the meal types, that is, about 50 g at
breakfast, 50 g at lunch, 65 g at dinner, and 25 g for snacks.

On the other hand, other patients have much more irregular
habits, for example, patient #40 presents large variability
at lunch and dinner, and small variability at breakfast and
snacks. Moreover, the subjects’ mean daily CHO amount
varies widely between subjects, from a minimum of 100 g for
subject #1, to about 350 g for subject #50. Nevertheless, the
duration of the study (about 3 days) is, in all likelihood, too
short to reveal the real daily habits of participants.

The boxplots of the CHO counting error gCHO in the dif-
ferent types of meal (Fig. 1B) show that the error is larger at
lunch and dinner when compared with breakfast and snacks.
Therefore, larger errors correspond to larger meals. More-
over, Figure 1C shows that after plotting the CHO counting
error gCHO against the meal CHO amount, a specific trend
appears: most of the meals are underestimated (about 63%),
smaller errors correspond to meals with low CHO content,
and there is a tendency to underestimate large meals. The
relationship between CHO and the error gCHO is quantita-
tively described by the regression line reported in the plot,
with the following equation:

gCHO¼ 10:54� 0:28 CHO (4)

Similar behavior was observed after making separate
scatterplots for the data on breakfasts, lunches, dinners, and
snacks (not reported for the sake of brevity). These results
offer initial evidence that both meal type and CHO amount
are factors that influence the CHO counting error. The be-
havior of T1D subjects in the CHO estimation found in this
work is in line with that obtained by two recent works by
Reiterer et al.11,12 Moreover, the tendency to underestimate
large meals, and to overestimate small meals, has also been
detected in other works in the literature.11–14 Lastly, some
parameters describing the distribution of CHO counting er-
rors for different levels of meal CHO amount in greater detail
are reported in Table 1. It should be noted that increasing the
amount of CHO results in a CHO counting error that be-
comes, on average, higher (in absolute value) and with a
negative bias.

Model describing the CHO counting error

Selection of regressors. As a result of the steps ex-
plained in Selection of the Regressors section, we selected the
following 10 variables, employed as regressors in the model:
level of education (4 discrete values: 1 for primary school,
2 for secondary school, 3 for CEGEP, and 4 for university),
duration of insulin treatment (years), age (years), body
weight (kg), CHO (g), amount of lipids (g), energy content
(kcal), amount of proteins (g), fiber content (g), meal type
(breakfast, lunch, dinner, or snack). All the variables invol-
ved are quantitative, except for that representing the type of
meal, which is a categorical variable, with four levels, as-
sociated with each category, incorporated into the regression
model by using three dummy variables (or indicators). So,
there are a total of 13 coefficients in the model (intercept
included).

Linear model. First, the full linear model is fitted. Esti-
mates of the coefficients and the corresponding P-value re-
lated to the t-test with null hypothesis H0: the coefficient is
equal to 0 are reported in Table 2.

The coefficient of determination R2 of the model is 0.311,
whereas the adjusted R2 parameter is 0.299. The full linear
model can explain 31% of the variance of the CHO counting
error. This means either that other factors, together with meal
and patient covariates, are needed to better explain the CHO
estimation error or that the majority of the variability of the
CHO counting errors are due to random errors.

An F-test was performed to test the null hypothesis H0: all
the slopes of the linear model are equal to 0, which was
rejected at the 5% level (F-statistic = 25.4, P < 0.00001). This
means that the full model gives more information about the
response than does the constant one; so, we have strong ev-
idence that at least one of the covariates is important when
predicting the CHO counting error. By looking at the t-test
P-values reported in Table 2, we see that the only coefficients
statistically significantly different from zero at the 5% sig-
nificance level are those of the variables CHO (P < 0.001),
meal type snack (P < 0.001), and body weight (P = 0.05). In
particular, the statistical significance of the meal-type snack
in the full model highlights the fact that the error for snacks is
significantly different, statistically speaking, from the error
for the other meals (i.e., of breakfast, lunch, and dinner) even
when the same amounts of CHO are considered. This is
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probably due to the fact that, generally, it is easier to assess
the CHO of snacks, because they are often composed of a
single ingredient. Further, packaged snacks all have a label
reporting nutrient content.

Since only a few coefficients show statistically significant
differences from zero, the full model can be reduced in
complexity by selecting the most important predictors to

explain the response. To do this, a stepwise variable selection
approach was applied to the full linear model. The results of
the stepwise procedure, reported in Table 3, suggest that
CHO and the type of meal are the most important determi-
nants of any CHO counting error. Indeed, they are added to
the model in the first two steps with very low P-values, almost
explaining the total variance revealed by the full model

FIG. 1. Boxplots of CHO content (A) and CHO counting errors (B) of breakfast, lunch, dinner, and snacks of all
50 patients. In each boxplot, the red horizontal line represents the median, the blue box marks the interquartile range, dashed
lines are the whiskers, and red crosses indicate outliers. Whiskers are drawn from the ends of the interquartile range to the
adjacent values, which are the most extreme data values that are not outliers. By default, an outlier is a value that is more
than 1.5 times the interquartile range away from the top or bottom of the box. The scatterplot of the CHO counting error
against meal CHO amount, together with the corresponding regression line (in red), is reported in (C). CHO, carbohydrates.
Color images are available online.
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(R2 = 0.304 vs. R2 = 0.311). Indeed, CHO alone can explain
27% of the total variance of the response.

At the third step, a patient-specific variable, body weight,
was added to the model. However, body weight could be
considered a borderline predictor: its P-value is very close to
the threshold for entering and it results in only a small increase
in R2, that is from 0.304 to 0.308. No other variables were
added to the model, and within this dataset no strong corre-
lation was found between the other variables and the error.

The equation of the final linear model that includes only
the predictors selected by stepwise variable selection is as
follows:

gCHO¼ 9:22� 0:34 CHOþ 0:09 body weight

þ 3:11 meallunchþ 0:68 mealdinner� 7:05 mealsnack

(5)

Extended model. Interaction and quadratic terms were
added to the model to improve the description of the CHO
counting error. At first, the model, fitted by using the 10
manually selected predictors, had 85 coefficients because of
the intercept, linear terms, quadratic terms, and interaction
terms between each pair of predictors.

The coefficient of determination R2 of the full extended
model is 0.523, whereas the adjusted R2 parameter is 0.456.
When the interaction and quadratic terms were added, the
adjusted R2 increased from 0.299 to 0.456; thus, we con-

cluded that the addition of interactions and quadratic terms
makes it possible to explain more information about the re-
sponse, but does not offer any dramatic improvements.

An F-test was then performed to test the null hypothesis
H0: all the coefficients of the linear model are equal to 0.
Since the resulting F-statistic was equal to 7.87 with
P < 0.00001, the null hypothesis was rejected.

The most important predictors that could explain the re-
sponse were investigated by using the stepwise variable se-
lection approach (Table 3). A quadratic term of CHO was
added at step 2, an interaction term between CHO and meal at
step 4, and an interaction term between fiber and meal at step
6. Therefore, when the stepwise technique was performed on
linear, interaction, and quadratic terms, the variable body
weight was excluded from the model whereas fiber was in-
cluded. The importance of CHO in explaining the CHO
counting error was highlighted by the addition of the CHO2

term with a very low P-value. No strong relationship between
the error and the other variables excluded from the model was
found. This result is in line with the study by Meade et al.,9 in
which no association was found between CHO counting accu-
racy and both the duration of diabetes and the level of education.

Lastly, since the adjusted R2 of the linear stepwise model is
0.302, whereas for the extended model it is 0.349, we

Table 1. Table Showing Mean (Second Column), Standard Deviation (Third Column), Confidence

Interval at 95% (Fourth Column), and Minimum (Fifth Column) and Maximum (Last Column) Values

of the Carbohydrates Counting Error for Different Levels of Meal Amount (Expressed in Grams)

Mean (g) SD (g) 95% CI (g) Min (g) Max (g)

CHO � 20 0.53 4.78 -0.51 to 1.57 -14.33 17
20 < CHO � 40 0.79 10.93 -0.90 to 2.49 -23.68 52.7
40 < CHO � 60 -0.39 11.95 -2.29 to 1.51 -36.08 69.93
60 < CHO � 80 -6.98 15.65 -9.69 to 4.27 -55.76 43.17
80 < CHO � 100 -10.28 21.27 -14.88 to -5.67 -63.25 55.69
CHO > 100 -29.37 33.40 -36.27 to -22.47 -142.24 43.18

Table 2. Estimate and P-Value

of the Coefficients of the Full Linear Model

Regressor Estimate P

Intercept 6.440 0.232
Education 0.739 0.344
Duration insulin treatment 0.003 0.954
Age 0.019 0.764
Body weight 0.090 0.054
CHO -0.316 <0.001
Lipids 0.001 0.993
Energy -0.002 0.855
Proteins 0.033 0.686
Fiber -0.273 0.143
Meal_lunch 3.254 0.112
Meal_dinner 0.766 0.729
Meal_snack -7.526 <0.001

P-values related to the coefficients significantly different from
zero at the 5% significance level are in bold type.

CHO, carbohydrates.

Table 3. Results of the Stepwise Procedure

Adopted Both for the Linear Model

and for the Model with Interactions

and Quadratic Terms

Linear model

F-statistic P R2

1. Add CHO 258.054 <0.00001 0.273
2. Add meal 9.840 <0.00001 0.304
3. Add weight 3.953 0.047 0.308

Extended model

F-statistic P R2

1. Add CHO 258.054 <0.00001 0.273
2. Add CHO2 31.700 <0.00001 0.305
3. Add meal 4.655 0.003 0.319
4. Add CHO:meal 6.998 0.0001 0.340
5. Add fiber 5.115 0.024 0.345
6. Add fiber:meal 5.304 0.001 0.360

The variable added or removed at each step (first column), the
value of the F-statistic (second column), the corresponding P-value
(third column), and the value of the R2 parameter (fourth column)
for the current model are reported.
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concluded that the addition of interactions and quadratic
terms makes it possible to explain the response better, but
performance does not markedly improve.

The equation of the stepwise extended model obtained is as
follows:

gCHO¼ þ3:38�0:08 CHO�0:0009 CHO2þ9:57 meallunch

þ17:95 mealdinnerþ0:47 mealsnack

þ0:004 CHO : meallunch�0:21 CHO : mealdinner

þ0:03 CHO : mealsnackþ0:19 fiber

�1:38 fiber : meallunch�0:45 fiber : mealdinner

�2:00 fiber : mealsmack

(6)

Test of collinearity. After developing the model, we
performed a check on collinearity for both the linear and the
extended models because of the ‘‘variable energy’’ , which is
closely correlated with the other meal variables. To test for
the possible presence of collinearity, we removed the variable
energy from the candidate predictors and performed step-
wise variable selection on the remaining nine predictors. The
results obtained through this procedure, that is, excluding

energy, were identical to those obtained when all the 10
predictor variables were involved (i.e., the results shown in
Table 3). This check confirmed that the presence of this
variable does not distort the results of the model.

Assessment of the generalizability of the models. The
validation of the models developed was performed by using
cross-validation, as explained in Assessment of the Gen-
eralizability of the Models Through Cross-Validation sec-
tion. For the linear model, the RMSE mean is equal to
15.79 g, whereas the 95% confidence interval is 13.89–
17.69 g. Instead, for the extended model, the RMSE mean is
equal to 15.41 g, whereas the 95% confidence interval is
13.43–17.38 g. The confidence intervals obtained are tight
around the corresponding RMSE means. Results suggest that
the performance of the model using previously unseen data
is satisfactory and comparable to that of the models of
Equations (5) and (6) for the entire dataset that was used for
training the models (i.e., RMSE = 16.61 g for the linear model
and RMSE = 15.97 g for the extended model).

Incorporation in the T1D patient decision simulator. To
be incorporated into the simulator, the extended CHO
counting error model of Equation (6) needs to be reduced by

FIG. 3. Plots of the CHO counting error against meal CHO amount, together with the corresponding regression line
(in red) for real data (A) and simulated data (B–D) of breakfast, lunch, and dinner. Meal CHO amount was simulated with a
distribution function similar to that of the real CHO data, whereas CHO counting errors were generated by using the ‘‘old’’
(B), linear (C), and extended (D) models. Color images are available online.
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excluding the terms containing the variable fiber. The reason
for doing this is that the variable fiber is not currently present
in the virtual meals generated by the simulator. The resulting
model:

gCHO¼ þ 3:56� 0:07 CHO� 0:0008 CHO2

þ 6:77 meallunchþ 18:01 mealdinner� 0:49 mealsnack

� 0:08 CHO : meallunch� 0:25 CHO : mealdinner

� 0:06 CHO : mealsnack

(7)

presents an R2 of 0.34 and an adjusted R2 of 0.332. How-
ever, the models of Equations (5) and (7) are incorporated
into the T1D patient decision simulator.20 The residual var-
iance of the models, through which the white Gaussian noise
was generated, is equal to 278.26 and 266.37 g2, respectively.

We then simulated CHO counting errors by using the
‘‘new’’ developed models and the ‘‘old’’ 1 for 100 virtual
subjects, 7 days, 3 meals per subject-day (i.e., breakfast,
lunch and dinner) and therapy based on nonadjunctive CGM
use, and then compared them with the real data of breakfast,
lunch, and dinner used in this work. Given that the current
version of the simulator20 does not yet include a snack model,
only main meals were simulated. In Figure 3, one can see that
the CHO counting error realizations, generated by the de-
veloped linear and extended models (panel C and D, re-
spectively), describe the trend detected on real data (panel A)
better when they are compared with the ‘‘old’’ model (panel
B). In other words, the ‘‘old’’ model generated over- and
under-estimations independently of the true CHO content
whereas, in real life, subjects tend to underestimate large
meals. This is confirmed by comparing the parameters of the
regression lines [Eq. (3)] that fit the relationship between
CHO and the error gCHO for both real and simulated data.
For the real data on breakfast, lunch, and dinner, the b0 co-
efficient of the regression line is equal to 17.87, whereas b1 is
-0.35. The regression lines fitted on the data when simulated
with the newly developed models have parameters that are
very close to those of the real data regression line (b0¼ 15:83
and b1¼ � 0:33 for the linear model, b0¼ 20:70 and
b1¼ � 0:40 for the extended model). On the other hand, the
regression line fitted on the data simulated by using the ‘‘old’’
model has parameters b0¼ 0:74 and b1¼ � 0:08. Thus, we
can conclude that both the models developed in this work
provide CHO counting error, which, for the purpose of per-
forming in silico clinical trials, are both more realistic
and consonant with real data than are those offered by the
‘‘old’’ model.

Conclusions

In this work, adopting a dataset gathered on 50 T1D sub-
jects, published in Brazeau et al.,10 we first demonstrated that
both CHO amount and type of meal are the most important
factors influencing any CHO counting errors made during
T1D management. In particular, we noted that larger errors
correspond to larger meals (i.e., lunch and dinner) and most
of these large meals are underestimated.

Then, by applying multiple linear regression and a step-
wise variable selection approach using 10 previously selected

candidate predictors, we developed a model of these CHO
counting errors. The final model only takes into account the
CHO, the type of meal, and the body weight variables. The
CHO and type of meal were shown to be the most important
predictors that are useful for explaining CHO counting errors,
with only a small portion of variance in the response ex-
plained by this model (R2 = 0.308). A slight improvement in
the performance of the model (R2 = 0.360) was obtained by
introducing a quadratic term of CHO, an interaction term
between CHO and meal type, and, finally, an interaction term
between fiber and meal type.

Lastly, the linear model of Equation (5) and the extended
model of Equation (7) were incorporated into the T1D patient
decision simulator,20 which seeks to perform even more re-
liable in silico trials. Analysis of the CHO counting errors
generated by the two new models demonstrated the credi-
bility of their results, which were closer to the real data than
were those provided by the simpler model previously adopted
in the T1D patient decision simulator.20 Thus, the results
reported in this article could help to enable more realistic
in silico clinical trials.

It is worth pointing out that, within the dataset used, no
significant relationship was found between the CHO counting
error and the subject’s level of education, duration of insulin
treatment, age, meal lipids, energy content, and amount of
protein. It is also worth mentioning that the same analy-
sis conducted in this article for the CHO counting error,gCHO, was also performed for the relative CHO counting
error, that is, the error gCHO divided by the meal CHO amount
( gCHO=CHO in the notation used in our equations). The re-
sults show that the relative error also depends on CHO and
meal type, which was to be expected from the analysis con-
ducted on the absolute error with quadratic and interaction
terms that revealed the dependency of the absolute error on
CHO2 and CHO:meal. To make this article more clear to
read, the results obtained for the relative error are presented
in Supplementary Data, Supplementary Tables S2 and S3.

To conclude, some limitations of the used data should be
highlighted. Of course, other factors, not included in our
analysis because they were not in the dataset used, could
influence the CHO counting error. For example, erroneous
setting of the insulin:carbohydrate (IC) ratio parameter may
influence the accuracy of CHO counting. Indeed, based on the
subject’s daily experience, the individual could voluntarily
have made mistakes in CHO assessment to compensate for
a wrong IC ratio parameter. However, the IC ratio parame-
ter was not in the data used, so we were unable to analyze
this aspect. Moreover, results may have been affected by the
training and education level that patients had received, again
information that was not available in the dataset used.

It is also important to mention that the CHO counting
error is only one of the factors that could affect postprandial
glycemic control. For example, the negative bias in the
CHO counting error found in our data could afterward be
corrected by the diabetologist through appropriate adjust-
ment of the IC ratio parameter. Moreover, the impact of
food on glycemic control in T1D may be influenced by
factors other than CHO, such as gastric emptying, fat and
protein content, food glycemic index, courses of the meal,
and any previous physical activity. Although it would have
been interesting to have examined these phenomena, un-
fortunately, there was no information in the dataset
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available. However, our work does not intend to assess the
impact of CHO counting on glycemic control, rather it seeks
to develop a model of the CHO counting errors, which
makes it possible to simulate, with reasonable accuracy, the
behavior of T1D subjects in CHO counting. The real novelty
of this work is, in fact, the derived multivariable statistical
model of the CHO counting error, which could be used to
perform realistic in silico clinical trials. A CHO counting
error model such as the one proposed here has, so far, not
been published in the literature.

Lastly, it is important to highlight that the CHO
counting error model is only one of the aspects that makes
it possible to obtain a realistic patient behavior model. For
example, further models, for example, of the physical ac-
tivity, would be required to obtain even more realistic T1D
simulations.

Although the leave-one-out cross-validation strategy used
in this article supports the generalizability of the predictive
ability of the models, future work should include assessment
of the performance of models proposed on independent da-
tasets, should they become available, and would be possible
because of the ease with which the proposed methodology
could be applied to any new data. Other possible develop-
ments could also include the use of the CHO counting error
models developed within the T1D patient decision simula-
tor to quantitatively assess, in silico, the impact of CHO
counting errors on the quality of diabetes management.
Lastly, if appropriate data were to become available, it would
be interesting to perform a comparison of the CHO counting
error between groups of patients adopting different counting
methods, for example, comparing accuracy in CHO estimates
when using apps, or other traditional counting methods, such
as grams or exchanges.
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