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Abstract

Background: Why human tick-borne encephalitis (TBE) cases differ from year to year, in some years more 100%, has
not been clarified, yet. The cause of the increasing or decreasing trends is also controversial. Austria is the only country
in Europe where a 40-year TBE time series and an official vaccine coverage time series are available to investigate
these open questions.

Methods: A series of generalized linear models (GLMs) has been developed to identify demographic and
environmental factors associated with the trend and the oscillations of the TBE time series. Both the observed and the
predicted TBE time series were subjected to spectral analysis. The resulting power spectra indicate which predictors
are responsible for the trend, the high-frequency and the low-frequency oscillations, and with which explained
variance they contribute to the TBE oscillations.

Results: The increasing trend can be associated with the demography of the increasing human population. The
responsible GLM explains 12% of the variance of the TBE time series. The low-frequency oscillations (10 years) are
associated with the decadal changes of the large-scale climate in Central Europe. These are well described by the
so-called Scandinavian index. This 10-year oscillation cycle is reinforced by the socio-economic predictor net
migration. Considering the net migration and the Scandinavian index increases the explained variance of the GLM to
44%. The high-frequency oscillations (2–3 years) are associated with fluctuations of the natural TBE transmission cycle
between small mammals and ticks, which are driven by beech fructification. Considering also fructification 2 years
prior explains 64% of the variance of the TBE time series. Additionally, annual sunshine duration as predictor for the
human outdoor activity increases the explained variance to 70%.

Conclusions: The GLMs presented here provide the basis for annual TBE forecasts, which were mainly determined by
beech fructification. A total of 3 of the 5 years with full fructification, resulting in high TBE case numbers 2 years later,
occurred after 2010. The effects of climate change are therefore not visible through a direct correlation of the TBE
cases with rising temperatures, but indirectly via the increased frequency of mast seeding.
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Background
The tick-borne encephalitis (TBE) virus is a flavivirus
persisting in a natural transmission cycle between small
mammals and ticks. Humans can be infected, but they
are ecologically dead-end hosts [1]. TBE vectors in Cen-
tral Europe are predominantly ticks of the genus Ixodes,
especially Ixodes ricinus, the castor bean tick [2]. Since
TBE can be a serious disease in humans [3], it is notifiable
in almost all endemic TBE areas. Despite the availability
of efficient vaccines [4, 5], TBE cases in Central Europe
has risen sharply in recent decades [6]. In 2018, histor-
ical maximum values of 584 cases in Germany [7] and
377 cases in Switzerland [8] were registered. In Austria,
154 cases were the highest reported since 1994, although
more than 80% of the population is vaccinated [9, 10].
Without vaccination probably more than 800 TBE cases
per year would occur in Austria. Looking at the long
time series of TBE cases, some of which date back to
the 1950s [11], the question arises of how the temporal
variations of these TBE cases can be explained. It can be
taken into account that climate and environmental vari-
ables, averaged over large areas such as Central Europe,
explain biological relationships much better than those
with high local accuracy, as discussed in the fundamen-
tal papers on patterns and scales in ecology from Levin
[12] and Hallett et al. [13]. Additionally, it can be taken
into account that different mechanisms act on different
time scales.
For example, long-term TBE trends, that have been

observed over many decades, have been linked to fac-
tors such as demographic trends, changes in land use and
associated wildlife density, or changes in human recre-
ational behavior and related exposure [14]. Not least,
climate change has been discussed as a possible driver
[15, 16]. While in Sweden TBE incidence was signifi-
cantly related to milder winters and higher spring and
autumn temperatures [17], for the Baltic countries it was
stated that climate change cannot explain the increase in
TBE cases [18]. Here, it is assumed that climate change
plays a only minor role in explaining the trend of Aus-
trian TBE cases. Instead, the demographic development
of the population is assumed to be the most probable
cause for the rising TBE trend. This long-term trend in
the Austrian TBE time series is superimposed by cycli-
cal fluctuations. The duration period of these cyclical
fluctuations was determined by Zeman [19] for 6 time
series of TBE cases in Austria, the Czech Republic, the
German federal states Bavaria and Baden-Wuerttemberg,
Slovenia, and Switzerland. Calculating the power spec-
tra from the detrended time series of Austrian TBE cases
results in 2 dominant periods of the oscillations. The
first has a period of 10 years (low-frequency oscillations),
the second has a period of 2–3 years (high-frequency
oscillations) [19].

It is well-known that the large atmospheric circulation
variability is responsible for population and disease fluc-
tuations [20]. Atmospheric circulation variability is also
referred to as climate variability and is often described
by so-called teleconnection indices. The best known of
these climate variability or anomaly indices is the El
Niño Southern Oscillation (ENSO), which occurs in areas
around the tropical Pacific, especially in the southern
hemisphere. ENSO triggered Malaria, Dengue, Rift Valley
fever and other vector-borne disease outbreaks [21]. The
ENSO impact on outbreaks reaches as far as the south of
the USA, where a rodent-borne hantavirus outbreak was
associated with the 1997–1998 El Niño [21]. The most
studied climate variability of the northern hemisphere is
the North Atlantic Oscillation (NAO). It has been linked
to a variety of disease outbreaks in the USA and Western
Europe [22].
For example, Hubálek [23] studied 14 viral, bacterial and

protozoan notifiable human diseases in the Czech Repub-
lic and their association with NAO indices, but no correla-
tion was found for the tick-borne diseases TBE and Lyme
borreliosis. Palo [24] also found no correlation between
NAO and the number of Swedish TBE cases. Another tele-
connection index describing the large-scale atmospheric
circulation variability is the Scandinavian index (SCAND).
It is less known than ENSO and NAO, and there is cur-
rently only one study that correlates human disease data,
the UK asthma mortality, with SCAND fluctuations [25].
Since SCAND describes the large-scale atmospheric cir-
culation variability from Central Europe to Central Asia,
it is hypothesized that it is suitable for describing the
10-year oscillations in TBE cases in Austria.
The 2–3 year oscillations might be caused by the varia-

tions in beech fructification, which is responsible for the
population dynamics of small mammals [26]. This also
describes the oscillations in the population of I. ricinus
whose larvae and nymphs feed mainly on yellow-necked
mice Apodemus flavicollis and bank voles Myodes glare-
olus [27] and thus contribute to the natural TBE virus
transmission cycle. Brugger et al. [28] demonstrated that
with the beech fructification index 2 years prior, the
annual average temperature of the previous year and the
past winter temperature, the I. ricinus nymphal density
can be described with great accuracy. However, some
peaks in TBE time series cannot be explained by tick den-
sity. An example are the extraordinary high TBE numbers
in 2006, which were observed in some European coun-
tries (not in Austria). They were explained by recreational
behavior of humans, i.e. more outdoor activities in the
extremely warm year 2006 [29]. Because there are no long-
term studies, a simple hypothesis is pursued, according
to which more sunshine hours should lead to more out-
door activities and thus to a higher exposure of the human
population.
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Using the Austrian time series, we aimed at identifying
the demographic and environmental factors associated
with the trend and the oscillations by using generalized
linear models (GLMs). Both the observed and the pre-
dicted TBE time series are to be subjected to a spectral
analysis. The resulting power spectra should then indi-
cate which predictors are responsible for the trend, the
high-frequency and the low-frequency oscillations, and
with which explained variance they contribute to the TBE
oscillations. The model development presented here dif-
fers fundamentally from the usual approaches, according
to which significant predictors are selected from a large
number of possible predictors by stepwise modeling [30],
whereby their contribution to the frequency spectrum is
not taken into account. So far, only two GLMs have been
developed to predict TBE time series. The first is a GLM
to predict the numbers of Swedish TBE cases by using
December precipitation and red fox (Vulpes vulpes) or
mink (Mustela vison) abundance as predictors [31]. The
second GLM confirmed the high correlation between red
fox density and TBE cases [24], which underpin the causal
link between beech fructification, small mammals, and
their predators, red foxes and mink.

Methods
Two ways of representing annual TBE time series are in
use. On the one hand the absolute number of annual TBE
cases is indicated, on the other hand the TBE incidence,

i.e. the number of annual TBE cases per 100,000 inhab-
itants. Here, absolute numbers of annual TBE cases are
used to allow the demographic parameters of the human
population (Fig. 1) to be used as predictors. Thus, for
example, the variance of the TBE time series explained by
the population growth can be determined.

Demographics of the human population
Since the Austrian population has risen sharply in recent
years, the demographic development must be taken into
account. It is described by the birth rate, the mortality
rate, and the net migration rate. Figure 1 shows the official
demographic data [32]. According to this, the human pop-
ulation increased by more than 1.2 million in the period
1979–2018. This is mainly due to the net migration rate,
i.e. the difference between annual immigration and emi-
gration. Four major net migration (immigration) events
occurred within the 40-year period 1979–2018. The 2
most outstanding immigration events were caused by the
Yugoslavian Civil War in 1991 and the Syrian Civil War
in 2015. Net migration peaks were also observed 1981
after the suppression of the anti-communist social move-
ment Solidarnosc in Poland and during 2001–2005 after
the labor market has been opened further [33]. The dif-
ference between the birth rate and the mortality rate, the
reproduction rate, is on average just 3,000 people per year.
This is one order of magnitude lower than the mean net
migration rate of about 30,000 people per year. Here, the

Fig. 1 Demographics of the Austrian human population. Left axis: population in million (black line), right axis: birth rate, mortality rate and net
migration rate in 1,000 per year (red lines). Noteworthy is the net migration, which is exclusively responsible for the population growth. Period
1979–2018
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total population NTOT and the net migration NMIG were
used as predictors and listed in Table 1.

Human TBE time series
The official human TBE time series in Austria for the
period 1979–2018 is analyzed. This 40-year time series
was documented by the Department of Virology, Medical
University of Vienna, acting as the national reference labo-
ratory for TBE virus infections. Only hospitalized patients
with a serologically confirmed recent infection with TBE
virus were counted as cases and published together with
the vaccination coverage of the Austrian population [34].
In Austria, TBE is a notifiable disease and thus accuracy of
the records is very high. Using the official vaccination cov-
erage a hypothetical time series without TBE vaccination
was estimated.

N = 1
1 − VC

NTBE

Here, NTBE are the annual TBE cases documented by
the national reference laboratory for TBE virus infections,
VC is the official vaccination coverage within the interval
[0, 1], and N is the hypothetical TBE cases without vacci-
nation. Values of NTBE , VC and N are listed in Table 1. In
the following, only the hypothetical TBE cases N are used
to investigate the natural trend and the oscillations in the
Austrian TBE time series.

Climate teleconnection
To describe the decadal changes of the large-scale cli-
mate in Central Europe several teleconnection indices are
available. Here, the Scandinavian index (SCAND) devel-
oped by Barnstone and Livezey [35] was used, which the
authors originally called the Eurasia-1 pattern. With the
help of SCAND an atmospheric circulation pattern, i.e.
the spatial arrangement of northern hemisphere high- and
low-pressure systems, is characterized by a single index
value. Like ENSO and NAO, the SCAND is therefore well
suited for investigating correlations of large-scale atmo-
spheric circulation patterns with the cases of vector-borne
diseases. A time series of the monthly SCAND is provided
for the period 1950 to present on the Climate Predic-
tion Center (CPC) website of the National Oceanic and
Atmospheric Administration [36].
The SCAND describes an atmospheric circulation cen-

ter over Scandinavia, with weaker centers of opposite sign
over western Europe and eastern Russia/western Mon-
golia. Positive values are associated with below-average
temperatures across western Europe and central Russia. It
is also associated with above-average precipitation across
central and southern Europe and below-average precipi-
tation across Scandinavia (Fig. 2). For the TBE endemic
areas in Austria and southern Germany, this means that
high SCAND values represent cooler and rainier periods.

In turn, low SCAND values describe above-average warm
and dry periods.
To determine the optimal correlation between TBE

and SCAND, so-called cross-correlation maps (CCMs)
were used. With CCMs optimal time lags and accumu-
lation periods of predictors can be determined [37]. As
known from vector biology, the best correlation between
arthropod vectors or disease cases caused by pathogens
they transmit and environmental temperature is obtained
when temperature data were averaged over the period of
the life cycle of the vector. For example, the life cycle of
Culex pipiens, the vector of West Nile virus, is about 2–3
weeks during the mosquito activity period. With CCMs,
18 days were determined as the optimal averaging period
[38]. If one wants to describe the dynamics of the Blue-
tonge virus vector Culicoides obsoletus by temperature,
the somewhat longer averaging period of 37 days was esti-
mated according the typical length of the life cycle of
biting midges [39]. For TBE and its main vector I. ric-
nus the averaging period of the climate predictor SCAND
should therefore be 2–6 years [40], 3–6 years [41], or 4–6
years [42]. In fact, the optimal averaging period deter-
mined by the application of CCMs is 4 years. Ideally, pre-
dictors should be normally distributed, which frequently
can be achieved with a log-transformation. Therefore, the
Scandinavian index SI used here is derived from the log-
transformed monthly values of SCAND [36], which were
averaged over 4 years. The SI values are listed in Table 1.

Beech fructification
The natural transmission cycle of the TBE virus depends
on the availability of suitable hosts for the main vector
I. ricinus. Preferred hosts of I. ricinus larvae are among
others small rodents [43]. As no observations of small
rodents are available for the long time series investigated
in this study, the fructification index of the European
beech (Fagus sylvatica) was applied for indicating the
rodent density. Beechnuts are a basic food source for small
rodents resulting in population peaks one year after mast
seeding [44, 45]. Higher host densities cause higher den-
sities of larvae of the TBE vectors I. ricinus. Two year
after mast seeding, higher densities of I. ricinus nymphs
are observed [28], which may be responsible for peaks
in human TBE time series. Since the mast seeding is
continental-scale synchronized [46], only a single time
series, the beech fructification index published by Kon-
nert et al. [47], is used here. This index is defined as the
annual seed production and is divided in the following
four classes: (0) absent, i.e. no fructification, (1) scarce, i.e.
sporadic occurrence of fructification, but not noticeable
at first sight, (2) common, i.e. clearly visible fructifica-
tion, and (3) abundant, i.e. full fructification, also known
as mast seeding. The values of the beech fructification
indices 2 years prior Fyear−2 are listed in Table 1.
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Table 1 Input data and model output for the period 1979–2018: total human population NTOT in 106, annual human net migration
NMIG in 104 per year, reported tick-borne encephalitis (TBE) cases NTBE , vaccination coverage VC, four-year average of log-transformed
Scandinavian indices SI, beech fructification index 2 years prior Fyear−2 and annual sunshine duration in hours SD

Year NTOT NMIG NTBE VC SI Fyear−2 SD N NGLM1 NGLM2 NGLM3 NGLM4

1979 7.546 -0.002 677 0.03 0.974 1 1447 698 436 652 645 634

1980 7.553 0.009 438 0.07 0.904 1 1444 471 437 526 531 512

1981 7.584 0.030 294 0.15 0.836 1 1392 346 440 411 419 385

1982 7.564 -0.023 612 0.22 0.801 1 1719 785 438 508 546 602

1983 7.560 -0.002 240 0.29 0.725 0 1583 338 437 380 305 318

1984 7.563 0.003 336 0.35 0.794 2 1401 517 438 432 473 439

1985 7.567 0.006 300 0.41 0.824 1 1522 508 438 454 474 469

1986 7.573 0.006 258 0.46 0.804 2 1555 478 439 435 473 478

1987 7.576 0.002 215 0.51 0.837 0 1371 439 439 480 368 349

1988 7.594 0.013 201 0.56 0.744 2 1451 457 441 370 411 386

1989 7.645 0.045 131 0.60 0.722 2 1732 328 447 302 331 357

1990 7.711 0.059 89 0.63 0.714 0 1692 241 455 283 220 237

1991 7.799 0.077 128 0.65 0.728 2 1679 366 465 274 296 305

1992 7.883 0.071 84 0.67 0.759 2 1623 255 475 314 338 338

1993 7.929 0.034 102 0.71 0.815 1 1539 352 481 449 471 453

1994 7.943 0.003 178 0.74 0.859 3 1612 685 483 591 660 640

1995 7.953 0.002 109 0.78 0.848 0 1601 495 484 582 457 477

1996 7.965 0.004 128 0.78 0.899 1 1504 582 485 648 675 650

1997 7.971 0.002 99 0.79 0.767 3 1722 471 486 494 573 577

1998 7.982 0.008 62 0.80 0.704 0 1438 310 487 416 343 318

1999 8.002 0.020 41 0.82 0.732 0 1626 228 490 419 340 348

2000 8.021 0.017 60 0.84 0.695 1 1546 375 492 395 442 414

2001 8.064 0.042 54 0.86 0.783 1 1514 386 498 425 452 421

2002 8.100 0.034 60 0.87 0.871 2 1533 462 502 546 588 566

2003 8.143 0.043 82 0.87 0.873 1 2014 631 508 534 552 681

2004 8.201 0.054 54 0.87 0.840 1 1589 415 516 478 498 482

2005 8.254 0.050 100 0.88 0.862 1 1743 833 523 526 547 576

2006 8.283 0.025 84 0.88 0.872 2 1771 700 526 627 688 743

2007 8.308 0.023 45 0.88 0.827 0 1692 375 530 580 462 487

2008 8.335 0.024 87 0.87 0.837 2 1635 669 533 597 666 661

2009 8.352 0.018 79 0.86 0.835 1 1686 564 536 622 674 682

2010 8.375 0.022 63 0.85 0.837 0 1538 420 539 616 492 476

2011 8.408 0.031 113 0.86 0.889 3 1847 807 544 664 741 785

2012 8.452 0.044 52 0.85 0.885 0 1674 347 550 625 484 503

2013 8.508 0.056 99 0.82 0.880 3 1508 550 558 593 656 569

2014 8.585 0.074 80 0.85 0.892 0 1621 533 569 571 436 433

2015 8.700 0.114 71 0.85 0.828 1 1743 473 586 417 431 428

2016 8.773 0.065 89 0.84 0.807 1 1607 556 597 542 589 543

2017 8.822 0.045 116 0.82 0.772 0 1596 644 604 577 478 451

2018 8.859 0.035 154 0.82 0.747 3 2015 856 610 586 708 768

The hypothetical TBE cases without vaccination N were simulated by 4 versions (development steps) of a generalized linear model, where the predicted TBE cases are given
by NGLM1, NGLM2, NGLM3 and NGLM4
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Fig. 2Maps showing correlation between the high July values of the
Scandinavian index (SCAND) and the monthly climate anomalies
during June, July, and August. Maps of temperature and precipitation
anomalies (departures from mean in percent) were adapted from
NOAA [36]

Annual sunshine duration
It is hypothesized that human recreational behavior
affects the number of TBE cases. For example, higher out-
door activities increase exposure and they should there-
fore increase the TBE cases. Since there is no established
predictor for human outdoor activities, the annual sun-
shine duration in hours is used as such here. With large-
scale considerations in focus, this should be representative

for Central Europe. Of all meteorological services in Cen-
tral Europe, only the GermanWeather Service offers such
open data [48]. This is averaged over the entire region
of Germany and should also be representative of the
smaller neighboring countries such as Austria. Thus, in
addition to the averaged log-transformed Scandinavian
index SI, and the beech fructification index 2 years prior
Fyear−2, the annual sunshine duration SD is the third large-
scale predictor used for the analysis of TBE time series
(Table 1).

Statistical modelling
All statistical analysis and modeling was done with the
Language and Environment for Statistical Computing R
[49]. GLMs were used to describe relationships. In the
course of this, an overdispersion was observed since the
dispersion parameter was generally greater than 1. This
overdispersion was taken into account by using negative
binomial models implemented with the R package mass
[50].
To assess the necessary conditions for the applica-

tion of GLMs, the predictors used (total population,
net migration, Scandinavian index, beech fructification
index, and annual sunshine duration) were tested for
collinearity. This test is commonly used to select from
a large number of predictor variables those that are
most strongly correlated with the target variable, here
the TBE cases. In addition, the so chosen predictor vari-
ables should be only weakly correlated with each other.
Otherwise, their number can be further reduced. Here,
however, a different approach is pursued: a small num-
ber of biologically well interpretable predictors are given.
The check for collinearities (Fig. S1) therefore has only
a control function, all correlations between the individ-
ual predictors are well below the threshold of |R|=0.7
[51]. With the R package psych [52] additional model
diagnoses were created. These include examining the
model errors for randomness (residual vs. fitted plot,
scale location plot) and normal distribution (normal Q–Q
plot), both of which are prerequisites for the applica-
bility of GLMs [53]. Cook’s distance (residual vs. lever-
age plot) was used to test which TBE observations have
the greatest influence on the regression. Outliers can be
defined and eliminated if necessary [53], but this was not
applied here.
While the statistical methods described above are

intended to ensure the reliability of the selected model, it
is particularly interesting how well the annual TBE fluc-
tuations are described by the chosen predictor variables.
Therefore, the models were verified by the root-mean-
square error (RMSE) and the explained variance (R2). The
advantage of these verification measures is that with the
RMSE the error is specified in units of the target variable,
i.e. the TBE cases, and R2 is well known.
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If different GLMs are developed, the best model can be
chosen with the help of the Akaike information criterion
(AIC). The AIC estimates the quality of each model, rela-
tive to each of the othermodels. For better interpretability,
however, the adjusted R2 (R2

adj) is given here. In general,
the use of additional predictors in GLMs leads to higher
R2 values, even if they do not make a significant contri-
bution to the model. With R2

adj this is considered, which
also determinesmodel performance, relative to each of the
other models [53].
A key objective of this study is to describe the causes

of the trend as well as the low-frequency and the high-
frequency oscillations of the TBE cases. For this purpose,
the power spectra of both the observed and the predicted
TBE cases are calculated as described e.g. by [54]. The pre-
dictors for the GLMs should be selected so that the power
spectra of the predictions match those of the observations
as closely as possible.

Results
In 4 steps GLMs (negative binomial regression models)
were developed, which demonstrate the influence of the
selected predictors on the model performance as well
as on the power spectrum of the predicted TBE time
series. Thus, a final model was stepwise developed, which
explainsmore than two-thirds of the variance in the obser-
vations.
The first GLM uses only one predictive variable, the

total population NTOT . Figure 3(GLM1) shows the TBE
cases without vaccination N (grey bars) with the pre-
dicted TBE cases NGLM1 (red line) representing a good
approximation of the linear trend calculated from the
observations N (black line). A rank-order correlation
coefficient after Spearman of R=0.29 between the total
population and the observed TBE cases was estimated
(Fig. S1). The corresponding power spectrum for the
observations shows 2 maxima. The first one is located at
a period of 3 years (high-frequency oscillations), the sec-
ond one is located at a period of 10 years (low-frequency
oscillations). The power spectrum of the model shows no
maximum but only red noise, as expected for the trend.
The second GLM was extended to explain the low-

frequency oscillations in addition to the trend. Additional
predictors used were the transformed Scandinavian index
SI and the annual net migration NMIG. Both contribute
to the 10-year TBE oscillation. The rank-order correla-
tion between the TBE cases and the SI was R=0.52 (Fig.
S1). In Austria, periods of high SI are related to relatively
cool summers with above-average precipitation (Fig. 2).
Another highly significant contribution to explain the
TBE cases is provided by the Austrian net migration rate,
which can be considered as an socio-economic predic-
tor. The net migration NMIG is negatively correlated with
the numbers of the TBE cases (R=-0.14). This suggests

that new arrivals are less exposed to TBE virus infections,
although they are responsible for the long-term popula-
tion growth and thus also for the long-term increase in
TBE cases. Since there is no study on this topic so far, it is
hypothesized that themajority of immigrants from abroad
initially settle in big cities where they are less exposed
to TBE foci. The model therefore reduces the overesti-
mated TBE cases during random net migration events.
Figure 3(GLM2) shows the extended GLM verified with
an error of RMSE=122 TBE cases and an explained vari-
ance of R2=0.44 (R2

adj=0.48). The power spectrum clearly
shows that the 10-year oscillation of the observed TBE
time series is well associated with the 2 predictors SI and
NMIG.
The third GLM considers the beech fructification index

2 years prior Fyear−2 as an additional predictor for the
high-frequency oscillations. The fact that the mast seed-
ing 2 years prior has a high influence on the density of
the main TBE vectors I. ricinus has already been shown by
Brugger et al. [28]. Here it is demonstrated that this also
applies to the TBE cases (R=0.38). Figure 3(GLM3) shows
the model extended by the predictor beech fructification
index Fyear−2. The power spectrum clearly shows that the
fructification index contributes to the explanation of the
high-frequency oscillations, although the power is slightly
too low compared to the spectrum of the observed TBE
cases. The period of the low-frequency oscillations, on
the other hand, fits those of the observed TBE time series
very well. The explained variance increases to R2=0.64
(R2

adj=0.66), resulting in a further reduction of the error
of RMSE=98 cases. Considering the uncertainties in the
observed TBE cases and the fact that time series of dis-
ease cases are generally difficult to explain, this result can
be classified as very good. The parameter estimates and
the significance levels of the predictors of this GLM are
summarized in Table 2, where the discrete values of the
fructification index are modeled as a factor. The factor
Fyear−2=0 is set as default and the factors Fyear−2=1, 2 or
3 are considered by different parameter estimates. Thus,
the GLM requires only the four predictors NTOT , NMIG,
SI and Fyear−2, all of which contribute to the model very
significantly (p<0.001).
The fourth GLM was extended by a predictor for the

outdoor activity of humans. So far, no influence of human
recreational behavior on the annual TBE time series has
been considered, which should lead to a further improve-
ment of the model. A climatic parameter that should have
a plausible influence on an increased outdoor activity of
humans is annual sunshine duration SD in hours. It is
directly (without a lag time) correlated with the TBE cases
(R=0.27). Thus, the correlation between SD and N is sim-
ilar to the correlation between Fyear−2 und N. Since there
is no appreciable collinearity between SD and Fyear−2 (Fig.
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Fig. 3 Observed (grey bars) and predicted (red lines) Austrian tick-borne encephalitis series (left) and corresponding power spectra (right). GLM1:
model using exclusively the human population NTOT as predictor variable resulting in a good approximation of the linear trend depicted by the
black line. GLM2: model extended by the predictors net migration rate NMIG and Scandinavian index SI to explain low-frequency oscillations. GLM3:
model extended by the beech fructification index 2 years prior Fyear−2 to explain also high-frequency oscillations. GLM4: best performance model
extended by the annual sunshine duration SD. For each model the verification measures root-mean-square error (RMSE) and explained variance R2

(with R2adj in brackets) are given. Period 1979–2018
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Table 2 Summary of GLM3, a negative binomial model for
tick-borne encephalitis cases without vaccination (hypothetical
cases)

Estimate SE z p

Intercept 0.453 0.873 0.519 0.604

NTOT · 10−6 0.522 0.109 4.785 <0.001 ***

NMIG · 10−6 -6.389 1.467 -4.356 <0.001 ***

SI 1.805 0.509 3.547 <0.001 ***

Fyear−2 = 1 0.304 0.081 3.731 <0.001 ***

Fyear−2 = 2 0.340 0.093 3.663 <0.001 ***

Fyear−2 = 3 0.359 0.106 3.384 <0.001 ***

The total population number NTOT , the net migration NMIG , the averaged
log-transformed Scandinavian index SI as well as beech fructification factors 2 years
prior Fyear−2=1, 2 or 3 were used as predictors for which the estimate, the standard
error SE, the z-value (test statistics), and the p-value (significance) are given

S1), the consideration of SD results in an increased model
performance. Figure 3(GLM4) shows the results of the
GLMwith the additional predictor SD. It explains the vari-
ations of the TBE cases even better, namely with R2=0.70
(R2

adj=0.70), which leads to a further reduction of the error
of RMSE=89 cases. The parameter estimates and the sig-
nificance levels of the predictors of the final model are
summarized in Table 3. Again, all predictors contribute
significantly to model performance, with most p-values
being very significant. Of course, the relative contribution
of the fructification index decreases at the expense of sun-
shine duration, as both predictor variables are responsible
for high-frequency oscillations. Statistical features for the
final GLM as described in “Statistical modelling” section
are provided in Fig. S2, the AIC values for the stepwise
developed models in Table S1.

Table 3 Summary of GLM4, a negative binomial model for
tick-borne encephalitis cases without vaccination (hypothetical
cases)

Estimate SE z p

Intercept 0.126 0.831 0.151 0.880

NTOT · 10−6 0.438 0.109 4.006 <0.001 ***

NMIG · 10−6 -6.589 1.381 -4.772 <0.001 ***

SI 2.004 0.485 4.131 <0.001 ***

Fyear−2 = 1 0.267 0.077 3.454 <0.001 ***

Fyear−2 = 2 0.311 0.088 3.526 <0.001 ***

Fyear−2 = 3 0.276 0.105 2.643 0.008 **

SD · 10−3 0.542 0.239 2.273 0.023 *

The total population number NTOT , the net migration NMIG , the averaged
log-transformed Scandinavian index SI as well as beech fructification factors 2 years
prior Fyear−2=1, 2 or 3 as well as the annual sunshine duration SD were used as
predictors for which the estimate, the standard error SE, the z-value (test statistics),
and the p-value (significance) are given

Discussion
The climate of the TBE endemic areas in Austria and
neighboring countries is still characterized by the boreal
coniferous climate of the northern hemisphere in the
1960s. According to the well-known Köppen-Geiger cli-
mate classification it is known as Dfb climate, a boreal
climate with rain at all seasons and warm summers [55].
Until today, this boreal coniferous climate has almost
completely retreated from the Alps and has been replaced
by a warm temperate Cfb climate [56]. It is called, accord-
ing to the prevailing tree species in natural forests, beech
climate. In order to take this into account, spruce mono-
cultures threatened by climate change are being gradually
replaced by deciduous or mixed forests across the region
of the greater Alps. These more species-rich forests also
provide better living conditions for the most important
TBE virus vector I. ricinus, resulting in higher I. ricinus
densities [57, 58]. Beech fructification is a predictor of
the intensity of the natural TBE virus transmission cycle
between small mammals and ticks, with a high beech fruc-
tification index increasing the population density of small
mammals and of I. ricinus larvae one year thereafter. One
more year later, significantly higher densities of questing
I. ricinus nymphs are responsible for the more frequent
transmission of the TBE virus to humans [28]. However,
effects on TBE cases due to these changes in forestry were
only visible in the last decade, where higher frequencies
of years with full fructification of beech (mast seeding)
are responsible for several peaks in the TBE time series.
A total of 3 of the 5 years with full fructification occurred
after 2010 (Table 1). The effects of climate change are
therefore not visible through a direct correlation of the
TBE cases with rising temperatures, but indirectly via the
increased frequency of mast seeding (Fyear−2). In com-
bination with the rapidly increasing human population
(NTOT , NMIG) and a slight decline in vaccination coverage
(VC), this explains the major effects of rising numbers of
Austrian TBE cases observed after 1995 under real condi-
tions with vaccination (see NTBE in Table 1). Additionally,
10-year oscillations are associated with the large-scale dis-
tribution of atmospheric high and low pressure systems
(SI) resulting in the third model version GLM3, which
explains 64% of the variation of Austrian TBE cases. In
Austria, periods of high SI are related to relatively cool
summers with above-average precipitation (Fig. 2). This
may influence the density of the TBE vector I. ricinus,
which does not like hot summers and extreme drought.
Remarkably, oscillations with periods of 10 and 3–4 years
were also observed for the TBE vector Ixodes persulcatus
in Russia. Years with high tick densities follow frequently
those with the peak population density of small mammals
[41]. However, no direct correlation between human TBE
cases and the TBE vectors I. ricinus and I. persulcatus
has yet been published. Similar ecological connections are
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also known from the oak forests of eastern North America
[44].
With the additional predictor sunshine duration SD

in GLM4 the explained variance continues to increase.
The hypothesis was that the exposure of the population
increases with an increasing number of hours of sun-
shine. This hypothesis seems confirmed, as the explained
variance in GLM4 increased to 70%. But that must not
hide the fact that further studies on the contribution
of human behavior to the cases of TBE are needed. It
should be noted that GLM4 cannot be used for TBE fore-
casts because neither social behavior itself (e.g. during the
unexpected SARS-CoV-2 pandemic 2020) nor SD can be
estimated for the next 1–2 years. There is also a frac-
tion of unexplained variance of 30%, which needs further
research. In particular, rare extreme events are difficult
to detect by statistics, because low case numbers result
in low significance. For example, Dautel et al. [59] have
shown for Germany that extreme low temperatures in Jan-
uary and February 2012, in combination with the lack of a
protective snow cover, led to decreasing numbers of I. rici-
nus nymphs as well as very low numbers of human TBE
cases in the same year (also recognizable in the Austrian
TBE time series). The inclusion of this and similar field
studies could help to improve future predictions.
Another aspect that has not been considered so far con-

cerns the gender and age distribution of TBE cases within
the population. The age distribution of the TBE cases
shows a maximum at 55 years [3], with generally more
men being infected with the TBE virus [60]. It has not yet
been investigated whether the increasing number of TBE
cases are related to the aging society.
It should also be noted that alternative predictors for the

explanation of TBE cases are mentioned in the literature.
In Slovenia, for example, a correlation was found between
TBE cases and roe deer density 3 years ago [61]. A high
roe deer (Capreolus capreolus) density is interpreted as a
high host density for the TBE vector I. ricinus and con-
sequently responsible for high TBE cases. For Austria,
the results of Knap and Avs̆ic̆-Z̆upanc [61] could be con-
firmed, but the explained variance of the GLM4 decreased
with the use of roe deer density instead of SI from 70% to
58%. This is because the correlation between the roe deer
density and the TBE cases is largely due to the concur-
rent trends. The estimation of unknown wildlife densities
from hunting index generally leads to some uncertainties.
In addition, Austrian hunting data [62] from the statistical
database STATcube provided by Statistics Austria [63] are
not available in near real-time, as the hunting year differs
from the calendar year. It covers the period from April 1
to March 31 of the following year. Wildlife data are there-
fore generally less well-suited as predictors than climate
data, especially with regard to a possible forecast of the
next year’s TBE cases.

Conclusions
The TBE models presented here confirm the work of
Hallett et al. [13] that large-scale indices can predict eco-
logical processes very well, probably better than local
weather and climate parameters. As the beech fructifica-
tion indices of the years 2017 and 2018 are responsible for
the TBE cases in 2019 and 2020, GLM3 can also be applied
to forecast the TBE cases of the next 2 years. This is pos-
sible because for the forecast mainly the high-frequency
oscillations caused by Fyear−2 are interesting. The predic-
tors relevant to the trend and the low-frequency oscil-
lations, on the other hand, can be extrapolated by sim-
ple methods such as persistence or linear interpolation.
GLM3 is also applicable to the neighboring countries such
as Germany or Switzerland using the same predictors,
since the Scandinavian index is representative for all of
Central Europe and also the beech fructification is large-
scale synchronized. This has be examined in a follow-up
study that was carried out during the review process of
the paper presented here [64]. The verification with inde-
pendent TBE cases from 2019 has demonstrated the good
performance of the forecasts.
Finally, it should be noted that the findings presented

here can subsequently be used to create process mod-
els of the type susceptible-infected-recovered (SIR). These
models represent the highest stage of development in epi-
demiological modelling as, unlike statistical models, they
map the dynamics of population health based on the
underlying processes of disease transmission. A first SIR
model on the dynamics of the Austrian human TBE cases
was presented by Rubel [65].
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