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On the randomness and correlation 
in the trajectories of alpha particle 
emitted from 241Am: statistical 
inference based on information 
entropy
M. El Ghazaly1, Elsayed K. Elmaghraby2, A. Al‑Sayed1,3, Amal Mohamed1,4 & 
Mahmoud S. Dawood1*

Most particle detectors are based on the hypothesis that particles are emitted randomly upon 
nuclear decay. In the present work, we tested the hypothesis of the existence of correlation in the 
random trajectories of alpha particles emitted from 241 Am source and the null hypothesis of random 
trajectories. The trajectories were clued through the registration of track in a solid-state nuclear track 
detector. The experimental parameters were optimized to identify the possible sources of correlation 
in the track registration and the detector conditions upon exposure and etching to avoid misleading 
results. The optimization included authentication of linearity in registration efficiency with exposure 
time to prevent coalescence of registered tracks. The statistical inference processes were based upon 
adaptive quadrates analysis of the spatial data, and entropy and divergence analysis of the quadrate 
data together with the null hypothesis of Poisson distribution of random trajectories. The clustering 
and dispersion analysis were performed with central deviation tendency, empirical K-function, radial 
distribution analysis, and proximity Analysis. Results showed a pattern of gained information within 
the registered tracks that may be attributed to the alteration in the alpha particles’ trajectories 
induced by the strong electric field due to atoms in the source compound and encapsulation film.

A few decades ago, numerous passive detectors, such as solid-state nuclear track detectors (SSNTD), were uti-
lized to detect heavy ions from different radiation sources, including cosmic rays, accelerators, and laser-matter 
interactions1. The most common SSNTD is poly allyl diglycol carbonate (PADC), commonly known as Colombia 
Rains PADC. PADC detector is characterized by a high registration efficiency that reaches 100% for perpendicu-
larly incident alpha particles. PADC tracks range from several micrometers to several nanometers for scanning 
with a high spatial resolution imaging system such as atomic force and confocal microscopes. Meanwhile, spatial 
resolution amounts to several micrometers for scanning with an ordinary optical microscope1–6. The major dis-
advantage of SSNTD is the time resolution of the PADC detector; it is impossible to discern the occurrence of 
the tracks in the PADC detector. Because SSNTD is a position-sensitive tool with a small spatial resolution, if the 
etching conditions were adjusted correctly, it can be used for the pattern of the particle beam. The basic idea of 
SSNTD is the damage zone along the trajectory of the incident particle through the detector’s material (known 
as latent tracks) which are of some nanometers. The latent tracks in the PADC detector can be enlarged to be 
visible under an ordinary optical microscope by chemical etching at a proper concentration and temperature in 
NaOH or KOH aqueous solution6.

Alpha particles from 241Am, have enough energy to overcome the air deceleration and reach the surface of the 
SSNTD, inducing the latent track. The alpha-decay energies are associated with 241 Am are 5485.56 keV for 84.8% 
of the emitted particle, 5442.8 keV for 13.1% , and 5388 keV for the remaining 1.6%7. The isotropic nature of the 
alpha decay from 241 Am is based upon the fact that one could not “stimulate” atomic nuclei to decay in specific 
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direction; i.e. there is no preferred direction of the emitted alpha particles. It could be determined statistically 
by the number of nuclei among a large assembly of them that would decay in a given time interval. Accordingly, 
alpha particles should be distributed randomly in a given area if the null hypothesis is correct; furthermore, it 
should follow complete spatial randomness (CSR).

Previous studies (cf. Refs.8–16) had shown that the distribution of alpha particle tracks was neither uniform 
nor random, whatever the precaution made to make such a fact obvious. The reason may be any process from 
the decay to the registration on the detector surface. Accordingly, the present work aims to study the spatial 
distribution and correlation between alpha particle tracks from the 241 Am source.

Materials and methods
PADC detectors (Tastrak PADC; density = 1.32 g/cm3 , molecular composition C 12H18O7 ) of a thickness 
(500 ± 4) µ m were exposed to vertically incident alpha particle from 241 Am (main alpha particle energy 
5.486 MeV and having activity 9 µ Ci in air). The vertical alignment was essential to eliminate, even, the small 
effect of gravity. Predefined average energy could be obtained between 0.5 and 5.5 MeV by changing the length 
of the air column between the 241 Am source and the PADC detector with the aid of a collimator. Air molecules 
are moving randomly at room temperature so that the scattering shall be random. The 241 Am source is coated 
by a 30 nm-thick layer of gold to avoid source corrosion and neutralize the effect of the recoil of 237 Np atom 
and the electron negative charge (The alpha decay changes the energy states of the atom so that the 237 Np atom 
reconfigures the binding levels for the 95-2 electrons. This charge reconfiguration process is complex process17. 
The two extra electrons will be left free in the lattice, then that bulk will be negatively charged) remaining in the 
source material upon alpha particle emission18. The length of the collimator was 1.5 cm which is suitable to reduce 
the average of 5.5 MeV alpha particles to about 4 MeV of energy. The cross-section diameter of the collimator 
was 1.5 mm (area of 1.77 mm2 ) to ensure that most of the alpha particle is perpendicularly striking the detector 
surface; such a narrower collimator minimizes the energy’s spreading out due to different paths in air. The alpha-
irradiated PADC detectors were etched in an aqueous solution of 6.25 N NaOH at 70 ± 1◦ C for different dura-
tions. The bulk-etching rate (VB ) was measured using the well-known weight and thickness decrement methods. 
It amounts to (1.26 ± 0.06) µm/h. The track density and diameters were measured with an optical microscope 
(Nikon, ECLIPSE, E200) equipped with Nikon digital camera (DS-Fi1). All photomicrographs are captured in 
RBG colors with a dynamic range of 2 16 . RBG photomicrographs were analyzed using ImageJ software19, where 
different color channels are separated, and Green-channel is selected since it has maximum contrast.

We apply three data reduction techniques and analysis on the track pattern registered on the PADC detec-
tor: (1) Divergence analysis between the null hypothesis of randomness and a test hypothesis of the registered 
pattern. (2) Dispersion analysis involving the central tendency and (3) Proximity analysis. Figure 1 shows the 
abstraction of the techniques used.

Results and discussion
Verification of linearity in registration efficiency..  The registration efficiency depends on the energy 
of the alpha particles reaching the surface of the detector. For the source-to-detector distance of 1.5 cm, the 
alpha particle reaches the surface with an average energy of 4 MeV. Several factors must be optimized to adjust 
the condition for linearity in registration efficiency: (1) The range of alpha particles having an energy of 4 MeV 
in the PADC detector is about 20.5 µm20,21. The etching time ( te ) should be much less than the etching time to 
reach track depth at 20.5 µ m (denoted tR ), which leads to detecting all incident alpha particles on the PADC 
detector22. The minimal etching time will cause a minor track diameter and lower the detectability of the track 
using an ordinary optical microscope. (2) Another requirement is to adjust the registration efficiency associated 
with the coalescence of registered tracks when the fluence exceeded a specific limit, i.e., determination of the 
maximum number of tracks registered per unit area to maintain linearity between track density and exposure 
time. (3) Normality test for the registered tracks upon optimized conditions.

Three sets of samples were exposed to alpha particles for durations between 30 s and 300 s; the first set was 
etched chemically in 6.25 N NaOH at 70 ◦ C for 2 h. The second and the third set were etched in the same chemical 
conditions but for 4 h, and 6 h, respectively, see Table 1. Images were recorded through the collimated area up 
to 1583 × 1583 µm2 . Since there was a need to optimize the detectible track diameter, the track size distribution 
was determined from the two pre-samples after being chemically etched in 6.25 N NaOH at 70 ◦ C for 4 h, see 
Fig. 2. Despite both photomicrographs being produced under the same conditions, namely exposure time, etching 
time, alpha particle energy, and PADC detector, one can recognize the randomness in the registered patterns and 
the extension of the registration area to cover all the 1583 × 1583 µm2 area. This assures that the alpha particle 
source is isotropically distributed behind this area.

The track diameter distribution histogram in Fig. 3 shows that the alpha particle track diameter follows Gauss-
ian distribution centered at (8.77 ± 0.33 µm). The small value of standard deviation points to the independence 
of the track diameter on the difference between alpha particle energies originating from the 241 Am source on 
one side and the good efficiency of the etching process on the other one.

The histogram in Fig. 4 illustrates the variation of track density with time; these photomicrographs are for 
the samples chemically etched for 4 h. The area of each picture is 1583 × 1583 µm2 . The observed circular track 
diameters ranged from 8.4 to 9.1 µ m. Several coalescent tracks are apparent in Fig. 4d–f due to the expansion of 
the tracks to nearby ones. For low exposure time, the track densities are low, and no significant alpha tracks coa-
lescence was observed; for instance, for irradiation time of 30 seconds, the alpha track density is (7.3 ± 0.7)×104 
tracks.cm−2 . For alpha particle irradiation time of 1 min, the alpha track density is (12.5 ± 0.8)×104 tracks cm−2 ; 
for a maximum exposure time of 5 min, the alpha track density amounts to (502 ± 1)×104 tracks cm−2.
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A comparison of the response of the PADC detectors to exposed alpha particles for different durations and 
different etching times was undertaken by measurements of the track density in each of the samples listed in 
Table 1. These samples of the PADC detectors are chemically etched for 2 h, 4 h, and 6 h in 6.25 N NaOH at 70 ± 1 
◦ C, in which the response of the detector depends on the detectible track after etching.

As shown in Fig. 5 for 4 h etching time, the tracks density and exposure time plot offered a non-linearity 
in registration efficiency. As exposure time increases, the diameters of alpha particle tracks are growing, and 
therefore coalescence and registered as one alpha reducing the track density, especially for longer exposure 
time. Similar non-linearity, nearly independent between the tracks density and exposure time, was evident for 
a larger etching time of 6 h.

For etching time of 2 h, the alpha particle track diameters were 4.9 ± 0.2 µ m, the alpha particle track densi-
ties were linearly correlated with irradiation time to alpha particle up to 240 s of exposure as depicted in Fig. 5. 
On the other hand, the maximum linearity for the samples etched for 4 h is 120 s of exposure time. In such cir-
cumstances, the linear registration of all spatially incident alpha particles grants minimum loss of information. 
Hence, patterns in samples f2, f4, and all samples etched for 6 h will give a biased conclusion on the extracted 
information.

Randomness analysis.  Analyzing patterns is a well-established branch of computational science and 
information technology23. The most concerning abstraction is the point pattern analysis (PPA)24 which involves 
the analysis of the spatial location of points in the multi-dimensional array (mostly two-dimensional). These 
analyses reveal deep laying information in such patterns. The divergence analysis is achieved by adopting the 
procedure of quadrat sampling to test its probability distributions and a statistical model to give predicted prob-
abilities that may be compared with each of the individual probabilities in the observed frequency distribution. 
The theoretical probability distribution is obtained by making the sensible assumption of the randomness of 
the registration governing the evolution of the features in the pattern. From those assumptions, we deduced the 
probability distribution that will give the correct prediction of the frequency distribution of the quadrats. Finally, 
a comparison between the predicted probability distribution with the observed probability distribution obtained 
by sampling the pattern was made using Kullback–Leibler divergence based on the Shannon entropy hypothesis. 
There are no particular restrictions for the shape and size of a quadrat if the size is reasonable compared to the 
area under investigation. The selection of quadrat size is always an arbitrary procedure but may influence the 
subsequent interpretation of results. One of the most used treatments of quadrat size is the approach taken by 
Greig-Smith25. On the basis that randomness at a variety of scales within a square quadrat census where the 

Figure 1.   Flowchart of the spatial data analysis.
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number of cells on each axis is some power of 2, based on the binary property of the Poisson distribution that it 
mean � equals its variance. However, in search for evidence of clustering at that scale, Greig-Smith has suggested 
that the size of quadrat at that scale will be related to the mean area of the pattern in which the test described 
here does not measure tendencies towards uniformity in the pattern. In the present work, we forced the quadrant 
area to follow the relation

Where A is the studied area and Nt the total number of features in the whole pattern.
According to Poisson distribution, the null hypothesis of alpha tracks in SSNTD is the equal probability to 

hit any location in the exposed area, which implies that the number of hits is proportional to the detector area 
A according to Poisson probability distribution. However, if there were clustering and dispersion in the pattern 
registered, the distribution would be different.

Poisson probability distribution ( q = qi = q(xi) ) of the number of features that will occur in a quadrat is

(1)AQS =
√
2
A

Nt

Figure 2.   Comparison between the distribution of alpha particles tracks free areas in two photomicrographs 
(a) for sample b4/1 and (b) for sample b4/2 of the PADC detector irradiated with 4 MeV alpha particle for 1 min 
with a time interval of 10 min, samples were chemically etched in 6.25 N NaOH at 70  ◦ C for 4 h. The area of 
each picture is 1583 × 1583  µm2.
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which gives the random probability a number of xi events occur while being hit, � is the intensity function 
describes both the mean expected value and the variance of the distribution given from the relation;

where NP is the total number of features in the registered pattern within the investigated clip and NPQ is the 
number of quadrats to which the study area is divided. This analysis was undertaken for the samples a2, b2, c3, 
d2, e2, f2, a4, b4/1, b4/2, b4/3, c4, d4/1, e4, and f4, as labeled in Table 1.

The comparison in Fig. 6 shows a heatmap for the number of features in each quadrate, xi = N , counted in 
all investigated areas; The total number of quadrates depends on the condition in Eq. (1). Detailed information 
is given in Table 2. Generally, the statistics rely on the value of � . So Eq. (1) grantee the closeness of the results 
upon comparison.

The histograms for the probability of a number of features xi within each quadrate deduced from the frequency 
statistics of the number of quadrats having a count xi divided by the total number of countsNP are shown in Fig. 7. 
For comparison, the Poisson distribution given in Eq. (2) was calculated assuming the exact value of the mean�.

The photomicrographs imaged for the samples a4, b4/1, b4/2, b4/3, c4, d4/1, e4, and f4 were analyzed using 
the same method. The results are illustrated in Figs. 8, 9, and 10.

(2)q(xi) =
�
x
i

Ŵ(xi + 1)
e−�,

(3)� = NP

NPQ

Table 1.   List of investigated samples and exposure and etching conditions. Letters will be used for the figure’s 
label. �̂ is the registered track density in cm−2 . All samples were etched in 6.25 N NaOH at 70 ◦ C. Raw data 
that was used in the analysis is provided in the supplementary information files.

Exposure time

Etch time

2 h 4 h 6 h

Label �̂ Label �̂ Label �̂

30 s a2 7.58×10
4 a4 7.31×10

4 a6 6.03×10
4

60 s b2 1.39×10
5 b4/1 1.21×10

5 b6 1.07×10
5

60 s – b4/2 1.31×10
5 –

60 s – b4/3 1.17×10
5 –

120 s c2 2.58×10
5 c4 2.61×10

5 c6 1.44×10
5

180 s d2 3.68×10
5 d4/1 2.81×10

5 d6 1.27×10
5

180 s d4/2 2.82×10
5

240 s e2 4.89×10
5 e4 4.27×10

5 e6 1.39×10
5

300 s f2 5.16×10
5 f4 5.02×10

5 f6 1.10×10
5

Figure 3.   Histogram of the alpha tracks diameter in the PADC detector for samples d4/1 and d4/2.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13728  | https://doi.org/10.1038/s41598-022-17479-3

www.nature.com/scientificreports/

Entropy and divergence.  The amount of information concerning the variability of a random variable 
(uncertainty in randomness) of a statistical system of events directly indicates the system’s Shannon entropy26.

(4)H(p) = − 1

logNpQ

∑

i

pi log pi

Figure 4.   Photomicrographs of alpha particle tracks in PADC detector exposed for alpha particles of 4 MeV 
for different durations (a) 0.5 min, (b) 1 min, (c) 2 min, (d) 3 min, (e) 4 min, and (f) 5 min, PADC detector is 
chemically etched in 6.25 N NaOH at 70 ± 1 ◦ C for 4 h. The area of the picture is 1583 × 1583 µm2.
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where p = {pi} is the probability of the event in the i ∈ χ quadrat that belongs to the same probability space,χ , 
of the observables. The most crucial concept in Shannon’s Entropy is its ability to measure the extent to which 
the data are spread out over its possible values; lower entropy values refer to high information content and are 
most likely to develop a strong rule or correlation. For random data, the Shannon entropy value is equal to 1. In 
other terms, increased observability must lead to decreased uncertainty and entropy.

The difference between true random process and signal and more deterministic processes can be obtained 
using the Kullback–Leibler divergence (KLD)27 divergence theoretical models28. KLD is a measure of dissimilar-
ity between two probability distributions p and q = {qi} usually represents the probability distribution of data, 
the observations, and the probability distribution of its representing random model optimized for p. For the 
discrete case of data29, KLD comprises

The positive value of DKLD(p||q) represents the information gain achieved from p instead of the random model q. 
Based on Bayesian inference, DKLD(p ‖ q) is the information gained upon measurement having posterior prob-
ability distribution p compared to the priori known probability distribution q or vice versa, the lost inference 
when forced random distribution q is used instead of measured p30. The value of DKLD(p ‖ q) goes to zero as the 
two probability distributions become the same.

The DKLD(p ‖ q)results are given in Table 2 and embedded within Figs. 7, 9, and 10. The last-mentioned figures 
are calculated based on the prior probabilities of random events based on Poisson distribution. The greater the 
prior uncertainty of such an occurrence, the greater the information gained if such a non-random event occurs. 
Criteria for defining an information statistic suggest that the measure would vary from zero to infinity and that 
the measure would be additive between independent events. The result showed embedded information within the 
track pattern. Information could be extracted from patterns in samples a2, b2, c2, d2, e2, a4, b4/1, c4, d4/1, and 
e4. However, this information could be misleading due to other effects, as discussed below.

Clustering and dispersion analysis.  Dispersion, skewness, and other major parameters can be clued 
from the central tendency analysis. While Clustering requires density analysis (including entropy and con-
vergence) and distance analysis using pair correlation function (radial distribution function) and Ripley’s K 
function31 involved in the spatial analysis method. The basic descriptive centric technique for a real data analysis 
is the featured center ( Xc,Yc ) in which

wi is the weighting factor for the feature, which may be considered a reciprocal uncertainty of the existence of 
that point ( Xi,Yi ) within the center area of the feature. For definitely shaped points, wi=1, the variance of the 
distribution of the data may be different in the directions X and Y,

(5)DKLD(p � q) =
∑

i

pi log

(

pi

qi

)

(6)Xc =
1

N
∑N

i=1 wi

N
∑

i=1

wiXi ,

(7)Yc =
1

N
∑N

i=1 wi

N
∑

i=1

wiYi

Figure 5.   Alpha particle track density dependence on the exposure time at different etching times.
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The distribution deviation is determined by the relation

(8)σ 2
Y = 1

(N − 1)
∑N

i=1 wi

N
∑

i=1

wi(Yi − Yc)
2

(9)σ 2
X = 1

(N − 1)
∑N

i=1 wi

N
∑

i=1

wi(Xi − Xc)
2.

(10)σ 2
D = σ 2

X + σ 2
Y

2
,

Figure 6.   Heatmap for the investigated local track densities of samples a2, b2, c3, d2, e2, and f2 after being 
etched for 2 h. The grayscale represents the number of features in each quadrate, xi , while the number of 
quadrates increases progressively to fulfill Eq. (1). The dashed squares (red color online) show clipped areas 
containing quadrats used for Poisson distribution analysis; see text.
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while the quality of the distribution is determined by the relation

The standard deviation in two dimensions is defined by

The (N-2) provides an unbiased estimate of standard distance since there are two constants related to a real 
deviation. Note that σ 2  = σ 2

D if a circular clip of pattern was taken whether or not QD  = 0.
As shown in Table 2, the photomicrograph patterns of the alpha particle tracks do not offer a uniform spatial 

distribution around the center of the data. The QDvalues span a range from 0.005 to 0.247. A large value of QD 
at low exposure time is attributed to a limited number of registered tracks in the detectors to attain random 
data. Hence, patterns a2, b2, a4, and b4/1 contain remnant information of randomness despite a2, and a4 have 
large values of entropy divergence.Similarly, at a large exposure time of 300 s, tracks coalescence may disturb the 
gained information. At the intermediate track densities, the value of QD begins to reach 0, the nominal value of 
random track registration. Conversely, its value may increase due to the accumulation of clustering information 
within the alpha particle tracks.

The empirical K‑function.  The empirical distribution function is the pairwise distances used to search for 
anomalies in the feature patterns. The second moment of this distribution function is the differential Radial Dis-
tribution Function (RDF) as a function of distance r. Our focus is on the distance or spacing between features in 
the registered pattern. Each ordered pair of points had a measured distance di,j = ||ri − rj|| which may contain 
the information about the alpha particles’ spatial pattern.

There are two different definitions used in the present work of the RDF as a function of distance r, first,

di,c is the distance between the features labeled i and the center of the data, �1(condition) is the indicator function 
for the satisfaction of the condition and �̂ is the average number of features per unit area. In this case, the cutoff 
radial distance is the radius of the clipped pattern (denoted dc) . Also, as a function of pair distances

The condition di,j < dc − ri was introduced to enforce the calculation to run only to the pattern within the clipped 
circle and reduce the edge effect of the data counting. Value is normalized to the new counted features. The plot 
of the functions H1(ri)and H2(ri) is shown in Figs. 11 and 12.

The variation of the central distribution function reveals a sort of correlation in the pattern, which may be 
symmetric around the center of the registered pattern. Such central tendency is a consequence of the existence of 
the collimator and the inverse-square law in which the emitted alpha particles from the source may be inclined 

(11)QD =
∣

∣

∣

∣

σ 2
X − σ 2

Y

2

∣

∣

∣

∣

.

(12)σ 2 =
∑N

i=1 wi

(

(Xi − Xc)
2 + (Yi − Yc)

2
)

(N − 2)
∑N

i=1 wi

.

(13)H1(ri) =
1

�̂

∑

i=1

�1(ri−1 < di,c < ri)

(14)H2(ri) = N

∑

i

∑

j �=i
�1(di,j < ri)

�̂(No. of interdistances)

Table 2.   Detailed analysis of samples under study.

Sample

Poisson analysis Entropy and divergence

NP NPQ � D
(p||q)
KLD σX σY QD

a2 677 121 5.595 0.102 10.69 10.20 0.2470

b2 1662 289 5.751 0.034 7.524 7.563 0.0195

c2 2565 441 5.816 0.012 5.519 5.642 0.0615

d2 3677 625 5.883 0.043 4.647 4.657 0.0050

e2 5651 961 5.880 0.053 4.036 3.992 0.0220

f2 5327 900 5.919 0.041 3.905 3.904 0.0005

a4 667 121 5.512 0.118 10.38 10.85 0.2365

b4/1 1396 225 6.084 0.051 7.988 8.242 0.1270

b4/2 1486 256 5.804 0.064 8.337 8.317 0.0100

b4/3 1274 225 5.662 0.050 7.859 7.885 0.0130

c4 2589 441 5.871 0.013 5.487 5.615 0.0640

d4/1 3004 529 5.678 0.029 5.321 5.271 0.0250

e4 4717 784 6.017 0.056 4.302 4.255 0.0235

f4 5158 900 5.725 0.120 3.927 3.991 0.0320
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along the diagonal of the collimator rather than parallel to its axis. The pair RDF cannot detect such a pattern 
due to its moving average nature.

Here, the radial distribution function H1(ri)and H2(ri)gave two crucial pieces of information. H1(ri)gives the 
distribution around the center of the data from Eqs. (6) and (7), in which the central symmetry of the function 
compensates for the effect of the non-randomness of the data. The data is truncated at the end of the field-of-view 
(FoV). H2(ri) , on the other hand, is a pair distribution function that is sensitive to clustering and dispersion of 
the pattern and the edge effect. Collimation of alpha particles on a determined region on the detector causes 
two effects: (1) the pairs near the edge of the area have fewer neighbors from one side, which lesser the value 
of H2(ri)near the end of the FoV, (2) remote intradistant neighbors from the other directions gave a value of 
H2(ri) at distances greater than the end of FoV. The difference between these orders, within a radius of about 1/3 
of the diameter of the data, is another clue to the existence of clustering or dispersion in the pattern, as shown 
in Fig. 11. Similar behavior was observed for these samples etched for 4 h (see Fig. 12).

Figure 7.   Probability histograms for the test hypothesis p for samples a2, b2, c3, d2, e2, and f2 versus the null 
hypothesis q versus the number of features xi within each quadrate. The null hypothesis is randomness based on 
Poisson distribution, in Eq. (2) assuming the same value of � as given in Table 2.
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The K-function, on the other hand, is a Cumulative Radial Distribution Function (CRDF), obtained based 
on H1(ri) and H2(ri) , as

(15)
K1(r) =

∑

i = 1
ri ≤ r

wi,cH1(ri)

Figure 8.   Constructed as in Fig. 6 for the investigated local track densities of samples a4, b4/1, c4, d4/1, e4, and 
f4 after being etched for 4 h.
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wi,c is a generally used edge-corrected estimator. The weight function has a value between 0 and 1 that provides 
higher weight to the points needing the center of the investigated area rather than the points at the edge. In the 
present work, we shall use wi,c = 1 . i.e.

(16)
K2(r) =

∑

i = 1
ri ≤ r

wi,cH2(ri)

(17)K1(r) =
1

�̂

∑

i

1(di,c < r)

Figure 9.   Probability histogram for the test hypothesis p for samples a4, b4/1, c4, d4/1, e4, and f4 versus the 
null hypothesis q versus the number of features xi within each quadrate. They were constructed as in Fig. 7.
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The plot of the functions K1(ri)and K2(ri) are shown in Figs. 13 and 14. It is obvious that the K1 or 2-functions and 
H2 -function do not uniquely define the pattern. Still, they can be used to detect if there were a direct interaction 
between processes causing the pattern, i.e., two different patterns may have the same K-function, see Refs.32,33.

In this aspect, The null hypothesis of the K-function is that the number of features lying closer than a distance 
r has expected value K1 or 2(r) , i.e., the variation as πr2 and deviations from this expectation indicate scales of 
clustering and/or dispersion34,35. An inhibited process causes a lake of formation of the feature and will usually 
have K1 or 2(r) < πr2 , while an enhanced process causes clustered feature and will have K2(r) > πr2 , for appro-
priate values of r. While K1 is related to the nearest-center distribution and related mainly to the anisotropy of 
the radial signature of the features, K2 is associated with the nearest-neighbor distribution and is related to the 
none-stationary processes causing the feature, also known as Ripley’s K36,37.

Consequently, trends of K1(r)follow the πr2 trend to the end of FoV while the trends of K2(r)follow the πr2 
trend up to 1/3 of the diameter of the collimator (2/3 of the radius to the end of FoV).

Because of the difficulty of comparison, we consider the difference L-Functions

(18)K2(r) = N

∑

i

∑

j �=i 1(di,j < ri; di,j < dc − ri)

�̂(No. of points)

Figure 10.   Comparison between heatmap for the investigated local track densities of samples (a) b4/1, (c) b4/2, 
and (e) b4/3 and its associated probability histograms (b), (d), and (f), respectively. Constructed as Figs. 7 and 8.
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Figure 11.   Plot of the radial distribution function H1(ri)and H2(ri)for samples a2, b2, c2, d2, e2, and f2 after 
being etched for 2 h.

Figure 12.   Plot of the radial distribution function H1(ri)and H2(ri)for samples a4, b4/1, c4, d4/1, e4, and f4 
after being etched for 4 h.

Figure 13.   Plot of the cumulative radial distribution function K1(r)and K2(r)for samples a2, b2, c2, d2, e2, and 
f2. The values of πr2 were added for comparison.
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These functions are plotted in Figs. 15 and 16. Since the L-function has the dimension of distance, the confi-
dence interval is just the confidence interval of each feature, i.e., the 0.3 µ m deduced from the analysis of track 
diameter. The values of L-function greater than this value represent correlation among clusters, which occur at 
about around 200–500 µm.

From these results, the essential reasonable information could be extracted from samples c2 and c4. However, c4 
has more features, as depicted in Table 1. Hence, sample c4 was the most candidate pattern to extract information.

Proximity analysis.  To find out what is near or within a certain distance of one or more features, we use a 
common geographic information system process that includes a buffer as a tool that creates a new feature class 
of buffer polygons around a specified input feature based on some factor. Our factor is the reciprocal of nearest 
neighbor distance (NND). The value of NND is inversely proportional to the density of the features and tells 
much about whether data points are clustered or dispersed. In this aspect, Fig. 17 shows the proximity analysis 
based on that buffer obtained from the analysis of radial distribution.

(19)L1(r) =
√

k1(r)

π
− r

(20)L2(r) =
√

k2(r)

π
− r

Figure 14.   Plot of the cumulative radial distribution function K1(r)and K2(r)for samples a4, b4/1, c4, d4/1, e4, 
and f4. The values of πr2 were added for comparison.

Figure 15.   Plot of the L-functions L1(r) and L2(r) for samples a2, b2, c2, d2, e2, and f2.
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The data of the proximity analysis in Fig. 17 showed long-range correlational symmetry between regions of 
clusters. Semitransparent circles show some correlated features having a dimension of diameter 100 µ m. Simi-
lar clustering in the registered tracks has been observed in all samples. These are obvious in the heatmaps in 
Figs. 6, 8, and 10. The origin of such a correlation is unknown. The present results throw doubt on the validity on 
the random model of estimating the trajectory of alpha particles, especially in the case of use of isotopic source 
as an initiator for the neutron emitting reactions (e.g. 241AmBe neutron source38). In radiation detection, the 
phenomenology of assessing the radioactivity may be influenced by the configuration mixing between particle 
decay and its interaction39 and interfere with the possible time varying-decay rates40–50.

Conclusion
The phenomenology of charged particle emission upon the nuclear decay showed a spatial correlation among 
trajectories of the particle. The statistical inference methods, specifically the information entropy, track proxim-
ity analysis, and Kullback–Leibler divergence, was used to track the information gained/lost due to the alpha 
particles trajectories. The alpha particle from an 241 Am source have to pass through a thin film of gold and 
registered at the end of its trajectory on the SSNTD. All sources of a possible influence on the results were tested 
and eliminated from the experiment and the analysis. This includes the authentication of linearity in registration 
efficiency with exposure time to avoid coalescence of registered tracks, gravitational alinement, electromagnetic 
interferences, etc; so that all experimental parameters were optimized to identify the best conditions of exposure 
and etching to avoid misleading results. The adaptive quadrates analysis of the spatial data showed that the tra-
jectories do not follow the null hypothesis of Poisson trajectories upon hitting the detector surface. Entropy and 
divergence analysis of the quadrate data was undertaken with the null hypothesis of Poisson distribution. Entropy 

Figure 16.   Plot of the L-functions L1(r) and L2(r) for samples a4, b4/1, c4, d4/1, e4, and f4.

Figure 17.   Proximity analysis diagram based on a buffer of reciprocal NND. Semitransparent circles show some 
correlated features.
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analysis showed information gained upon registration of alpha particles tracks on SSNTD. The clustering and 
dispersion analyses were undertaken with central deviation tendency, empirical K-function, radial distribution 
analysis, and proximity analysis. Results showed the existence of pattern information within the registered tracks 
that may be attributed to the structure of the source materials or coherence among emitted alpha particles. The 
source of correlation may be any process from the creation of the alpha particle inside the 241 Am nucleus, the 
electron density in the source material (the deposited salt of Am) or its crystal structure, the electromagnetic 
interactions with atoms in encapsulation gold film, or even resonance with an ambient electromagnetic field. 
One of the main consequences from the presented results is the possibility of influencing the accuracy of the 
particle detectors and other experimental techniques that are used in high-energy physics and nuclear physics, 
in which the calibration is based on the randomness hypothesis.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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