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This paper describes the mathematical basis for olex2.refine, the new refinement

engine which is integrated within the Olex2 program. Precise and clear

equations are provided for every computation performed by this engine,

including structure factors and their derivatives, constraints, restraints and

twinning; a general overview is also given of the different components of the

engine and their relation to each other. A framework for adding multiple

general constraints with dependencies on common physical parameters is

described. Several new restraints on atomic displacement parameters are also

presented.

1. Introduction

During the last four decades, small-molecule crystallographers

have used a myriad of stand-alone routines and various

comprehensive software packages, most notably those written

by Sheldrick (1997, 2008) and that designed by Bob Carru-

thers and John Rollett, then maintained and enhanced by

David Watkin (Betteridge et al., 2003). These latter two

packages have dominated the citations in all publications

containing crystal structure analyses for many years now.

Therefore it might be claimed that the analysis of single-

crystal X-ray (and neutron) diffraction data has reached a

certain level of maturity and that there is no need for further

program development. Nonetheless, there is still considerable

activity in this area by various groups around the world and

there has been a new release, SHELX2013, from Sheldrick

recently. A retro-fit of new ideas to these older programs is not

always possible, except perhaps by the authors themselves.

When we first embarked on the project herein reported1 we

were clear about one point – namely that we wanted to create

a new and flexible refinement engine, working in a colla-

borative environment and to be based on trusted and mature

pre-existing code. This new refinement engine would be open

source and therefore available for verification and modifica-

tion by others. Modern programming paradigms, unknown

when the aforementioned packages were created in the 1960s,

would form the basis of our development. It is hoped that such

an architecture will allow extensions to the code without

breaking the program or endangering the underlying func-

tionality. It is this that we describe below in further detail and

which now forms the underlying code for olex2.refine (http://

www.olex2.org).

We decided to base the computational core of olex2.refine

on a pre-existing project, the Computational Crystallography

Toolbox (cctbx), that provides the foundation for the macro-

molecular refinement facilities in the PHENIX suite of Adams

et al. (2010). We made that choice because it provided the solid

and versatile tools (Grosse-Kunstleve & Adams, 2003) that we

needed to develop our project. The most important of them is

a comprehensive and robust toolbox to handle crystal

symmetries (sgtbx) that supports every space group in any

setting, even rather unusual settings such as tripled cells.

Another key cctbx toolbox is the eltbx, which is concerned

with scattering-factor computations for any atom or ion and

any wavelength that could be encountered in practice. The

cctbx also featured many of the restraints we needed, in the

module cctbx.restraints.

For our project, we contributed to it a Small-Molecule

Toolbox (smtbx) which features, in particular, the constraint

framework presented in detail in x3 and Appendix C, and the

computation of structure factors presented in Appendix A. We

also contributed several new restraints to cctbx, restraints

which are discussed in x4 and Appendix D. Finally, both the

cctbx and the smtbx use the Scientific Toolbox (scitbx) for

arrays, matrices, special functions and other purely mathe-

matical matters. We have contributed a new least-squares

toolbox (lstbx) to the scitbx, which provides flexible tools to

deal with generic linear and non-linear problems, with or

1 EPSRC grant ‘Age Concern: Crystallographic Software for the Future’ (EP/
C536274/1).
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without an unknown overall scale factor. It implements the

method based on normal equations presented in Appendix B.

The program Olex2 relies either on SHELX or on the smtbx

to refine structures. If using the latter, Olex2 converts its

internal model of a structure into the objects used by the

smtbx and the cctbx to represent the unit cell, reflections,

crystal symmetry, constraints, restraints etc. Once the smtbx

has produced the desired results they are sent back to Olex2

which converts them to its own representations, so as to

perform diverse post-processing and eventually display the

results to the user of the program. Fig. 1 summarizes the

dependencies between the various modules and programs that

have just been described.

2. Least-squares refinement

A small-molecule structure refinement typically minimizes the

weighted least-squares (LS) function

L ¼
P

h

wh Yo;h � KYc;h

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ldata

þ
P

restraint i

wi To;i � Tc;i

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lrestraints

; ð1Þ

where Yo (respectively, Yc) denotes either the measured

amplitude Fo (respectively, the modulus of the calculated

complex structure factor jFcj) or the measured intensity

Io ¼ F2
o (respectively, the calculated intensity Ic ¼ jFcj

2),

whereas K is an overall, unknown scale factor that places Yc

on the same scale as Yo. The first sum over h runs over a set of

m non-equivalent reflections that have been observed. Each

observation is given an appropriate weight, wh, based on the

reliability of the measurement. These may be pure statistical

weights, w ¼ 1=�2ðYoÞ, where � is the estimated standard

deviation of Yo, though more complex weighting schemes are

usually used. In the most general case, wh is a function of Yo;h,

�ðYo;hÞ, Yc;h and h itself, whereas the most common weighting

schemes exhibit only a dependence on the first three.

These X-ray observations can be supplemented with the use

of ‘observations of restraint’, as suggested by Waser (1963),

where additional information such as target values for bond

lengths, angles etc. is included in the minimization. This is the

origin of the second term of the sum, where To is the target

value for our restraint, and Tc is the value of the target

function calculated using the current model (see, for example,

Giacovazzo et al., 2011; Watkin, 2008). This term Lrestraints may

of course be absent. Conversely, the data term could be absent

in a refinement against geometrical terms only [cf. the

program DLS-76 by Baerlocher et al. (1978) for example].

In equation (1), the crystallographic parameters [i.e. atomic

positions, atomic displacement parameters (ADPs) and

chemical occupancy in routine refinements] that each

component of Yc and Tc depends upon will be collectively

denoted as the vector y ¼ ðy1; . . . ; ypÞ and we can therefore

denote those dependencies with the compact notations YcðyÞ

and TcðyÞ. The parameters that are actually refined may be a

different set x1; . . . ; xn, collectively denoted as a vector x. We

assume that the dependency of y upon x is known analytically.

Since the scale factor K is unknown, our problem is the

minimization of L with respect to all of K; x1; . . . ; xn. We will

denote that dependency as L½yðxÞ;K�, or more tersely when

we do not need to remember the crystallographic parameter

vector y, as Lðx;KÞ. These notations reflect the important fact

that we treat the scale factor K separately, as will be explained

later.

For a small-molecule structure with a high data-to-para-

meter ratio, such unconstrained minimization as defined by

the first term of equation (1), when y � x, may well be suffi-

cient. However, as the structure becomes larger, or the data-

to-parameter ratio worsens, unconstrained minimization may

not be well behaved, or result in some questionable parameter

values. It has become customary to rely on the use of two

techniques to solve such issues:

Restraints: by having a non-zero second term in equation (1)

– with the use of appropriate weighting of the restraints – the

minimization is gently pushed towards giving a chemically

sensible and hopefully correct structure.

Constraints: by having a parameter vector x shorter than y,

therefore explicitly taking into account exact relationships

between some of the parameters yi.

Whether the refinement uses restraints or constraints or

both, at each refinement cycle, we first find the value of K that

minimizes Lðx;KÞ keeping the parameter vector x fixed: we

will denote it by ~KKðxÞ, where we use a notation that is explicit

in its dependency on the value of the refined parameters at the

beginning of the cycle. We then search for the shift vector s of

the parameter vector x that brings L½x; ~KKðxÞ� closer to the

minimum. It is solution of the so-called normal equations,

ðBdata þ BrestraintsÞs ¼ �ðgdata þ grestraintsÞ; ð2Þ

where Bdata and Brestraints are the so-called normal matrices

associated with the two terms sharing the same labels in

equation (1), respectively, and where the right-hand side gdata

and grestraints are equivalently associated with those two terms

[see the derivation of equation (72) in Appendix B].

The rest of the paper is organized as follows. x3 deals with

the computation of the derivatives with respect to the refined

parameters x1; . . . ; xn from the derivatives with respect to the
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Figure 1
A high-level depiction of the software modules involved in olex2.refine:
an arrow is drawn from each component pointing towards another
component it uses.



crystallographic parameters y1; . . . ; yp. The computation of

the latter derivatives is expounded in Appendix A along with

the formulae for the complex structure factors Fc. Appendix

C details the computation of the value and derivatives of

constrained parameters for each constraint featured by

olex2.refine. x4 is devoted to the general principles of the

computation of Brestraints and grestraints. It is completed by

Appendix D, which gives the formulae for each restraint

featured by olex2.refine. x5 deals with the refinement of

twinned structures. x6 details the computation of standard

uncertainties (s.u.’s), emphasizing the influence of constraints.

x7 gives a very quick overview of the output of the results of a

refinement. Appendix B presents the method used to find the

optimal scale factor K, and then the optimal value of all the

other refined parameters.

3. Constraints

3.1. Synopsis

The difference between restraints and constraints may be

conceptualized mainly in two manners that we will first illus-

trate with a simple example: a geometrically constrained

acetylenic hydrogen, X C—H. The position of the hydrogen

must be such that the distance CH is equal to some ideal bond

length d and such that the angle XbCCH is equal to 180�.

Expressed in such an implicit manner, those restrictions could

be used to construct restraints by adding to the function to

minimize a term w1(CH � d)2 + w2(cos XbCCH � 1)2. By doing

so, the number of refined parameters would not be changed

but the number of observations would increase by three.

It is, however, traditional to do the opposite, by reducing the

number of parameters by three and keeping the number of

observations unchanged. This is achieved by using the implicit

form of the constraints to express the position of H as a

function of the positions of the two carbon atoms. Denoting by

x the triplet of coordinates of the atoms,

xH ¼ xC þ d
xC � xX

jjxC � xX jj
; ð3Þ

where jj:jj denotes the Euclidean norm. By using this formula,

the observable Yc of the fit (either jFcj
2 or jFcj) that used to

depend on xC, xX and xH is replaced by a function ~YYc of xC and

xX but not of xH. We will call this transformation a repar-

ametrization: ~YYcðxC; xXÞ ¼ Yc½xC; xX ; xHðxC; xXÞ� and we will

say that xHðxC; xXÞ is a reparametrization of xH, whose argu-

ments are xC and xX .

The derivatives for the remaining variables are obtained

with the chain rule

@ ~YYc

@xC

¼
@Yc

@xC

þ
@Yc

@xH

@xH

@xC

;

@ ~YYc

@xX

¼
@Yc

@xX

þ
@Yc

@xH

@xH

@xX

: ð4Þ

We use the following compact notations for derivatives: for a

column vector

x ¼

x1

x2

x3

0@ 1A;
@F=@x will always denote the row vector

@F

@x1

;
@F

@x2

;
@F

@x3

� �
:

Given another column vector

y ¼

y1

y2

y3

0@ 1A;
@y=@x will always denote the matrix

@yi

@xj

� �
1�i;j�3

where i (respectively, j) indexes the rows (respectively, the

columns). The identity matrix will be denoted by 1.

It should be noted that it is customary to work within the

‘riding’ approximation,

@xH

@xX

¼ 0;
@xH

@xC

¼ 1; ð5Þ

which results in the much simplified chain rule

@ ~YYc

@xC

¼
@Yc

@xC

þ
@Yc

@xH

;

@ ~YYc

@xX

¼
@Yc

@xX

; ð6Þ

implemented in all refinement programs, including Olex2.

It is not always the case that all three coordinates of an atom

are removed from the refinement by constraints. For example,

an atom in the plane of the mirror z; y; x whose matrix reads

M ¼

0 0 1

0 1 0

1 0 0

0@ 1A ð7Þ

has its coordinates x ¼ ðx1; x2; x3Þ constrained by the relation

Mx ¼ x, which can be reduced to x1 ¼ x3 only. The corre-

sponding reparametrization may be written

x1 ¼ u1; x2 ¼ u2; x3 ¼ u1; ð8Þ

the observable Yc becoming now a function of the vector of

newly introduced refinable parameters u ¼ ðu1; u2Þ. There is a

general algorithm implemented in the cctbx that for any

special position returns a matrix Z so that the reparame-

trization takes the form

x ¼ Zu þ z; ð9Þ

where Z is a 3� 2 or 3� 1 matrix and z is a 3-vector. This

algorithm first determines the space-group symmetries that

leave the site invariant. The resulting system of linear equa-

tions, which read Mx ¼ x in our example, is then reduced to a

triangular form from which the matrix Z and the vector z are

then readily obtained. This algorithm does not therefore try to

determine which components of u, if any, are also components

Acta Cryst. (2015). A71, 59–75 Luc J. Bourhis et al. � olex2.refine 61

research papers



of x. This is why we have presented the reparametrization for

our example in this general form instead of keeping x1 and x2

as refinable parameters, which would sound more intuitive in

the first place. This matrix Z is the matrix of constraints for the

position of that atom.

The anisotropic displacement tensor U is subject to

symmetry constraints as well. In our example, it must satisfy

MUMT
¼ U; ð10Þ

where MT denotes the transpose of the matrix M (see e.g.

Giacovazzo et al., 2011). Any number of such matrix equations

can always be rewritten as a system of equations whose most

general form reads

P

U11

U22

U33

U12

U13

U23

0BBBBBB@

1CCCCCCA ¼ 0; ð11Þ

where P has 6 columns and 6n rows, where n is the number of

symmetry elements other than the identity involved in the

special position [indeed equation (10), being trivial for M ¼ 1,

can safely be discarded]. In our example,

P ¼

�1 0 1 0 0 0

0 0 0 0 0 0

1 0 �1 0 0 0

0 0 0 �1 0 1

0 0 0 0 0 0

0 0 0 1 0 �1

0BBBBBB@

1CCCCCCA ð12Þ

and equation (11) reduces to

U11 ¼ U33 and U12 ¼ U23; ð13Þ

leading to the constraint matrix

U11

U22

U33

U12

U13

U23

0BBBBBB@

1CCCCCCA ¼
1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 0 1 0

0BBBBBB@

1CCCCCCA
v1

v2

v3

v4

0BB@
1CCA: ð14Þ

Then one would refine ðv1; v2; v3; v4Þ instead of the Uij. The

cctbx provides an algorithm that computes this matrix P for

any special positions, and then reduces it to triangular form in

order to determine the constraint matrix for the ADP.

In other cases, a reparametrization will make some crys-

tallographic parameters disappear while introducing new

refinable parameters. A typical example is that of a tetrahedral

X—CH3, as the geometrical constraints leave one degree of

freedom, a rotation about the axis X—C. Thus the repar-

ametrization expresses the coordinates of the hydrogen atoms

H0, H1 and H2 as functions of the coordinates of the carbon

atoms, and of an angle ’ modelling that rotation,

xHn ¼ xC þ d

(
sin � cos ’þ n

2�

3

� �
e1 þ sin ’þ n

2�

3

� �
e2

� �

� cos�e0

)
; ð15Þ

where � ’ 109.5� and ðe0; e1; e2Þ is an orthonormal basis of

column vectors with e0 in the direction of the bond X ! C.

The riding approximation in this case consists of neglecting the

derivatives of those base vectors, leading to

@ ~YYc

@xC

¼
@Yc

@xC

þ
@Yc

@xH

;

@ ~YYc

@xX

¼
@Yc

@xX

;

@ ~YYc

@’
¼
@Yc

@xH

d sin � � sin ’þ n
2�

3

� �
e1 þ cos ’þ n

2�

3

� �
e2

� �
:

ð16Þ

Thus a new derivative with respect to the new refinable

parameter ’ is introduced by this reparametrization.

The last important concept is that of the chaining or

composition of reparametrizations, that we will illustrate with

a combination of the examples above. This example is not

particularly common but it is a simple illustration of the

concept we want to introduce. In the CH3 case, the atoms C

and X could be on the special position studied in the next-to-

last example. One type of disorder could be modelled by first

applying the reparametrization (15) and then reparametrizing

xC and xX using equation (8), introducing parameters ðu; vÞ for

the former and ðu0; v0Þ for the latter. The derivatives would

then be obtained by the chain rule, e.g.

@xH0

@u
¼
@xH0

@xC

@xC

@u
¼ 2 ð17Þ

in the riding approximation. This composition of reparame-

trization may be represented as a graph: each parameter

(some of them are triplets of coordinates, others are scalars),

xH0
, xH1

, xH2
, xC, xX , ’, u, v, u0 and v0, constitutes a node of that

graph, whereas edges are drawn from each node to its argu-

ments, i.e. the nodes it depends upon, as shown in Fig. 2. In this

example, xC has only one argument, u, whereas xH0
has three
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Figure 2
Example of a dependency graph for the chain of reparametrization
discussed in x3. Only the part for hydrogen atom H0 is shown.



arguments, xC, xX and ’. The smtbx implements reparame-

trizations by explicitly building such a graph.

As models become more complex, e.g. hydrogen atoms

riding on the atoms of a rigid body whose rotation centre is

tied to an atom whose coordinates are refined, the repar-

ametrization graph becomes deeper. We decided not to put

arbitrary limits on that graph. Indeed, we could have made a

closed list of reparametrizations and of reparametrization

combinations that our framework would accept but instead we

decided to write our code so that it could correctly handle the

computation of parameter values and of partial derivatives for

arbitrary reparametrizations, combined in arbitrary ways. This

framework is therefore open as new types of reparametriza-

tions can be added, without the need to change the basic

infrastructure in any way, and without the risk of breaking

existing reparametrizations. This has proven very useful to the

authors as this enabled them to incrementally add the wealth

of constraints now available, some of which are unique to

olex2.refine, as discussed in Appendix C. Furthermore, it

enables third parties to develop their own constraints without

the need for the involvement of the original authors beyond

documenting how the reparametrization framework works.

A crystallographic refinement may involve many such

reparametrizations. By piecing them all together, we obtain

one reparametrization that expresses all refinable crystal-

lographic parameters as a smaller vector of independent

parameters that shall then be refined. Our framework safe-

guards that piecewise construction in several ways. First, at

most one reparametrization may be applied to any given

parameter. An attempt to add a reparametrization to a

parameter that is already subject to one would be rejected by

our framework as an error. Then if a cycle were found in the

dependency graph, the framework would also reject the

parametrization. This would happen when at least one para-

meter, through a series of reparametrization combinations,

depends upon itself. Thus our framework safeguards against

incorrect user inputs, and also against bugs in our own code

that automatically builds constraints.

3.2. Constraint matrix

There is a wealth of algorithms designed to minimize least

squares, but crystallographic software has only implemented a

few of them. The two most popular methods have historically

been the full matrix3 (all small-molecule programs, including

Olex2, as explained in Appendix B) and conjugate gradient LS

(CGLS, see e.g. Björck, 1996) which SHELXL offers as an

option along with full matrix. The macromolecular community

later introduced the limited-memory Broyden–Fletcher–

Goldfarb–Shanno method (LBFGS, Nocedal, 1980), phenix.-

refine (Afonine et al., 2012) and a sparse Gauss–Newton

algorithm, REFMAC (Murshudov et al., 2011, x4 and refer-

ences therein). All methods mentioned above have in

common the fact that they require only the computation of the

value and the first-order derivatives of the calculated F or F2,

that we have denoted as Yc in this paper. Since no higher-

order derivatives are used, the implementation of constrained

least squares is greatly simplified.

Indeed, after transforming every constraint on the model

into a reparametrization (as explained and exemplified in the

previous section) and piecing all those reparametrizations

together, we obtain a global reparametrization of the vector of

crystallographic parameters y ¼ ðy1; . . . ; ypÞ as a function of

the vector x ¼ ðx1; . . . ; xnÞ of the parameters that are actually

refined. It should be noted that any component yk of y that is

not reparametrized – e.g. a coordinate of the pivot atom on

which another atom rides, and of course any parameter that is

not involved in any constraint – is also a component xl of x, i.e.

@yk

@xj

¼
1 if j ¼ l;
0 if j 6¼ l:

	
From the known analytical expression of YcðxÞ, one

computes the derivatives of @Yc=@yi (the reader is referred to

Appendix A for a detailed presentation of those computa-

tions). The minimization algorithm then only needs the deri-

vatives of

~YYcðxÞ ¼ Yc½yðxÞ� ð18Þ

with respect to each xi, which are easily obtained by a simple

application of the chain rule

@ ~YYc

@x
¼
@Yc

@y

@y

@x
: ð19Þ

The matrix @y=@x is known as the constraint matrix in crys-

tallographic circles.4 In standard mathematical nomenclatures,

it is called the Jacobian of the transformation x 7! y and we

will therefore denote it J.

The computation of J takes advantage of the fact that it is a

very sparse matrix. This stems from the fact that any given

crystallographic parameter yi depends on very few refined

parameters xj , as amply illustrated in the previous section. We

take advantage of this property to drastically reduce the

memory cost of J and the cost of computing each of its non-

zero coefficients. More precisely, both of these costs scale as

the number of non-zero elements in J instead of Oðn2Þ if J

were treated as a dense matrix.

4. Restrained least-squares refinement

In this section we will give an overview of the computations

involved in restrained refinement. The mathematical formulae

for each restraint objective and their derivatives can be found

in Appendix D.

Since each restraint target Tc;i only depends on a very small

subset of the yj (e.g., in the case of a bond length, only the six

coordinates of the two bonded atoms would play a role), the

matrix of derivatives with respect to the crystallographic

parameters
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Drestraints ¼
@Tc

@y
¼

@Tc;i

@yj

� �
i;j

; ð20Þ

which is known as the design matrix for the restraints, is very

sparse. We therefore use sparse-matrix techniques to effi-

ciently store and perform computations with D, by only

storing non-zero elements, and never performing any multi-

plication that involves an element of D known to be zero. We

then introduce the matrix of derivatives with respect to the

refined parameters,

~DDrestraints ¼
@Tc

@x
¼ Drestraints

@y

@x
; ð21Þ

which is computed by forming the product of D and the

constraint matrix. Thus the restraints are initially built up

without any knowledge of the constraint matrix. This greatly

simplifies their implementation and it simplifies their use in a

refinement program that does not use constraints. This orga-

nization of the computation does not incur any inefficiency as

the product (21) is a cheap operation since both matrices are

sparse, and it therefore scales as the number of non-zero

elements, which is typically much smaller than the number of

parameters n.

The two terms in the normal equations (2) coming from the

restraints then read as the matrix product and matrix-vector

product,

Brestraints ¼
~DD

T

restraintsW ~DDrestraints ð22Þ

grestraints ¼
~DD

T

restraints�T; ð23Þ

where DT denotes the transpose of D and where W is the

diagonal matrix featuring the restraint weights, and where

�Ti ¼ To;i � Tc;i ð24Þ

is the residual for the ith restraint. We again take advantage of

the sparsity of ~DDrestraints to efficiently implement those

products.

It would be desirable to place the weights of the restraints

on the same scale as the typical residual, such that a restraint

will have a similar strength for the same weight in different

structures. Rollett (1970) suggests the normalization factor

wrestraints ¼
1

m� n

X
h

whðYo;h � KYc;hÞ
2: ð25Þ

This is better known as the square of the goodness of fit, �2.

This normalizing factor also allows the restraints to have

greater influence when the fit of the model to the data is poor

(and the goodness of fit is greater than unity), whilst their

influence lessens as the fit improves (Sheldrick, 1997).

4.1. Implementation

The choice of the minimization algorithm has a significant

impact on the organization of the computation of restraints.

Indeed, a generic minimizer such as the LBFGS minimizer

used in phenix.refine requires at each iteration only the

function value L and the derivatives @L=@x. The derivatives

@Ldata=@x and @Lrestraints=@x can be calculated separately before

combining their sum to obtain @L=@x. In contrast, for full-

matrix least squares we need the matrices of partial derivatives

@Fc=@x and @Tc=@x. Therefore, depending on the optimization

method used, we must be able to compute both @L=@x and

@Tc=@x where by the chain rule

@Lrestraints

@x
¼
@L

@Tc

@Tc

@x

¼ 2wðTo � TcÞ
@Tc

@x
: ð26Þ

The restraints framework was designed in such a way that it

could be easily extended by adding further restraints. Each

restraint must provide the array of partial derivatives of the

restraint with respect to the crystallographic parameters (one

row of the matrix @Tc=@y), the restraint delta, To � Tc, and the

weight, w, of the restraint.

5. Twinning

Like all other refinement programs, we have adopted the

model of twins proposed by Jameson (1982) and Pratt et al.

(1971). The sample is modelled as d domains, each sizeable

enough a single crystal to give rise to observable Bragg peaks.

If peaks from different domains fall very close in reciprocal

space, the integration software analysing frames will be able to

compute only the sum of the intensities of these superposed

peaks. Data for the rth reflection will therefore consist of an

intensity F2
o;r and of a list of sr Miller indices hr;i1

; hr;i2
; . . . ; hr;isr

where hr;i is the triplet of Miller indices of the Bragg peak

originating from diffraction by domain i. The model of the

structure then predicts an intensity Ic;r for F2
o;r that reads

Ic;r ¼
Psr

l¼1

�il
jFcðhr;il

Þj
2; ð27Þ

where �i is the fraction of the sample volume occupied by twin

domain i. The least squares to minimize are then, adapting

equation (1) for a twinned structure,

L ¼
Pm
r¼1

wr F2
o;r � KIc;r

� �2
; ð28Þ

where the weight wr is usually

wr ¼ w½F2
o;r; �ðF

2
o;rÞ; Ic;r�; ð29Þ

where w would be the same function discussed in the context

of equation (1). The minimization of L with respect to the

model parameters embodied in Fc and with respect to the �’s

is therefore subject to the constraint

1 ¼
Pd
i¼1

�i: ð30Þ

There is a special case that is common and therefore

important, where there are exactly d superposed peaks for

each reflection, i.e., sr ¼ d for every r, and where there is a

3� 3 matrix R, the twin law, that generates the Miller indices

for each domain i> 1 as

hr;i ¼ hr;i�1R; ð31Þ
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in this case, the input consists solely of a list of FoðhÞ
2 (as for an

untwinned refinement but with h ¼ hr;1) and of R. Such twins

belong to the taxonomies pseudo-merohedral or merohedral.

olex2.refine is able to refine a twinned structure input in this

manner.

SHELXL users would handle the general case by using a

reflection file in the HKLF5 format. Such a file is created by

the integration software and this approach can deal with the

most complex situations. By contrast, CRYSTALS always

requires a list of twin laws.

olex2.refine can handle a more general case: when general

and merohedral twinning are simultaneously present. For

example, one may have four domains 1, 2, 3 and 4. Domains 1

and 3 are related by a twin law R, and so are domains 2 and 4,

but the relative orientation of domains 1 and 2 does not

correspond to any twin law. Thus the measured frames exhibit

two lattices of Bragg peaks, with some overlaps, and the

integration software will then output a list of (F2
o, h1), (F2

o, h2)

and (F2
o, h1, h2). The refinement engine needs to expand this to

a list of (F2
o, h1, h3¼h1R), (F2

o, h2, h4¼h2R) and (F2
o, h1, h2,

h3¼h1R, h4¼h2R). olex2.refine performs this task on the fly,

while passing Miller triplets to the code computing structure

factors and their derivatives.

The theory and phenomenology of twinning extends far

beyond our exposition, but from the narrow point of view of

refinement our presentation is sufficient, since, in this paper,

we do not concern ourselves with the computation of the twin

law or with the indexing of superposed lattices.

6. Standard uncertainties

6.1. Variance matrix

In this section, we will discuss the rigorous computation

of s.u.’s of and correlation between the parameters of a

constrained model. As pointed out in Appendix B in the

comment about equation (73), the variance matrix for the

refined parameters x is

Var ðxÞ ¼ B�1; ð32Þ

where

Bij ¼
@r

@xi

	
@r

@xj

ð33Þ

is the normal matrix for the constrained least-squares mini-

mization. However, we are interested in the variance matrix

Var ðyÞ for the crystallographic parameters of the model, not

in Var ðxÞ. For small variations, we have the linear relation

�y 
 J�x ð34Þ

and therefore, using the well known heuristic definition of the

variance matrix of y as the mean value of �y�yT in the linear

approximation around the minimum implicitly assumed

throughout crystallographic refinement,

Var ðyÞ ¼ J Var ðxÞ JT : ð35Þ

We would like to stress an important consequence of this

formula: constrained parameters generally have non-zero

s.u.’s. This is the case, for example, for the coordinates of riding

atoms. For most constraints, the s.u.’s of hydrogen coordinates

are equal to the s.u.’s of the atom they ride on but e.g. for a

rotating –CH3, they differ because the s.u. of the azimuthal

angle increases the s.u. of the hydrogen coordinates that come

from riding only.

6.2. Derived parameters

We will now discuss the s.u.’s of derived parameters. Such a

parameter is a function f of a set of atomic parameters pi and

its variance can be derived using the same heuristic as above

in a linear approximation where �f ’
P

ið@f=@piÞ�pi by

computing Var ðf Þ as the mean of ð�f Þ2. This leads to

�2
ðf Þ ¼

X
i;j

@f

@pi

� �
@f

@pj

� �
covðpi; pjÞ: ð36Þ

An early occurrence of this formula can be found in Sands

(1966).

As a result of this formula and of the consequence of

equation (35) stated after it, any bond length, any bond angle

and any dihedral angle involving a riding atom has a non-zero

s.u. unless that geometrical quantity is fixed by the constraint.

For example, in the case of ðR1;R2;R3Þ—C—H, for which the

constraints do not fix the angles dRiCHRiCH, those angles have a

non-zero s.u. This correct behaviour unfortunately triggers

many alerts when a structure refined with Olex2 is checked

with PLATON.

PLATON plays a very important role in detecting common

flaws in the crystallographic workflow. However, since

PLATON does not have access either to the covariance matrix

or the constraint matrix, it has to make guesses that result in

estimation of e.s.d.’s that may be out by up to a factor 2. This is

the key problem we encounter with the way olex2.refine

reports e.s.d.’s. Specifically, most structures refined with

olex2.refine fail checkCIF test PLAT732 (an alert C), for the

reason explained in the documentation of this alert (in Note

2):5 PLATON computes the s.u. of the said angle using the

s.u. of the atomic coordinates as if they were independent

parameters since it does not have access to the variance–

covariance matrix that describes their correlations. In this

case, those correlations are very significant since the position

of H completely depends on the position of R1, R2 and R3.

Hence the s.u. of this angle as reported by Olex2 differs from

the PLATON estimate. Thus all failures of test PLAT732 for

angles or distances involving constrained hydrogen atoms are

spurious. As a result, if a referee were to require that all alert

C’s are to be addressed in a CIF submitted for publication in

Acta Crystallographica, we advise authors to explain away

PLAT732 for riding hydrogen atoms by quoting Note 2 in the

documentation for that test. olex2.refine will actually auto-

matically prepare the CIF file with such explanations.

6.2.1. Incorporating s.u.’s of unit-cell parameters. Derived

parameters such as bond lengths and angles are a function of

both the least-squares atomic parameters and the unit-cell
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parameters. As such, the s.u. of a derived parameter is likewise

a function of both the atomic and unit-cell parameters as well

as their respective s.u.’s. If the s.u.’s in atomic parameters are

considered to be totally uncorrelated with the s.u.’s in the cell

parameters, i.e. their covariance is zero, then the s.u. in a

derived parameter can be considered as comprising two

independent sources of uncertainties:

�2ðf Þ ¼ �2
cellðf Þ þ �

2
xyzðf Þ; ð37Þ

where �xyzðf Þ is the part coming from the uncertainties in the

least-square estimates of the positional parameters, and �cellðf Þ

comes from the uncertainties in the unit-cell parameters,

�2
cellðf Þ ¼

X
i;j

@f

@i

@f

@j
cov ði; jÞ; ð38Þ

where i; j ¼ fa; b; c; �; �; �g.
This necessitates the calculation of the derivatives of the

function with respect to the unit-cell parameters. In order to

do so, it is easier to calculate separately the derivatives of the

function with respect to the elements of the metrical matrix,

and also the derivatives of the metrical matrix with respect to

the cell parameters, and then to use the chain rule

@f

@i
¼
@f

@gjk

@gjk

@i
; i ¼ a; b; c; �; �; �: ð39Þ

Indeed @f=@gjk must be evaluated for every function, whereas

@gjk=@i is constant for a given unit cell.

Now we consider the application of equation (36) to

determine the s.u. in the length of the vector u, in fractional

coordinates. The length, D, of the vector u is given by

D ¼ ðuTGuÞ
1=2; ð40Þ

where G is the metrical matrix (see e.g. Giacovazzo et al.,

2011).

The derivatives of the distance, D, with respect to the

elements of the metrical matrix, G, are given by

@D

@gii

¼
1

2

u2
i

D
ð41Þ

and (given the metrical matrix is symmetric)

@D

@gij

¼
uiuj

D
; for all i< j: ð42Þ

Similarly, for the angle between two vectors in fractional

coordinates, u and v, where the angle is defined as

	 ¼ arccos
uTGv

jjuTGujj jjvTGvjj
ð43Þ

or

	 ¼ arccos
rA 	 rB

jjrAjj jjrBjj
; ð44Þ

where rA and rB are the Cartesian equivalents of u and v, the

derivative of the angle, 	, with respect to the elements of the

metrical matrix, G, is given by

@	

@gii

¼
1

2 sin 	

u2
i cos 	

jjrAjj
2 �

2uivi

jjrAjj jjrBjj
þ

v2
i cos 	

jjrBjj
2

� �
ð45Þ

and

@	

@gij

¼
1

2 sin 	

uiuj cos 	

jjrAjj
2
�

uivj þ ujvi

jjrAjj jjrBjj
þ

vivj cos 	

jjrBjj
2

� �
;

for all i< j: ð46Þ

The derivatives of the metrical matrix with respect to the

unit-cell parameters,

C ¼ ða; b; c; �; �; �Þ; ð47Þ

needed in order to apply equation (39) are given below:

@g11

@C
¼ ð2a; 0; 0; 0; 0; 0Þ

@g22

@C
¼ ð0; 2b; 0; 0; 0; 0Þ

@g33

@C
¼ ð0; 0; 2c; 0; 0; 0Þ

@g12

@C
¼ ðb cos �; a cos �; 0; 0; 0;�ab sin �Þ

@g13

@C
¼ ðc cos�; 0; a cos�; 0;�ac sin �; 0Þ

@g23

@C
¼ ð0; c cos �; b cos �;�ac sin �; 0; 0Þ: ð48Þ

6.3. Symmetry

The variance–covariance matrix that is obtained from the

inversion of the least-squares normal matrix contains the

variance and covariance of all the refined parameters.

Frequently, it is necessary to compute functions that involve

parameters that are related by some symmetry operator of

the space group to the original parameters. Sands (1966)

suggests that the symmetry should be applied to the variance–

covariance matrix to obtain a new variance–covariance matrix

for the symmetry-generated atoms. Alternatively, and it is this

method that is used here, the original variance–covariance

matrix can be used if the derivatives in equation (36) are

mapped back to the original parameters.

Let the function f depend on the Cartesian site yc that is

generated by the symmetry operator Rc from the original

Cartesian site xc, i.e.

yc ¼ Rcxc: ð49Þ

Then the gradient with respect to the original site can be

obtained by

@f ðycÞ

@xc

¼
@f ðycÞ

@yc

Rc: ð50Þ

The variance–covariance matrix that is used in this case

should be the one that is transformed to Cartesian coordi-

nates. The variance–covariance matrix for Cartesian coordi-

nates can be obtained from that for fractional coordinates by

the transformation
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Vc ¼ OVfO
T; ð51Þ

where the transformation matrix O needed to transform the

entire variance–covariance matrix in one operation would be

block diagonal, with the 3� 3 orthogonalization matrix O

repeated at the appropriate positions along the diagonal. This

transformation can be computed efficiently using sparse-

matrix techniques.

7. Refinement results

olex2.refine uses CIF (Hall et al., 1991) as its main output. The

CIF contains information regarding the space group, the data

indicators such as merging indices, the refinement indicators

such as the R factors, goodness of fit, residual electron density,

refinement convergence indicators and tabulated structure

information, including tables of atomic parameters, bonds and

angles. olex2.refine produces a table describing the restraints

using the CIF restraints dictionary. Moreover, the olex2.refine

CIF always contains a verbal description of the refinement

model – hydrogen-atom treatment, constraints, restraints and

their targets. Optionally, the refinement model file (SHELX

RES file) and the reflections can also be included in the final

CIF for deposition. It should be noted that the constraints and

restraints unique to olex2.refine, i.e. not featured by SHELX,

are saved in REM sections (using an XML format). This has

the advantage that they can be read back by Olex2 while

providing a ‘.res file’ that can also be refined with SHELX,

albeit with potentially a different model. As part of this

work a CIF-handling toolbox (Gildea et al., 2011) was added

to cctbx.

8. Conclusion

We have presented herein the full mathematical derivations of

the concepts used within olex2.refine. This new refinement

engine is feature-wise on a par with the established software

in the field such as SHELXL and CRYSTALS. It actually

provides a richer wealth of constraints than those classic suites.

olex2.refine is immediately useful to the practising crystal-

lographer since it is presently available from the program

Olex2 by default. It can also be used independently as a library

of components to write short scripts as well as more complex

programs, dealing with any aspect of small-molecule refine-

ment. Indeed, olex2.refine is largely based on the Small-

Molecule Toolbox (smtbx) that is part of the Computational

Crystallography Toolbox (cctbx), which is usable as a library

for the Python programming language, thus providing great

expressiveness, conciseness and ease of coding combined

with an immense wealth of tools covering all of crystal-

lography. We have explained herein how the smtbx added

constrained least-squares refinement from scratch to the cctbx

and how it added many restraints as well, thus opening new

fields to the cctbx.

APPENDIX A
Computation of structure factors and their gradient

The formulae discussed in this appendix have been known for

nearly a century and have been implemented in all known

refinement programs. However, it seems to the authors that,

during the last decades, the computation for a given Miller

index h of FcðhÞ and its gradient rFcðhÞ with respect to crys-

tallographic parameters has very rarely been presented in all

the minute details necessary to implement those formulae in a

program, justifying this appendix in our humble opinion. We

will compare our algorithm to Rollett (1965) point by point as

we present it, but first we would like to highlight a technical

difference. Rollett computes the real and imaginary parts

separately, whereas our computation is performed with

complex numbers, the rationale being that the composition of

the different terms of the structure factor can be performed

with mere complex multiplications. For example, the incor-

poration of anomalous scattering in equation (53) corresponds

to equations (20) and (21) in Rollett.

A1. Structure factor of one atom

Since the structure factor of the entire unit cell is the sum

over the contribution of each scatterer, we will focus on one

such contribution only. We therefore consider a scatterer with

fractional coordinates x, a thermal displacement tensor U in

fractional coordinates and a chemical occupancy s (i.e. this

occupancy does not take crystallographic symmetries into

account). Its contribution FucðhÞ to the entire unit cell is

obtained from its structure factor FðhÞ by the sum

FucðhÞ ¼
P
ðRjtÞ2S

FðRjtÞðhÞ: ð52Þ

S denotes the subset of symmetry operators ðRjtÞ of the

rotational part R and translational part t that generate the

orbit of the position x under the application of the entire set of

symmetries in the space group of the structure, whereas

FðRjtÞðhÞ is the transform of FðhÞ under the symmetry ðRjtÞ. For

a spherical atomic model with an elastic scattering factor f ðh2Þ

that does not depend on the direction of h and an inelastic

scattering factor f 0 þ if 00 that does not depend on h (a property

that holds for X-ray diffraction), F reads

FðhÞ ¼ s½ f ðh2Þ þ f 0 þ if 00� expð�hUhTÞ expði2�hxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GðhÞ

: ð53Þ

We will consistently denote a triplet h of Miller indices as a

row vector, whose transpose hT is therefore a column vector,

and a triplet x of fractional coordinates as a column vector. In

this context, h2 denotes the Euclidean square of h, that

therefore involves the reciprocal metric matrix M� as

h2 ¼ hM�hT .

If the thermal displacement is isotropic, the term

expð�hUhTÞ is replaced by expð�2�2h2uisoÞ and it is then

factored out of GðhÞ.

We are therefore left with computing the sum of the

transforms of GðhÞ under the symmetries in S, the other terms
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forming a factor multiplying this sum. By the definition of a

Fourier transform, that transform reads

GðRjtÞðhÞ ¼ GðhRÞ expði2�htÞ: ð54Þ

Let us consider the case of non-primitive unit cells first. The

sum can be partitioned as follows:P
ðRjtÞ2S

GðRjtÞðhÞ ¼
P
ðRjtÞ2S0

P

2T

GðRjtþ
ÞðhÞ;

where T is the set of all centring translations, including zero,

and S0 is the set of ‘primitive’ symmetries. Then with equation

(54) we can factorize the sum as

P
ðRjtÞ2S

GðRjtÞðhÞ ¼
P

2T

expði2�h
Þ

� � P
ðRjtÞ2S0

GðhRÞ expði2�htÞ

" #
:

ð55Þ

The first term of the right-hand side does not depend upon the

scatterer and it can therefore be precomputed. Commonly,

Miller indices satisfy the centring conditions h
 ¼ 0 mod 1. In

this case, this term is equal to the number of centring trans-

lations. However, this assumption can be invalid in the

refinement of some pseudo-merohedral twins since Miller

indices satisfying a centring condition may be transformed by

the twin law in Miller indices that do not satisfy it.

It should be noted that Rollett already advocated skipping

the computation of the terms in
P
ðRjtÞ2S GðRjtÞðhÞ corre-

sponding to non-zero centring translations and then multi-

plying the result by 2. However, our framework can handle

any group T , not only those with þ1=2 translations. It would

work for tripled cells as well, for example.

Thus we are left with the computation of the second term of

the right-hand side of equation (55). This is equivalent to

treating the case of a primitive unit cell. Three cases are to be

considered.

(i) The space group is non-centric. Then there is no further

simplification.

(ii) The space group is centric but the inversion ð1jt1Þ may

not be located at the origin. Then the sum over the symmetries

may be split into the sum over the set Sþ of proper symmetries

and the sum over the set of improper symmetries. Since every

improper symmetry may be written as ð1jt1ÞðRjtÞ where ðRjtÞ is

a proper symmetry, we haveP
ðRjtÞ2S

GðRjtÞ ¼
P

ðRjtÞ2Oþ
GðRjtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�

þ
P

ðRjtÞ2Sþ
Gð1jt1ÞðRjtÞ:

However, the product involving the inversion simplifies as

ð1jt1ÞðRjtÞ ¼ ð�Rj � t þ t1Þ and therefore using equation (54)

Gð1jt1ÞðRjtÞ ¼ Gð�hRÞ expð�i2�htÞ expði2�ht1Þ;

but then from the very definition of GðhÞ in equation (54)

Gð�hRÞ ¼ GðhRÞ
�; ð56Þ

and therefore

P
ðRjtÞ2S

GðRjtÞ ¼ �þ�� expði2�ht1Þ: ð57Þ

(iii) If ht1 ¼ 0, which holds true for every reflection if the

space group is origin centric (t1 ¼ 0), the previous case

resolves to the real part of � only,P
ðRjtÞ2S

GðRjtÞ ¼ 2
P

ðRjtÞ2Sþ
exp½�hRUðhRÞ

T
� cosðhRxþ tÞ: ð58Þ

The total sum over symmetries is therefore real, and is its

derivative, the former involving a cosine and the latter

involving a sine for the derivatives with respect to x.

In order to avoid redundant computations, our code

distinguishes these three cases. One piece of code handles the

case of centrosymmetric space groups using only real numbers

to compute � (an equivalent optimization was presented in

Rollett). Another piece of code handles the other two cases,

first computing � using complex number algebra and then

using equation (57) if the space group is centric and ht1 6¼ 0

(an optimization not found in Rollett). Another optimization

we applied is to precompute the terms hR and expði2�tÞ

appearing in equation (54) as well as the test for the condition

ht1 ¼ 0 before the loop over all scatterers in the asymmetric

unit (an optimization already advocated by Rollett). In all

three cases, the computation of cosðhRxþ tÞ and sinðhRxþ tÞ

is the most costly operation. This is mitigated by computing

the structure factor and its derivatives together, as the cosine

and sine then only need to be computed once for each

reflection and scatterer. This optimization is the reason why

we have written our own new code into the smtbx instead of

reusing the original code in the cctbx. Indeed, in the latter,

structure factors are computed separately from the deriva-

tives, resulting in two separate loops over the reflections and

the scatterers, and in sines and cosines being computed twice.

This is rather well suited to the optimization algorithm used in

phenix.refine (LBFGS) because it does not need the deriva-

tives at every step. But it does not fit well with full-matrix least

squares as is prevalent in small-molecule crystallography.

Our code also provides two options to compute the sines

and cosines: either by using the trigonometric functions of the

standard C++ library, or by using a cctbx function that inter-

polates between tabulated values of sines and cosines. The

latter is much faster but less precise. Olex2 uses the former as

CRYSTALS and SHELXL use the standard FORTRAN sin

and cos functions. It should be noted that Rollett used an

approximation of trigonometric functions by Chebyshev

polynomials, which used to be employed by CRYSTALS.

A2. Derivatives of |F|2 and |F|

Having computed the unit-cell structure factor Fc and its

derivatives, we need to compute the derivatives of jFcj
2 and

perhaps as well jFcj ¼ ðjFcj
2
Þ

1=2 if performing a refinement

against F. Since jFcj
2
¼ FcF�c , where z� denotes the complex

conjugate of the complex number z, for any crystallographic

parameter �,
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@jFcj
2

@�
¼ F�c

@Fc

@�
þ Fc

@F�c
@�
;

but since the parameter � is always real in practice,

@F�c
@�
¼

@Fc

@�

� ��
ð59Þ

and therefore

@jFcj
2

@�
¼ 2Re F�c

@Fc

@�

� �
ð60Þ

where Re denotes the real part. Then,

@jFcj

@�
¼

1

jFcj
Re F�c

@Fc

@�

� �
: ð61Þ

The smtbx provides code to compute derivatives for both of

these observables. However, Olex2 currently only offers the

choice to refine against F2.

A3. Extinction correction

olex2.refine models primary and secondary extinction with

the same empirical correction used in SHELXL,

F 0c ¼ Fc 1þ 0:001x
F2

c�
3

sin 2	

� ��1=4

; ð62Þ

where the so-called extinction parameter x is added to the set

of refined parameters. As noted in SHELXL documentation,

it is close to the work of Becker & Coppens (1974) but not

identical.

APPENDIX B
Minimization of least squares with an overall scale
factor

In this appendix, we are concerned with the minimization of

Ldataðx;KÞ as defined in equation (1). We will drop the label

‘data’ throughout this appendix for clarity. We will denote by

ðx�;K�Þ the values of those parameters at which Lðx;KÞ

reaches the minimum we are interested in.

It is well known that the overall scale factor tends to be

highly correlated with the thermal displacements. As a result,

a starting value of K far from K� tends to destabilize the fit and

at the very least will increase the number of iterations

necessary to converge to the minimum. It is, however, easy to

compute a reasonable approximation of K�. Indeed, as a

function of K only, keeping all the other parameters x fixed,

Lðx;KÞ is a second-order polynomial. An analytical formula

therefore exists for the value of K that minimizes that poly-

nomial. Using the geometrical interpretation of least squares

is the fastest manner to demonstrate this formula and leads to

the most compact formula. We therefore introduce the scalar

product of two sets of observables,

Y 	 Y 0 ¼
P

h

wðhÞYðhÞY 0ðhÞ; ð63Þ

and the associated norm jjYjj,

jjYjj2 ¼
P

h

wðhÞYðhÞ
2; ð64Þ

as well as the residual vector

rðx;KÞ ¼ Yo � KYcðxÞ: ð65Þ

With those notations, Lðx;KÞ, which reads

Lðx;KÞ ¼ jjrðx;KÞjj2; ð66Þ

reaches a minimum at

~KK ¼
Yc 	 Yo

jjYcjj
2
; ð67Þ

while keeping x fixed, and the value at the minimum reads

Lðx; ~KKÞ ¼ jjYojj
2
� ~KK2
jjYcðxÞjj

2: ð68Þ

We could then simply use ~KK as a starting value for a combined

refinement of x and K, i.e. the minimization of Lðx;KÞ with the

independent vector ðx;KÞ of parameters.

However, we chose to minimize Lðx; ~KKÞ instead, which is a

function of x only since ~KK is completely determined by x. This

is a special case of a technique called separable least squares

(Nielsen, 2000, and references therein) that converges to the

same minimum as previously, but with fewer iterations for the

same cost per iteration. In order to carry out that minimiza-

tion, we first need to compute the first-order derivatives,

@Lðx; ~KKÞ

@xj

¼
@L

@xj

ðx; ~KKÞ; 1 � j � n; ð69Þ

where the chain rule would normally mandate a second term

ð@L=@KÞ ðx; ~KKÞð@ ~KK=@xjÞ, but in this case it is zero because of

the definition of ~KK. In this expression,

@L

@xj

¼ 2r 	
@r

@xj

: ð70Þ

Thus, the first-order derivative is exactly the same as it would

have been with an independent parameter K. We then need

the second-order derivatives

@2Lðx; ~KKÞ

@xi@xj



@rðx; ~KKÞ

@xi

	
@rðx; ~KKÞ

@xj

; 1 � i; j � n; ð71Þ

where we have neglected the term ½@2rðx; ~KKÞ=@xi@xj� 	 rðx; ~KKÞ
because, for a well behaved fit, the residual r and its curvature

are small enough that this term can safely be neglected.

Let us now build the normal equations,

Bs ¼ �g; ð72Þ

for the shift, s, of the parameter vector x. The matrix B is

known as the normal matrix. Those equations are simply the

Newton equations, featuring the Hessian matrix, Bij ¼

@2Lðx; ~KKÞ=@xi@xj, computed using the approximation of

equation (71) and the gradient g of Lðx; ~KKÞ. It should be noted

that the solution, s, of equation (72) is then also the solution of

the linear least-squares problem

min
s

rðx; ~KKÞ þ
@rðx; ~KKÞ

@x
s



























2

: ð73Þ
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The inverse of the normal matrix B when the least-squares

minimum has been reached by Lðx; ~KKÞ can therefore be

viewed as the variance matrix of x, which should be contrasted

to the more classic combined refinement of x and K, for which

the variance matrix is the sub-matrix of the inverse of the

normal matrix obtained by removing the column and the row

corresponding to K.

Using the definition (65) of r and the expression (67) of ~KK,

we have

@rðx; ~KKÞ

@xi

¼ � ~KK
@Yc

@xi

þ
@ ~KK

@xi

Yc

� �
; ð74Þ

@ ~KK

@xi

¼
1

jjYcjj
2

@Yc

@xi

	 Yo � 2 ~KKYc

� �
ð75Þ

and therefore the normal matrix B and the right-hand side of

the normal equations g read

Bij ¼
~KK2 @Yc

@xi

	
@Yc

@xj

þ ~KK
@ ~KK

@xj

Yc 	
@Yc

@xi

þ
@ ~KK

@xi

Yc 	
@Yc

@xj

� �
þ
@ ~KK

@xi

@ ~KK

@xj

jjYcjj;

gi ¼ �ðYo �
~KKYcÞ 	

~KK
@Yc

@xi

þ
@ ~KK

@xi

Yc

� �
: ð76Þ

It should be noted that the first term of B would appear in

exactly the same form if we had kept the scale factor K as an

independent parameter. Moreover, terms very similar to the

second and third terms of B would need to be computed in

that case, as the normal matrix B would then have one more

column and one more row which would feature those similar

terms. Thus, the computation cost of our unorthodox method

is the same as that of the more traditional refinement of the

overall scale factor along with the other crystallographic

parameters. In any case, for all methods based on the normal

equations, the computation time is dominated by the first term

of B, as it scales as Oðmn2Þ, where m is the number of

reflections and n the number of parameters.

It should also be noted that we never construct and store

the whole of the so-called design matrix ½@YcðhÞ=@xi�h;i that

appears in those equations. Instead, we compute the vector of

derivatives ½@YcðhÞ=@xi�i for a few reflections h and then we

immediately accumulate them into the normal matrix B and

into the right-hand side g, as opposed to constructing the

whole design matrix and then forming the products

@Yc=@xi 	 @Yc=@xj appearing in equation (76), for example. It

used to be the only efficient way to proceed a few decades ago

when least-squares refinement was being developed, but the

fantastic increase of computer memory has made that point

largely irrelevant.

The traditional argument is to show that the normal matrix

is typically one to two orders of magnitude smaller than the

design matrix. Indeed, the latter has mn elements, whereas the

former has approximately n2=2 elements for large values of n.

Since in a typical small-molecule crystal structure determina-

tion the data-to-parameter ratio m=n is typically in the range

10–30, the normal matrix is therefore 20 to 60 times smaller

than the design matrix. With the common use of constraints,

particularly with respect to those on the parameters of

hydrogen atoms, this contrast gets even more striking as n

shall then be replaced with the number of parameters actually

refined, which can be as small as n=2 for typical organic

structures. This results in another factor 2 in the comparison of

the respective sizes of the design and of the normal matrix,

and it makes the latter typically 40 to 120 times smaller than

the former.

However, in the extreme case of a structure with about 1000

atoms in the asymmetric unit, the design matrix stored in

double precision only requires 40 to 120 Mb of memory,

assuming constraints reducing the number of refinable para-

meters by a factor 2, as opposed to around 2 Mb for the

normal matrix. They would therefore both easily fit in the

main memory of a modern PC which comes with many

Gigabytes of RAM.

The counter-argument goes even further, as the normal

matrix is actually not necessary either to solve the least-square

problem or to compute estimated standard deviations for

geometric quantities, which are necessary to publish a struc-

ture. Indeed, there are well known mathematical techniques

based only on the design matrix to solve these two problems

[cf. for example, Björck (1996), sections 2.8.3 for s.u. compu-

tations and 2.4.3 for the solution of the least squares].

However, the best of those design-matrix techniques, the

QR decomposition, involves about twice as many floating-

point operations as the method based on the normal equa-

tions. That is the actual motivation for our choosing the latter

and therefore adhering to a long crystallographic tradition.

It should be noted that for singular or nearly singular

problems, one could solve the LS problem by using singular-

value filtering on the design matrix, which is the most robust

technique. On the other hand, if one computes the normal

matrix, therefore squaring the singularities, solving the LS

problem with eigenvalue filtering is of little practical interest.

APPENDIX C
Constraints

olex2.refine provides constraints to influence the position(s) or

the ADP(’s) of an atom or a group of atoms, as well as their

occupancy factors. This section will enumerate the constraints

and provide the details of their implementation.

C1. Occupancy constraints

The smtbx provides a generic tool to express any scalar

parameter v as an affine function of other scalar parameters

u1; u2; . . . ; us,

v ¼
Ps

i¼1

aiui þ b; ð77Þ

where the number of arguments s as well as the coefficients ai

and b can be freely chosen. The common case of two atoms
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whose occupancies o and o0 shall add up to 1 is easily handled

by the case s ¼ 1, as o0 ¼ 1� o.

Higher values of s are useful to model a site partially

occupied by different types of atoms when the requirement of

full occupancy is complemented by other constraints. The

example used in the SHELXL manual to illustrate the

restraint command SUMP is such a case: a site is occupied by

ions Naþ;Ca2þ;Al3þ and Kþ with an average charge of +2,

leading to the restrictions on their occupancies:

oNaþ þ oCa2þ þ oAl3þ þ oKþ ¼ 1; ð78Þ

oNaþ þ 2oCa2þ þ 3oAl3þ þ oKþ ¼ þ2: ð79Þ

Instead of enforcing those relations as restraints, as advocated

in the SHELX documentation, we can solve those equations

to get the explicit dependencies

oNaþ ¼ oAl3þ � oKþ; ð80Þ

oCa2þ ¼ 1� 2oAl3þ ; ð81Þ

which can then readily be expressed as special cases of

equation (77).

C2. Shared site and shared U constraint

Two scatterers share the same site or the same ADP tensor.

These constraints are pretty straightforward to implement

within the smtbx framework. Values of dependent parameters

and the corresponding rows of the Jacobian are set equal to

the values for the reference atom.

C3. Riding atoms/group U constraint

This constraint defined a group as riding on the given, pivot

atom, i.e. the coordinates of the groups are given the same

shifts as the pivot atom (SHELXL AFIX 3). Moreover the

distances from the atom to the atoms of the group can be

refined (SHELXL AFIX 4), which is applicable to groups like

XYn for 1 � n � 4 where X is B, C, N etc. and Y is H, F, Cl etc.

In general the transformation of the triplet of coordinates r is

written down like this:

r0 ¼ sðr� rpÞ þ rp; ð82Þ

where s is the distance scaling component (s ¼ 1 if not refined)

and rp is the pivot atom centre. In the case when s is refined,

the corresponding derivative of the transformation is

@r0

@s
¼ r� rp; ð83Þ

whereas

@r0

@r
¼ s1: ð84Þ

C4. Rotated U constraint

This constraint relates the ADPs of one atom to the ADPs

of another atom as rotated by a fixed or refined angle around a

given direction. The direction can be defined as a static vector,

best line or best plane normal. Considering atoms A and B, the

relation between their ADP tensor UA and UB reads

UB ¼ RUART; ð85Þ

where R is the rotation matrix

R ¼

txxþ c� tyxþ zs� tzx� ys�
txy� zs� tyyþ c� tzyþ xs�
txzþ ys� tyz� xs� tzzþ c�

0@ 1A ð86Þ

with c� ¼ cos �, s� ¼ sin � and t ¼ 1� c�, and where the

rotation direction is represented by a normal ðx; y; zÞ and

where � is the rotation angle around this direction.

This transform is trivially rewritten as a linear

transform of ðUA;11;UA;22;UA;33;UA;12;UA;13;UA;23Þ into

ðUB;11;UB;22;UB;33;UB;12;UB;13;UB;23Þ, whose matrix is there-

fore the Jacobian needed for the chain rule [equation (19)]. If

the rotation angle is refined, then the derivative of this

transformation by the angle is

@UB

@�
¼ RUR0T� þ R0�URT; ð87Þ

where R0� is the derivative of R by �:

R0� ¼

xxs� � s� yxs� þ zc� zxs� � yc�
xys� � zc� yys� � s� zys� þ xc�
xzs� þ yc� yzs� � xc� zzs� � s�

0@ 1A: ð88Þ

C5. Pivoted rotation of a rigid body

This constraint is suitable for groups which can be rotated

around a given direction (SHELXL AFIX 7). For groups XYn

with 1 � n � 4 and X being B, C, N etc. and Y being H, F, Cl

etc., the distances from X to Y can also be refined (SHELXL

AFIX 8). The coordinate transformation is

r0 ¼ sRðr� rpÞ þ rp; ð89Þ

and its derivatives are

@r0

@�
¼ sR0�ðr� rpÞ; ð90Þ

@r0

@s
¼ Rðr� rpÞ; ð91Þ

where rp is the centre of the pivot atom, s is the distance scale

component (s ¼ 1 if not refined), R is the rotation matrix

[equation (86)] and R0 is the derivative of the rotation matrix

by the angle [equation (88)]. If neither the angle nor distances

are refined, this constraint reduces to simple riding.

C6. Free rotation of a rigid body

This constraint is the most generic case of the rigid-body

refinement (SHELXL AFIX 6). In this case there are six

refined parameters – the three Euler angles and three posi-

tional components; the ADPs are normally refined indepen-

dently. The coordinate transformation in this case happens

similarly to xC5; however a different rotation matrix is used:
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R ¼

c�c� �c�s� s�
s�s�c� þ c�s� �s�s�s� þ c�c� �s�c�
�c�s�c� þ s�s� c�s�s� þ s�c� c�c�

0@ 1A ð92Þ

and its derivatives by the angles are

@R

@�
¼

0 0 0

c�s�c� � s�s� �c�s�s� � s�c� �c�c�
s�s�c� þ c�s� �s�s�s� þ c�c� �s�c�

0@ 1A ð93Þ

@R

@�
¼

�s�c� s�s� c�
s�c�c� �s�c�s� s�s�
�c�c�c� c�c�s� �c�s�

0@ 1A ð94Þ

@R

@�
¼

�c�s� �c�c� 0

�s�s�s� þ c�c� �s�s�c� � c�s� 0

c�s�s� þ s�c� c�s�c� � s�s� 0

0@ 1A: ð95Þ

For the special cases of spherical counter-ions or groups like

Cp and Ph the size component of this constraint can also be

refined (SHELXL AFIX 9).

C7. Non-crystallographic symmetry constraint

This constraint is applicable to structures containing frag-

ments which should be exactly superposable onto each other

but which appear at different positions with different orien-

tations. The same equations as for the free rotation of a rigid

body described in xC6 are used in this case, but the coordi-

nates of one of the group are refined along with the rotation

angles and shift [i.e. equation (82) is used where all r’s are

refined, contrary to the rigid-body case where those coordi-

nates are fixed input, usually taken from a collection of known

chemical groups]. This allows more observations to be used in

the refinement of the atomic coordinates and ADPs.

APPENDIX D
Restraints and their derivatives

Possible restraints on the stereochemistry or geometry of

atomic positions include restraints on bond distances, angles

and dihedral angles, chiral volume and planarity. These

restraints are used extensively in macromolecular crystal-

lography, and hence were already implemented within the

cctbx as part of the macromolecular refinement program

phenix.refine. With the exception of the bond-distance

restraint, these restraints were not able to accept symmetry-

equivalent atoms. Since this is more frequently required in

small-molecule crystallography, these restraints have now

been extended to allow for symmetry. We have also imple-

mented other restraints commonly used in small-molecule

structure refinement, such as a bond similarity restraint, and

restraints on anisotropic displacement parameters including

restraints based on Hirshfeld’s ‘rigid-bond’ test (Hirshfeld,

1976), similarity restraints and isotropic ADP restraints.

D1. Restraints involving symmetry

Given a restraint, f ðxÞ, involving a site x which is outside the

asymmetric unit and which is related to the site y within the

asymmetric unit by some symmetry transformation ðRjtÞ, i.e.

x ¼ Ryþ t, the gradient is transformed as

@f ðxÞ

@y
¼
@f

@x






x¼Ryþt

R: ð96Þ

D2. Bond similarity restraint

The distances between two or more atom pairs are

restrained to be equal by minimizing the weighted variance of

the distances, where the least-squares residual, L, is defined as

the population variance biased estimator

L ¼ hr� hrii2; ð97Þ

where r ¼ ðr1; . . . ; rnÞ are the Euclidean distances between the

atoms of each pair. The mean is defined as

h�i ¼
P

i

!i�i; ð98Þ

where

!i ¼
wiP

j wj

; ð99Þ

and where wi is therefore the weight for the ith pair.

The computation of the derivatives is easier with the

alternate form of this variance,

L ¼ hr2i � hri2 ¼
P

i

!ir
2
i �

P
i

!iri

� �2

: ð100Þ

The derivative of L with respect to a distance ri is then

@L

@ri

¼ 2!iðri � hriÞ: ð101Þ

Then the derivatives of ri ¼ ðx
2
a � x2

bÞ
1=2, where xa and xb are

the Cartesian coordinates of the two atoms in that pair, are

given by

@ri

@xa

¼
xa � xb

ri

; ð102Þ

and the same formula with b$ a. Therefore, using the chain

rule, the derivatives of the residual with respect to xa are

@L

@xa

¼
2!iðrj � hriÞðxa � xbÞ

rj

; ð103Þ

and the same formula with b$ a.

D3. Planarity restraint

In this section, we will discuss a restraint enforcing a group

of atom sites to be coplanar. We will first consider the case of

four sites, with Cartesian coordinate vectors xi; xj; xk; xl. They

are coplanar if and only if the associated tetrahedron has a

zero volume. This volume reads

Vijkl ¼
a 	 ðb� cÞ

6
ð104Þ
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and any circular permutation of ða; b; cÞ, where a; b; c are any

triplet of distinct edges of the tetrahedron. Choices that lead

to elegant formulae are

a ¼ xi � xj;

b ¼ xj � xk;

c ¼ xk � xl; ð105Þ

and any circular permutations of ði; j; k; lÞ.

Therefore a straightforward restraint enforcing coplanarity

is the square of this volume, with a weight w,

Lijkl ¼ wV2
ijkl: ð106Þ

Its derivative with respect to xi is then easily obtained from

equations (104) and (105):

@Lijkl

@xi

¼
wVijkl

3
ðxj � xkÞ � ðxk � xlÞ
� �T

: ð107Þ

The derivatives with respect to xj; xk; xl are then obtained by

circular permutations of ði; j; k; lÞ, taking advantage of the

behaviour of equations (104) and (105) with respect to

permutations stated above.

We will now consider p sites with Cartesian coordinate

vectors x1; x2; . . . ; xp that we want to restrain to be coplanar,

with p> 4. We form the list T of tetrahedron

ðxi; xiþ1; xiþ2; xiþ3Þ where 1 � i � p� 3. If the volume of

the ith and (i + 1)th tetrahedron are, respectively, zero, then

xi; xiþ1; xiþ2; xiþ3; xiþ4 are coplanar as the first four and the last

four are, respectively, coplanar and those two quadruplets

share a common triplet. Thus if all tetrahedra in T have a zero

volume, then all sites are coplanar, which leads to building a

restraint as the sum of the restraint for each tetrahedron,

Lflat ¼
Pp�3

i¼1

Li;iþ1;iþ2;iþ3: ð108Þ

This method is identical to the FLAT restraint in SHELXL,

perhaps apart from differing implementation details.

The minimum number of degrees of freedom necessary to

model p points in a plane is 2pþ 3: 2p for the coordinates in

the plane, plus two angles for the orientation of the plane, plus

one for the distance of the origin to the plane. Since this

number of degrees of freedom is exactly the unconstrained

and unrestrained number of degrees of freedom 3p minus the

number of restraints in the sum of equation (108), this

restraint Lflat is therefore optimal.

D4. Restraints on atomic displacement parameters

We will discuss three types of restraints on anisotropic

displacement parameters (Rollett, 1970), similar to restraints

implemented in SHELXL and REFMAC (Murshudov et al.,

1999).

D4.1. Rigid-bond restraint. In a ‘rigid-bond’ restraint the

components of the anisotropic displacement parameters of

two atoms in the direction of the vector connecting those two

atoms are restrained to be equal. This corresponds to Hirsh-

feld’s ‘rigid-bond’ test (Hirshfeld, 1976) for testing whether

anisotropic displacement parameters are physically reason-

able (Sheldrick, 1997) and is in general appropriate for

bonded and 1,3-separated pairs of atoms and should hold true

for most covalently bonded systems.

Since the mean-square displacement of an atom of thermal

displacement tensor U along a normalized vector u is uTUu,

the restraint residual for two atoms A and B at respective

positions xA and xB and with respective thermal displacement

tensors UA and UB reads

r ¼
uTðUA � UBÞu

jjujj
; ð109Þ

where

u ¼ xA � xB; ð110Þ

and the restraint term is then

LðrA;UA; rB;UBÞ ¼ wr2: ð111Þ

Those formulae are valid whether using Cartesian or frac-

tional coordinates, providing the adapted formula is used to

compute jjujj, i.e.

jjujj ¼
P

i

u2
i

� �1=2

ð112Þ

in Cartesian coordinates and

jjujj ¼
P

i

Gijuiuj

� �1=2

ð113Þ

in fractional coordinates, where G is the metric matrix.

The computation of the derivatives of L with respect to the

components of UA and UB proceeds in two steps. First, since

uTUu ¼
P

i Uiiu
2
i þ 2

P
i<j Uijuiuj, where U is either UA or UB,

@r

@UA;ij

¼

u2
i

jjujj2
if i ¼ j;

2uiuj

jjujj2
otherwise

8>>><>>>: ð114Þ

@r

@UB;ij

¼

�
u2

i

jjujj2
if i ¼ j;

�
2uiuj

jjujj2
otherwise:

8>>><>>>: ð115Þ

The chain rule then gives, where U is either UA or UB,

@L

@Uij

¼ 2wr
@r

@UA;ij

: ð116Þ

The derivatives of LðrA;UA; rB;UBÞ with respect to the

positions rA and rB are ignored.

D4.2. ADP similarity restraint. The anisotropic displace-

ment parameters of two atoms are restrained to have the same

Uij components. Since this is only a rough approximation to

reality, this restraint should be given a smaller weight in the

least-squares minimization than for a rigid-bond restraint and

is suitable for use in larger structures with a poor data-to-

parameter ratio. Applied correctly, this restraint permits a

gradual increase and change in direction of the anisotropic

displacement parameters along a side chain. This is equivalent
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to a SHELXL SIMU restraint (Sheldrick, 1997). The weighted

least-squares residual is defined as

L ¼ w
P3

i¼1

P3

j¼1

ðUA;ij � UB;ijÞ
2; ð117Þ

which, denoting �U ¼ UA � UB the matrix of deltas, is the

trace of �U�UT, making it clear that it is invariant under any

rotation R, since it transforms �U into R�URT.

Since U is symmetric, i.e. Uij ¼ Uji, equation (117) can be

rewritten as

L ¼ w
P

i

ðUA;ii � UB;iiÞ
2
þ 2

P
i< j

ðUA;ij � UB;ijÞ
2

" #
: ð118Þ

Therefore the gradients of the residual with respect to diag-

onal elements are then

@L

@UA;ii

¼ 2wðUA;ii � UB;iiÞ; ð119Þ

whereas the gradients with respect to the off-diagonal

elements are

@L

@UA;ij

¼ 4wðUA;ij � UB;ijÞ; ð120Þ

and then the same equation with B$ A.

D4.3. Isotropic ADP restraint. Here we minimize the

difference between the ADP’s U, and the isotropic equivalent,

defined in Cartesian coordinates by

Ueq ¼ Uiso1; ð121Þ

and

Uiso ¼
1

3
TrU: ð122Þ

Again, this is an approximate restraint and as such should

have a comparatively small weight. A common use for this

restraint would be for solvent water, where the two restraints

discussed previously would be inappropriate (Sheldrick,

1997). As in equation (117), we define a restraint term invar-

iant under rotations, as L ¼ TrðU � UeqÞðU � UeqÞ
T, or

explicitly,

L ¼ w
P

i

ðUii � Ueq;iiÞ
2
þ 2

P
i< j

ðUij � Ueq;ijÞ
2

" #
ð123Þ

which simplifies in Cartesian coordinates into

L ¼ w
P

i

ðUii � UisoÞ
2
þ 2

P
i<j

U2
ij

" #
: ð124Þ

By mere inspection, we can see that the derivatives of the

residual with respect to the off-diagonal elements are in

Cartesian coordinates:

@L

@Uij

¼
2wðUii � UisoÞ if i ¼ j;
4wUij otherwise:

	
ð125Þ

D4.4. ADP Ueq similarity. The ADP of two atoms A and B

may be restrained to have the same Ueq. The restraint term for

atom A reads

LA ¼ w UA;eq �
UA;eq þ UB;eq

2

� �2

ð126Þ

or in Cartesian coordinates

LA ¼ w
X3

i¼1

UA;ii � UB;ii

6

 !2

: ð127Þ

This restraint is therefore invariant under rotation.

The derivatives with respect to the diagonal elements of UA

are then

@LA

@UA;ii

¼
2w

6

X3

i¼1

UA;ii � UB;ii

6
; ð128Þ

and the same formula with B$ A.

D4.5. Fixed ADPUeq. When the Ueq of an atom is restrained

to a fixed value, P, the residual for this restraint is

LA ¼ wðUeq � PÞ ¼ w
1

3

X3

i¼1

Uii � P

 !
; ð129Þ

and the derivatives of the residual with respect to diagonal

values of U are

@L

@Uii

¼
1

3
: ð130Þ

D4.6. ADP volume similarity. The volumes of the thermal

ellipsoids of two atoms A and B may be restrained to be equal.

The restraint term for atom A reads

LA ¼ w VA �
VA þ VB

2

� �2

¼ w
VA � VB

2

� �2

: ð131Þ

The harmonic anisotropic displacement of an atom is

described by a multivariate normal distribution of covariant

matrix U (see e.g. Trueblood et al., 1996), which is the aniso-

tropic displacement tensor of that atom. Therefore, the

probability distribution function is

pðxÞ ¼
1

½ð2�Þ3 det U�1=2
expð� 1

2 xTU�1xÞ:

The surface of constant probability p is therefore an ellipsoid

of equation

xTAx ¼ 1;

where

A ¼
U�1

�2 logfp½ð2�Þ3 det U�1=2
g
:

In order to arrive at a simple formula, we fix the probability p

such that the denominator is equal to 1, i.e.

p ¼
1

½ð2�Þ3e det U�1=2
: ð132Þ
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The volume of an ellipsoid with such an equation is given by

ð4=3Þ�ðdet A�1Þ
1=2, i.e. with the chosen value of p,

V ¼
4�

3
ðdet UÞ

1=2; ð133Þ

whose derivatives read

@V
@U11

@V
@U22

@V
@U33

@V
@U12

@V
@U13

@V
@U23

0BBBBBBBBB@

1CCCCCCCCCA
¼

4�

6ðdet UÞ
1=2

U22U33 � U2
23

U11U33 � U2
13

U11U22 � U2
12

2ðU13U23 � U12U33Þ

2ðU12U23 � U13U22Þ

2ðU12U13 � U23U11Þ

0BBBBBBB@

1CCCCCCCA: ð134Þ

We would like to emphasize once more that our choice of

ellipsoid whose volume we wish to restrain lacks physical or

mathematical motivations. It is only driven by simplicity. It is

interesting to contrast the thermal ellipsoid volume restraint

with the Ueq similarity restraint. Indeed, the former restrains

the sum of the eigenvalues of U whereas the latter restrains

the product of those eigenvalues. They are therefore

complementary.
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