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As a vital pivot for the human circulatory system, the brain-gut axis is now being
considered as an important channel for many of the small immune molecules’
transductions, including interleukins, interferons, neurotransmitters, peptides, and the
chemokines penetrating the mesentery and blood brain barrier (BBB) during the
development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and
neurofunctional disorders by interfering with the molecular signal release and
communication then providing feedback to the gut. Suffering from such a disease on a
long-term basis may cause the peripheral system’s homeostasis to become imbalanced,
and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis
(GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the
tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will
deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the
brain’s immune system. This review summarized recent studies on abnormal
immunological signal exchange mediated polarization subtype changes, in both
macrophages and microglial cells as well as T-lymphocytes. How gut complications
modulate the immune signal transduction from the brain are also elucidated and analyzed.
The conclusions drawn in this review could provide guidance and novel strategies to
benefit remedies for both IS and relative gut lesions from immune-prophylaxis and
immunotherapy aspects.

Keywords: ischemic stroke, brain-gut axis, intestinal complications, cellular immunity, necrotizing enterocolitis, gut
microbiota dysbiosis, inflammatory bowel disease, colorectal carcinoma
INTRODUCTION

As one of the most high-risk cerebrum lesions in the world, ischemic stroke (IS) exhibits cerebral
artery stenosis, occlusion or acute blood circulation barricade and takes possession of 75% to 85% of
all-type strokes, with the specific characters of burstiness, rapidity, disability and high mortality (1–3).
The pathogenesis of IS originates from multiple systematic symptoms, such as thrombus-induced
atherosclerosis, cardiovascular inflammation, arrhythmia, and supplementary blood deficiency in the
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cerebrum (4, 5). Clinical manifestations include anterior or
intracranial artery damages such as uncontrolled behavior,
alogia, hypersomnia, and neurodegenerative disease, especially
the onset of tumors and the growth of glioblastoma multiforme
which may thoroughly destroy the brain’s central nervous system
(CNS) (6–8). When a cerebral artery embolism grows, the
intracellular environment experiences a conspicuous deficiency
of blood, then promotes multiple immune signals such as
cytokines, chemokines and matrix metalloproteinases (MMP) 1,
2 and 9 which discharges from the brain and flows into the gut (9,
10). The consequent blood reperfusion facilitates the infiltration of
blood cells, including allowing natural killers (NKs), monocytes,
lymphocytes or neutrophils to enter into the damaged brain
parenchyma (11). During such a procedure, those signals or
immune factors are transmitted into other organs, like the
spleen, to separately trigger the inflammations (12). Many cases
have been elucidated, but among all of the human organs the gut is
the most versatile one in continually acquiring the immune signals
that are released from the IS-triggered injury regions in the brain,
and then conversely inducing the creation of different intestinal
lesions (13–15) (Figure 1).

A recent study illustrated that the development of IS was
corresponding to some gut abnormalities such as constipation,
microbiota diversity dysbiosis, intestinal motility disorder and tract
bleeding. More seriously, such abnormalities could turn into
complications such as gut microbiota dysbiosis (GMD),
inflammatory bowel disease (IBD), necrotizing enterocolitis
(NEC) and colorectal carcinoma (CRC) (16–19). Of these, IS-
mediated GMD has a relatively higher frequency of occurrence.
For example, patients with IS may be diagnosed with post-stroke
cognitive impairment, which reflects obvious GMD symptoms. The
abundance of Firmicutes, including the same species of Clostridia
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and Lachnospiraceae in the guts is experiencing an obvious
reduction (20). Following such phenomena, the degradation of
mucus proteins and goblet T-lymphocytes apoptosis are also
augmented in the intra-intestinal epithelium (21, 22). In addition,
from those middle cerebral artery occlusion (MCAO) rat models,
the fecal flora transplantation recreates the ecological balance of gut
microbiota, alleviates the cerebrovascular embolism generation
speed, then attenuates the infarct size, finally eliminates the brain
edema (23). Moreover, the peripheral adaptive immunity-mediated
neuroinflammatory response, which is a common stressor in IS, has
a strong connection with GMD through the bidirectional
hypothalamic–pituitary–adrenal axis mediated signal transmission
(24). Further investigations must still be carried out to demonstrate
whether microbiota dysbiosis is the prerequisite for other gut
complications triggered by IS however.

T-lymphocyte colony subtypes, including helper T-cells such as
Th1, Th2, Th17 and regulatory T-cells such as Treg, have different
functions and performances in the beginning and during the
development of IS (25). Th2 and Treg cells are antagonists in
preventing inflammation in brain injuries (26), while Th1 and
Th17, which are the agonists regulated by Th2 and Treg,
controversially perform the neuroprotective role in the post-
stroke neurogenesis process (27). Th1 secretes IL-2, IL-12,
tumor necrosis factor-a (TNF-a) and interferon-g (IFN-g) to
activate the immune response (28). Relatively, cytokines IL-6,
IL-21, IL-22 and IL-17 can be secreted from Th17 (29). However,
this T-lymphocyte subtype may tear down the neurovascular unit
after penetrating the BBB and then work against the recovery from
IS (30). Differently, Th2 and Treg, which are correlative to secreted
cytokines, such as IL-4, IL-35, IL-10, transform growth factor-b
(TGF-b) and exhibit anti-inflammation and protective cerebral
effects (31–33). Accordingly, regulating T-lymphocyte
FIGURE 1 | Graphical abstract. To better understand the rationale of IS initiation-induced immune signal exchange to multiple intestinal lesions or complications
through the brain-gut axis, such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), colorectal carcinoma (CRC),
we have reviewed and summarized recent articles and drawn reasonable guidance on how to take precautions and alleviate each creation.
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polarization direction to Th2 and Treg contributes to
IS attenuation.

The initial M2 subtype polarization of macrophage can be
switched to M1. Locating on the M1 subtype of the macrophage
surface membrane, CD16/32, CD86, CD40, and the major
histocompatibility complex (MHC-II) could induce the
discharge of proinflammatory factors including IL-1b, IL-6, IL-
12, IL-23, TNFa. Some chemokines are also involved in for
example like C-C motif chemokine ligand (CCL) 8, CCL15, C-X-
C motif chemokine ligand (CXCL)10 and CXCL19 (34–36).
Meanwhile, some transcription factors are also activated, such
as STAT1, IRF3, NFkB and AP-1 (36). The M1 macrophages
subtype can participate in Th1 creation, which is differentiated
from CD4+ and CD8+ T-lymphocytes and plays a vital role
against the formation of pathogens, and tumorigenesis (37).
Correspondingly, the M2 macrophages subtype has surface
membrane markers such as Arg-1, CD163, Fizz-1, scavenger
receptor (SR) and mannose receptor (MR) to facilitate the
releases of the chemokines like CCL13, CCL14, CCL17,
CCL18, or cytokines like TGFb, IL-10 (38, 39). Such signals
will drive the decrease of inducible nitric oxide synthase (iNOS)
and the increase of arginase-1 (Arg-1), which could break the
Arginine metabolism’s balance, or lead to nitric oxide (NO)
creation (40, 41). Differently to the M1 subtype, M2
macrophages benefit revascularization, tissue remodeling and
wound healing (42–44). Interestingly, the IS-mediated
polarization of microglial cells is also stimulated and reversibly
differentiated from M2 subtype polarization to M1 (45). Unlike
M1 and M2 macrophage polarization, the M1 microglial cells
subtype could deteriorate the IS-mediated area of the brain
injury, and even damage the central nervous system (46).
Those hints are all manifested that the polarization in either
macrophage or microglial cells should play completely opposite
roles to the IS triggered intestinal lesions.
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This review summarizes the involvement of IS in the immune
signal exchange from the axis of the gut to the brain, as well as
from the brain to the gut, when under multiple intestinal lesions.
We screened all the potential independent or overlapping targets
for IS, as well as each of the intestinal complications, through a
target interaction network based on the STRING, TCMSP, Swiss
Target Prediction, SEA, GeneCards, DrugBank and DisGeNet
databases (Figure 2 and Supplementary Material). After that,
we selected all the cellular immune signal targets with significant
differences from the patients suffered with IS, including
chemokines, cytokines, interleukins, interferons, neuro-
immune and hormone-immune factors. It is worth to mention
that those of them are also correlated to the events of T-
lymphocytes differentiation, macrophage or microglial cells
polarization. Following this, we then established four cluster
panels to indicate their inner connections through the Software
Cytoscape Version 3.6.0 (Figure 3). This data and the recent
reports were gathered together to highlight the rationales behind
such immunotherapeutic regulations. Such of that may provide
cure strategies for how to prevent IS-induced gut complications,
as well as facilitate medicinal developments for these diseases.
IMMUNE SIGNAL EXCHANGE
BETWEEN IS AND MEDIATED GUT
MICROBIOTA DYSBIOSIS (GMD)

The presence of gut microbiota dysbiosis (GMD) will further
break the immune system’s balance and stability by leading to a
declining biosynthesis of gdT lymphocytes, which directly
impairs the regulatory T-lymphocyte differentiation even the
neurological functions and infarct size in IS (47, 48). It is worth
mentioning that IL-17 secreted from gdT lymphocytes plays a
FIGURE 2 | The Venn diagram for all the potential targets correlated to IS and GMD, IBD, NEC, CRC respectively. The numbers in each diagram represent the
quantification statistics of the potential target numbers for IS and other lesions. All the data has come from the multiple databases of STRING, TCMSP, Swiss Target
Prediction, SEA, GeneCards, DrugBank and DisGeNet and has been reproduced using Microsoft Software.
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crucial role in such an intervention procedure (49). Recent
reports demonstrated that IS-induced GMD gave rise to the
migration of T-lymphocytes from the Peyer patches, or intestinal
lamina propria, to the brain leptomeninges, and then stimulated
the augmentation of gdT lymphocytes in these regions of the
brain (47). However, the accumulated gdT could discharge more
IL-17 secretions and deteriorate brain injuries (50). Besides,
Singh and colleagues transplanted the feces from the mice
suffering with IS into the germ-free mice with the same
disease. Then, they realized either IFN-g or IL-17 surged in
both of Th1 and Th17 cells during mice brain injuries (48). Also,
they found that bacterial colonization reduced the stroke
volumes in the colonized ex-germfree and specific pathogen-
free (SPF) mice, when compared to germfree ones, meanwhile it
increased the cerebral cytokines expression, such as IL-1b, TNF-
a, IL-10, IL-17, as well as the microglia or macrophage numbers
(51). Reversely, removing IL-17 leads to a provision of blood and
oxygen for the brain’s recovery, IS symptom alleviation and
GMD rebalance, also it activates the body’s defense function (52,
53). For example, constraining the T-lymphocyte differentiation
to an excessive release of gdT and IL-17 in the mesenteric
dendritic cells would restore GMD and begin to promote the
accumulation of CD4+ T lymphocytes (Th17), thereby holding
back the immigration of gdT lymphocytes from the gut to the
region of the brain’s injuries (54, 55).
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Except from the specific interleukin, some exogenous
compounds metabolized by gut microbiota also correlate to gdT
boosting under IS. For example, lactulose alters the composition of
gut microbiota and contributes to the number of Foxp3+ Treg cells
that markedly drop off. Those phenotypes are also responsible for
the proliferation of T-lymphocytes through secreting IL-6, IL-17,
IL10 and TNF-a cytokines and then up-regulating the short-chain
fatty acids (SCFAs), which contain acetate, propionate and butyrate,
in the intestine or serum (56). Some scientists also noticed that gut
microbiota-mediated SCFAs synthesis can perform an immune-
modulating effect on the microglia cells-induced synaptic plasticity
recovery after the generation of IS, as well as evoke the secretion of
IL-10 from T-lymphocytes-differentiated Th1 cells in the gut (57,
58). The abnormal synthesis of such fatty acids driven by IS
promotes the creation of GMD and gdT and then revitalizes
inflammation spreading (59). Besides, administering a single-
course of amoxicillin to the mice may severely disrupt the gut
microbiota’s components, enrich the pathobionts of Klebsiella and
Escherichia-Shigella but dramatically delete the prebiotics of
Bifidobacterium and Lactobacillus (60). Moreover, amoxicillin
retards the accumulation of Treg, but facilitates the differentiation
of T-lymphocytes with helper Th1 in the gut (61). Further study has
also revealed that amoxicillin can be used to antagonize the Varicella
Zoster or Syphilis virus, following with recovering the homeostasis
of cerebrospinal fluid circulation in the brain (62, 63). All the
A B

DC

FIGURE 3 | Interaction networks for the selected cellular immune signals from overlapping targets. These are those that have been identified from the overlapping
results of the Venn diagram statistics in (A) IS-GMD, (B) IS-IBD, (C) IS-NEC, (D) IS-CRC group to correlate with T-lymphocytes differentiation or macrophage and
microglial cells polarization. The node from each pane represents a selected target and the gray line reflects the interaction with each group. All the data has been
reproduced through Cytoscape Version 3.6.0. software.
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evidence implies that the compromising of the GMD by amoxicillin
is related to the immune signal circulations from the gut to
the brain.

Some growth and neurotrophic factors such as the nerve growth
factor (NGF), fibroblast growth factor (FGF), glial cell-derived
neurotrophic factor (GDNF) or brain-derived neurotrophic factor
(BDNF), can also take part in IS-induced immune signal exchanges
and migration (64–66). By coordinating with other interleukins,
interferons, chemokines or cytokines, BDNF can participate in the
microglial cells’ polarization-induced immune signal exchange
through the brain-gut axis, while also breaking the gut
microbiota’s balance and setting up a responsibility for the
creation of GMD (67). Downregulation of FGF, GDNF and their
receptors during the initiation of IS connects with theM1microglial
cells subtype. This is followed by high volume IL-23 secretions to
reverse the outgrowth of phosphatidylinositol 3-kinase (PI3K) and
cAMP-response element binding protein (CREB) pathways. It is
done while GMD is facilitated through augmentations of NF-kB,
GSK-3b, TGF-b-mediated Smad2/3 and p38 MAPK signals (68,
69). In reverse, as an interplay communication, some pro-
inflammatory cytokines such as IL-6 and TNF-a have high levels
in the spinal cord, which when under GMD conditions, can
accelerate the release of growth-associated protein 43 (GAP-43),
neurotrophin-3 (NT-3) and BDNF from the brain neurocytes, and
then modulate the axonal plasticity to spontaneously attenuate the
IS-derived brain injuries (70). Similarly, the lipopolysaccharide
(LPS) induced inflammatory formation impacts the constitution
of the gut microbiota in aggravating GMD. This thus contributes to
the discharging of BDNF from the gut’s microglial cells, followed by
an increase in multiple IS inactivation cytokines excreted from
astrocytes, such as CCL2, IL-15, IL-17, IL-10 and TGF-b (71–76).
Interestingly, GMD-mediated abnormal synthesis of SCFAs can
ameliorate microglia cells transition, intervene in the immune signal
transmission induced by IS and has been confirmed to activate the
pathway of BDNF-TrkB and exert neurogenesis (77, 78). This
implies that interleukins, endogenous compounds and
neurotrophic factors all influence the immune responses in either
the brain or the gut.
INFLAMMATORY BOWEL DISEASE
(IBD)-INDUCED IMMUNE SIGNAL
EXCHANGE TO IS

As a severe gut disorder, inflammatory bowel disease (IBD)
is characterized by a recurrent and chronic gastrointestinal
inflammation and it is divided into three subtypes including
ulcerative colitis, Crohn’s disease and indeterminate colitis (79).
The majority of clues lead to the fact that IBD initiation can be
found in multiple variations for the gut and relative symptoms, such
as gut permeability, microbiota colonization enlargement, bacteria
translocation and hypothalamic-pituitary-adrenal axis response
elimination (80). Out of all the IBD-induced gut variations, the
immune response activation in gut mucosal cells is the most
versatile one in triggering T-lymphocyte differentiation
and transformation into helper Th1, Th2, Th17 or regulatory
Tregs (81). However, only the other stress-mediated Th2 and
Frontiers in Immunology | www.frontiersin.org 5
Treg from M2 macrophages could be responsible for IBD
alleviation (82). Proinflammatory Th1 and Th17 polarization,
stimulation and macrophage infiltration in the gut antagonize the
immunopathology of IBD (83). Similarly, T-cells’ differentiations
between Th1 and Th17 expedite IS development (84), which implies
that restricting such a procedure may be beneficial to either IS or
IBD patients. Moreover, the migration of CX3CR1+ CD28- CD4+ T-
lymphocytes reflecting as a Th1 phenotype localized in the brain
leptomeninges enhances IS-mediated IBD by increasing the
production of multiple chemokines and the local infiltrations of
cytotoxic immune cells (85). All of this elucidates the T-
lymphocytes’ activities including migration, differentiation, and in
particular, the polarization-triggered immune signal transmission
that can influence the IS-derived onset of IBD.

Some pathogen-associated molecular patterns (PAMPs), which
are associated to the pattern recognition receptors (PRRs) that
mediate immune signal release and communication, are also
responsible for GMD-induced IBD, and are verified to have
intersections with an IS-origin (86). Current reports show that
Toll-like receptors (TLRs) from PAMPs modulated the
susceptibility and permeability of IBD were further able to
participate in the GMD and immune signal exchange (87). The
distributions of the TLR subtypes are found in multiple types of
human cellular surface membranes, such as intestinal epithelial cells
(IECs), macrophages, dendritic cells (DCs), mast cells, lymphocyte,
neutrophils and CNS enteric glial cells (EGCs) (88–91). Therefore,
studies demonstrated that microbial component variation in the gut
can regulate TLR5, trigger an increase in the T-lymphocytes
transformation and even cut-off the interferons and inflammation
factors, including those of IL-1b, IL-6, IL-8 and TNF-a (92). One of
the subtypes, TLR2, is now confirmed to be concerned with GMD-
mediated aberrant immune responses, and taking that out of
animals can assuage the dextran sulphate sodium salt (DSS)-
induced colitis (93). Similarly, when comparing the mice,
scientists found that relative to the IBD-mediated GMD group,
TLR4 knockout mice displayed more neuroinflammation and
gastrointestinal disturbances (93, 94). In addition, some other vital
genes also involved in the aberrant immune response to GMD in
IBD patients, such as nucleotide-binding oligomerization domain-
containing-2 (NOD2), Caspase-recruitment domain 15 (CARD15),
immunity-related GTPase M (IRGM), autophagy-related 16-like 1
(ATG16L1) (95). These independently take part in the processing of
innate human immune responses and coordinate with vital
pathways to modulate the extent of IS through proinflammatory
Th1/Th17 polarization or macrophage infiltration (96–98). These
perform a central role in immune signal amplification and
transmission during the pathogenesis of IBD.
NECROTIZING ENTEROCOLITIS
(NEC)-MEDIATED IMMUNE SIGNAL
EXCHANGE TO IS

As one of the most devastating intestinal lesions, necrotizing
enterocolitis (NEC) affects 5–10% infants, or 2-5% of all preterm
neonates, however its clinical treatment in neonatology still remains
April 2022 | Volume 13 | Article 688619
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unclear (99). The overall mortality rate approaches 100% in infants
suffering from NEC, along with other congenital fundamental
diseases such as intestinal perforation, peritonitis and so on (100).
It was once considered to primarily originate from ischemic
mucosal injury from the immature gut of a preterm, but now
theories on its cause have turned to some major antenatal or
postnatal risk factors. These primarily include chorioamnionitis
and maternal antibiotics abuse (101, 102). Correspondingly,
postnatal risk factors include gut motility and enzymatic function
reverse, hemostasis of immune system disorder, mucus production
and composition alteration, defense stress, intestinal hypoxia-
ischemia-reperfusion activation, and normal neonatal gut
colonization intervention (103). NEC-induced GMD is a common
feature in these patients (104). For example, insufficient
colonization by Firmicutes and Proteobacteria in preterm babies
is attributed to immune tolerance inactivation and provoking an
overwhelming intestinal inflammation reaction followed by NEC
(105). Successive studies have also shown that during the
development of NEC, a significant alteration existed in each fecal
microbiota colonization of Klebsiella, Tatumella, Citrobacter and
Sphingomonas spp. Under such conditions, the enterococcal
microbe of the depletion of the gut’s microbiota will also be
determined (106, 107).

Manifestations have demonstrated that the initiation of IS is
tightly connected to NEC, and then it is noticeably responsible for
its development. Some tools such as remote ischemic conditioning
(RIC), can be used to prevent single intestinal injuries (18). Under
such conditions, the polarization and anti-inflammation of the
macrophage have been activated (108). Currently, the counting
number ratio of M1/M2 subtypes of polarized macrophage has
been unanimously approved as an important determination index
and is used for measuring and verifying a patient’s degree of NEC
(109, 110). During such a procedure, multiple immune signals are
stimulated to play the repairing role for NEC. For instance,
through intraperitoneal injections of Gr-1 antibodies combined
with carrageenan with significantly depleted polymorphonuclear
leukocytes (PMNs) and macrophage in the NEC mice model
induced by cronobacter sakazakii (CS), led scientists to realize that
the cytokines including IL-1b, IL-12, IL-6, TNF-a, iNOS were all
up-regulated, the apoptosis of vascular epithelial cells significantly
surged, and those with variations could exacerbate NEC-mediated
intestinal lesions (111). Anand and colleagues explored how extra
IFN-g can activate the function performance of macrophages by
inhibiting the phosphorylation of connexin, while Cx43 in
enterocytes can then turn down the intercellular junctions and
migration ability. Therefore, such interferon will alleviate the risks
for macrophage M1 subtype transformation and prevent the
pathogenesis of NEC (112, 113). Halpern and colleagues
elucidated how rat milk substitute (RMS), asphyxia and cold
stress can induce the creation of NEC in newborn rats. They
also investigated how IFN-g secretion-boosting triggered the
aggregation of cytokine IL-18 and IL-12-positive monocytes or
macrophages (IL-12 is the marker of M1 macrophage subtype)
(114). Taken together, these findings imply that IFN-g could be
vital for macrophage polarization and M1 subtype creation during
the early onset of NEC.
Frontiers in Immunology | www.frontiersin.org 6
IMMUNE SIGNAL EXCHANGE BETWEEN
COLORECTAL CARCINOMA (CRC) AND IS

Colorectal carcinoma (CRC) is one of the most common
malignant carcinomas in a human being’s digestive tract and
has major repercussions on the efficacy of immunotherapy.
Ranking third in terms of incidence and second in its worldwide
mortality rate, the surging number of CRC patients is now counted
at 1.8 million new cases and 881,000 deaths in 2018 alone, and it is
predicted to increase to 2.2 million new cases and 1.1 million
deaths worldwide by 2030 (115, 116). Patients with IS may have a
higher risk of suffering from CRC (117). Both IS and CRC share
the same complications, including atrial fibrillation (AF), arterial
thromboembolism, hypercoagulability induced by elevated carotid
endarterectomy (CEA) and cardiovascular disease (CVD), which
fully illustrates the tight physiological connection between each of
them (19, 118, 119). On the other hand, GMD, which broke the
immune hemostasis, is also considered responsible for the
initiation and development of CRC (120). Some species such as
Enterococcus faecalis, Clostridium septicum, Bacteroides fragilis,
Helicobacter pylori, Streptococcus bovis, Escherichia coli and
Fusobacterium spp. are supposedly vital in the pathogenesis of
colorectal tumor growth and metastasis (121). Recent report
referred, 13 out of the 18 genera microbiota, such as
Streptococcus, experienced a significant boost in the normal
colorectal tissues when compared to the carcinoma ones (122).
Furthermore, mutating the adenomatous polyposis coli (APC)
tumor-suppressor gene in the C57BL/6J mice destroyed the
diversity of the gut microbiota and spontaneously developed
intestinal tumorigenesis (123). Further studies also demonstrated
that as the key metabolites, overcharging of the SCFAs modulated
T-cell differentiation, and in addition, not only did it deteriorate
the creation of IS-induced dysbacteriosis but it was also
responsible for the tumorigenesis of CRC (124–126). By
suppressing the creation and release of inflammatory factors,
such an aberrant phenotype will barricade the proliferation of
the effector CD4+ T-lymphocytes, while also breaking the
intestinal immune homeostasis (127). Among all the ingredients
of SCFAs, butyrate and propionate are correlated to the
extrathymic generation of colitis and functional differentiation
and proliferation elimination of regulatory T-lymphocytes (128–
130). Moreover, both of them can influence the modulation of the
gut’s macrophages polarization by suppressing the histone
deacetylase which thereby drives the tolerance increase for
intestinal dysbacteriosis (131). Accordingly, GMD-induced CRC
impairs the gut-brain signal circulation and mainly dominates
through endogenous substances, metabolites and substitutions.

During the commencement of IS, the majority of
immunosuppressive molecules such as the immune checkpoint
receptor of programmed cell death 1 (PD-1) or programmed cell
death ligand 1 (PD-L1) are stimulated and activated to prevent
inflammatory generations such as the arterial wall damage by
vasculitis or the mediated multiple immune responses (132).
Reversely, PD-L1 deficiency amplifies the infarct sizes and
deteriorates neurological deficits in the MACO C57BL/6 mice,
and then promotes the polarization of macrophages or microglial
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cells (133). High volumes of IFN-g conversely stimulate the up-
regulation of PD-L1 and then mediate the multiple immune
suppression for IS correlative cytokines or signal amplification
pathways, such as PI3K/AKT and JAK/STAT3, to attenuate the
anti-tumor immune positive responses (134, 135). Accordingly, PD-
1 or the ligand PD-L1 is crucial for either IS or the tumorigenesis
procedure of CRC (136, 137). In the early stages of CRC,
characterized mismatch repair-deficient (dMMR) and
microsatellite instability (MSI) have a relatively high level of
CD8+ cytotoxic T-cells as well as PD-1/PD-L1 expression (138,
139). Further reports demonstrated that PD-1/PD-L1 can regulate
the Th9 tumor-infiltrating lymphocytes (TILs) in CRC and drive
the CD8+ T-cell expansion but not CD4+ T-cell (140). Interestingly,
CD163+ M2 macrophages accumulation significantly increased in
the cerebral infarction area of those patients suffering with IS (141).
To strengthen the augment, PD-L1 was found to be expressed on
tumor cells or CD68+/CD163+ M2 tumor-associated macrophages
in MSI CRC patients and was attributed to tumor invasion
extension and immune escape (142). Since polarized macrophages
can be infiltrated from the brain to the gut with CD4+ T-lymphocyte
(143), it may be possible that PD-L1 is also involved with such a
macrophage transformation. Further investigations are necessary in
order to research whether the activation of PD-1 and PD-L1 under
CRC induces the polarizations of macrophages or whether
microglial cells can transmit the immune signals back to the
brain. Once this is elucidated, we may be able to completely
understand the integral picture on how to intervene with CRC or
IS through PD-1 or PD-L1 blockers.
CONCLUSION AND
FUTURE PERSPECTIVE

As one of the major lethal diseases in the world, scientists are
primarily focusing on IS’ pathogenesis mechanisms but
overlooking the potential complications, especially potential
lesions in the gut, such as GMD, IBD, NEC and CRC.
Through the brain-gut circulation, IS-induced signal exchanges
coordinate with events including the activation of the
neurohormone secretion, immunosignal release, lymphocyte
differentiation, and even the oncogene resuscitation. It is worth
mentioning that these major intestinal lesions accompanied with
IS should be independent and mutually reflected in one or more
complications. Recent reports reflected that the mice accepted
the fecal transplants from higher stroke-associated dysbiosis
patterns and that patients could suffer from severe brain
injuries when accelerating the IL-17+ gd T-cell creation in their
guts (144). Relatively, the increase in expression of IL-17+ gd T-
lymphocytes are certified as the main elements that induce IBD,
NEC and CRC (145–147). Accordingly, analyzing the functional
alterations for specific gut microbiota colonization would be
helpful to understand which species of flora are the most
probably related to such phenomena.

The secreted interleukins from the aberrant differentiations or
polarizations of T-lymphocytes, as well as the macrophages or
microglial cells, form up the major communication signals for
Frontiers in Immunology | www.frontiersin.org 7
IS-derived intestinal complications. For example, the majority of
reports implied that IL-6 was the most vital biomarker in IBD or
NEC initiation (148, 149). Coincidentally, this interleukin is also
the predictive biomarker for infections associated with strokes,
and those situations could significantly increase its secretion (150).
Moreover, IFN-g could be another predominant transmissive
immune signal related to gut complications and IS. Following IS
deterioration, there is a boost in IFN-g secretions (151). More IFN-
g triggers the generation of Th1 and Th17, which in parallel will
stimulate PD-L1 recruitment and the JAK/STAT pathway, that in
turn is relative and conducive to a CRC prognosis (152, 153).
Further study still needs to be carried out in order to verify
whether eliminating IFN-g production could alleviate IS or CRC,
or even reverse T-lymphocyte polarization.

In summary, this review illustrates cellular immunity-induced
signal exchanges from IS-derived brain-to-gut complications
including GMD, IBD, NEC and CRC. Some important cytokines
and interleukins could become the primary therapeutic targets used
to intervene in these complications, though basic scientific studies
and clinical trials still need to be performed to verify the inner
rationales of their roles in IS. The synergistic interaction between IS
and intestinal complications would be particularly valuable for the
efforts to modulate immunity for therapeutic purposes, as well as to
advance stroke therapy to the next level.
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