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Abstract 

Background:  Individual behavioural decisions are responses to a person’s perceived social norms that could be 
shaped by both their physical and social environment. In the context of the COVID-19 pandemic, these environments 
correspond to epidemiological risk from contacts and the social construction of risk by communication within net-
works of friends. Understanding the circumstances under which the influence of these different social networks can 
promote the acceptance of non-pharmaceutical interventions and consequently the adoption of protective behav-
iours is critical for guiding useful, practical public health messaging.

Methods:  We explore how information from both physical contact and social communication layers of a multiplex 
network can contribute to flattening the epidemic curve in a community. Connections in the physical contact layer 
represent opportunities for transmission, while connections in the communication layer represent social interactions 
through which individuals may gain information, e.g. messaging friends.

Results:  We show that maintaining focus on awareness of risk among each individual’s physical contacts promotes 
the greatest reduction in disease spread, but only when an individual is aware of the symptoms of a non-trivial pro-
portion of their physical contacts (~ ≥ 20%). Information from the social communication layer without was less useful 
when these connections matched less well with physical contacts and contributed little in combination with accurate 
information from physical contacts.

Conclusions:  We conclude that maintaining social focus on local outbreak status will allow individuals to structure 
their perceived social norms appropriately and respond more rapidly when risk increases. Finding ways to relay accu-
rate local information from trusted community leaders could improve mitigation even where more intrusive/costly 
strategies, such as contact-tracing, are not possible.
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Background
Our current best public health recommendations for mit-
igation of the COVID-19 pandemic rely on using behav-
ioural interventions such as social distancing and mask 
wearing, and behaviourally driven acceptance of vaccines 
(where available) to curtail transmission of infection. The 
success of these policies requires widespread adherence 
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to achieve epidemic control; as with herd immunity, 
threshold effects in efficacy mean that gaps in adop-
tion can quickly compromise any benefits [1, 2]. There-
fore, identifying how the adoption of these behaviours is 
shaped over the course of an epidemic is a key challenge 
in designing effective mitigation strategies [3–6].

Adherence, however, relies on individual behavioural 
choices and so can be complicated to understand and 
predict [3, 7]. Well-established theory from psychology 
acknowledges that the factors influencing whether or not 
people take action are complicated [8, 9]. Many theories 
of behaviour and behaviour change have been applied to 
understanding health behaviour [10]. One of the domi-
nant theories (the theory of planned behaviour [11]), 
posits that action is an outcome of interaction between 
an individual’s attitudes and beliefs, their perception of 
social norms regarding that behaviour, and their percep-
tion of their own behavioural control over their actions 
(alternative theories of behaviour, such as Value-Belief-
Norm theory [12] also posit similar influences, though in 
different relation to each other). In the case of COVID-
19, adoption of and adherence to behavioural interven-
tions are therefore likely to be predicated on perception 
of two main features: a) individual attitudes and beliefs 
about personal risk of infection and its consequences 
[13], and b) the social norms around adherence in the 
individual’s community [14]. Over time the changing atti-
tudes and beliefs within each person’s network will drive 
complex, non-linear dynamics in population-level behav-
iours [15–17].

An individual’s perception of these features is shaped 
by communication within their network of friends, 
neighbours, and community leaders [18, 19]. Most likely, 
the network of a person’s close physical contacts, through 
which they risk infection, differs from their regular com-
munication network (in person and online) of people 
who contribute to their attitudes and beliefs surrounding 
preventative behaviours, and from whom they are likely 
to estimate the social norms of their community. These 
distinct networks underlie a disconnect between some-
one’s perception of their risk versus their actual risk. 
On one hand, an individual’s communication network 
could provide early warning of encroaching exposure 
risks derived from the spread of awareness ahead of the 
infection itself [20, 21]. On the other hand, the mismatch 
between the communication and infection networks 
may mean that an individual could underestimate their 
risk (e.g., communication networks are likely to be more 
sparsely connected than networks of infection-relevant 
contacts in populations that are not socially distancing). 
Despite this, we still understand relatively little about 
the potential implications of acquiring information from 
these two different sets of contacts.

The dynamics triggered by the spread of awareness 
through the population are further complicated by 
the timescales of observable risk due to the etiology of 
COVID-19. The latency in the development of symptoms 
and the capacity for presymptomatic, or even asympto-
matic, transmission make estimation of real-time risk 
by surveillance complicated, even without considering 
different sources of information [22]. In terms of under-
standing disease prevalence, the relative reliance of indi-
viduals in shaping their beliefs, and thus their actions, on 
their own direct observation of health among their daily 
physical contact network may have an effect that is dis-
tinct from that of their (potentially more geographically 
distant) communication network. The balance of these 
distinct network effects may therefore be the critical 
feature in determining the success of behavioural public 
health measures to combat COVID-19.

Multiplex networks have commonly been used to 
quantify complex patterns of social relationships in 
human societies, including the incorporation of off- and 
online social ties [23–26]. Multiplex networks treat dif-
ferent sets of interactions as separate layers within a mul-
tilayer network object (Fig.  1). Intra-layer edges reflect 
different types of interaction (e.g. close contact, online 
communication etc.) and inter-layer edges can only con-
nect the same individual in different layers [27]. Individu-
als can be connected in any number of layers, allowing 
sets of connections to overlap. By considering multiple, 
dependent sets of social connections multiplex networks 
have proved a valuable tool in epidemiological model-
ling [28–30]. We employ a theoretical multiplex network 
model, implemented stochastically, to test the relative 
adoption of behavioural interventions in populations of 
individuals who rely on a) their communication network 
layer only (henceforth referred to as simply the “commu-
nication layer”), b) their physical contact network layer 
only (henceforth referred to as the “infection layer”), 
and c) both layers simultaneously to inform their under-
standing of COVID-19, and therefore their individual 
adherence to protective behaviours such as mask wear-
ing or social distancing. We further consider the influ-
ence of structure in both layers of the network and how 
that structure might impact the behaviour of populations 
as they rely on perceptions constructed from contacts 
in those layers. Geographic and social heterogeneity in 
contact structure are modelled using different levels of 
modularity (i.e. differences in local versus global density 
of contacts; see Methods). We also consider the potential 
impact homophily based upon predisposition (defined 
here to be a characteristic or belief that may influence 
the tendency of individuals to be socially connected) in 
either the communication or both layers of the network. 
While not exhaustive, these studies offer insight into how 
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communities can reinforce the types of informational 
access that foster protective behavioural decision making 
among their members.

Methods
Overview
We used stochastic, theoretical models to test how the 
awareness of symptomatic neighbours in either a) the 
set of people that a person who communicates with on 
a regular basis (their communication layer), b) the set of 
people that a person is in close proximity to (their infec-
tion layer), or c) both of these sets of contacts can impact 
epidemic spread of an infection with COVID-19 like 
dynamics. We simulated realistic (but not data-driven), 
multiplex social networks for our populations that cou-
pled a layer of infection-relevant contacts through which 
the epidemic was simulated and a communication layer 
through which concern about the disease could simul-
taneously spread (see Fig.  1). All modelling was con-
ducted in R3.6.1 [31] and the code used is provided on 
GitHub (https://​github.​com/​matth​ewsilk/​Coupl​edDyn​
amics2_​layer​use). The general modelling framework was 
the same as that used by Silk et al. [15] and is addition-
ally described in that paper and in the Supplementary 
Material.

Population generation
We generated populations of 2000 individuals (a balance 
between minimising stochasticity in early epidemic out-
comes and computational efficiency), which consisted 
of children (24%), young adults (63%) and older adults 
(13%). Age classes could differ in the social connections, 

epidemiological outcomes and concern about the disease 
(as detailed below). Individuals also had one of two base-
line predispositions and homophily by predisposition 
impacted patterns of social connections (in either or both 
layers of the multiplex network).

Social network generation
We used the same 9 multiplex social networks as detailed 
in Silk et al. [15]. These were coupled, multiplex networks 
that connected all individuals within a communication 
layer that influenced the spread of concern about the 
disease and an infection layer that influenced the trans-
mission of the pathogen itself (Fig.  1). A full descrip-
tion of the algorithm used to generate these networks is 
provided in the Supplementary Material. For this study, 
global edge densities were always higher in the infection 
layer than in the communication layer. The network con-
tained either a) no homophily in either layer, b) homo-
phily in the communication layer, or c) homophily in 
both layers. Community structure was introduced using 
a re-wiring algorithm (as detailed in the Supplementary 
Material): either the relative modularity of both layers 
was set to 0.4, both to 0.6, or the infection layer was set 
to 0.6 and the communication layer to 0.4. Each child 
was assigned two parents from the same predisposi-
tion and community. If children shared one parent they 
also shared the other but parents could be connected or 
unconnected. Each young adult formed connections with 
a number of older adults of the same predisposition (rep-
resenting older relatives, friends or community mem-
bers) as detailed in the Supplementary Material. Children 
shared the same connections to older adults as their 

Fig. 1  Illustration of part of a multiplex network from our coupled behavioural-epidemiological models. Multiplex networks enable the 
representation of distinct, but potentially overlapping, types of social interactions between the same set of individuals. Here we show the 
communication layer (top) and infection layer (bottom) from one community (200 of 2000 nodes) within one of our nine multiplex networks. We 
illustrate the first community from the multiplex network with a relative modularity of 0.6 in both layers and no homophily in either layer

https://github.com/matthewsilk/CoupledDynamics2_layeruse
https://github.com/matthewsilk/CoupledDynamics2_layeruse
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parents. When the multiplex network was constructed 
we re-assigned parents from the infection layer to match 
those in the communication layer. Child-older adult con-
nections were re-assigned accordingly.

Concern model
We used the same concern model as Silk et al. [15]. Con-
cern about the disease was modelled as a complex con-
tagion [32] through the communication layer. Whether 
an individual was adherent to mitigation measures or not 
(a binary trait) was based on a Bernoulli draw in which 
the probability of adherence depended on an underlying 
trait continuous we term concern. While this simplifying 
assumption is reasonable for a suite of overlapping pro-
tective behaviours, individuals can vary in their adher-
ence to different protective behaviours in reality [33–35]. 
As a result, individuals could fluctuate between adherent 
or non-adherent states and this was more likely if they 
had intermediate values of concern. Concern could be 
influenced by a) Social Construction (becoming more 
concerned if neighbours in the communication layer 
were adherent), b) Reassurance (becoming less con-
cerned if all neighbours in the communication layer were 
perceived to be healthy (i.e. symptom free) and c) Aware-
ness (becoming more concerned if network neighbours 
were symptomatic). For this study the information gained 
for Awareness could be gained from either the commu-
nication layer, the infection layer or both layers. Because 
an individual is unlikely to find out about the status of 
every individual in their infection layer, we conducted 
additional simulations in which there was imperfect 
detection of symptomatic contacts in the infection layer 
(probability of detection: 0.5, 0.2 and 0.05). We tested 10 
values for the strength of the Awareness Effect per day 
per symptomatic network connection (0, 0.1, 0.2, 0.4, 0.6, 
0.8, 1, 1.2, 1.4 and 1.6). Values of the Social Construction 
Effect and Reassurance Effect were drawn from uniform 
distributions (between 0 and 0.5 and between − 0.1 and 
0 respectively). We selected these parameter values based 
on our previous model [15]. The concern of children was 
not modelled. They were assigned as adherent if either or 
both of their parents were concerned.

Each time an individual became adherent they cut con-
nections to a negligible edge weight with a 50% prob-
ability ( [36]; see Supplementary Material) within the 
infection layer while maintaining their connectivity in 
the communication layer. If an individual became non-
adherent then these edge weights returned to their full 
weight.

Infectious disease model
Our infectious disease model is a very similar stochastic 
network model to that described in Silk et al. [15] with 

etiological parameter values adapted from [37, 38] and 
adjusted to match empirical data from the COVID-19 
pandemic. Briefly, we adjusted the transmission prob-
ability so that, in the absence of behavioural change, 
approximately 80% of our population would be infected 
by the epidemic, and set daily probabilities of hospitali-
sation and death so that outcomes in our model closely 
approximated those seen during the pandemic (see 15 
for further details). The model contains susceptible (S), 
exposed (E), pre- or mildly symptomatic (I1), symp-
tomatic (I2), hospitalised (I3), recovered (R) and dead 
(D) compartments. Parameter values are provided in 
Table S1 and details of the algorithm used are provided 
in the Supplementary Material. The transition from S 
to E depended on the number of contacts a suscepti-
ble individual had with infected individuals (I1, I2, I3) 
with a pre-defined probability of transmission per con-
tact (see Table S1). Ill (I2) and hospitalised (I3) individ-
uals cut all their connections in the infection layer to 
0.001, meaning that individuals are only likely to spread 
infection when in compartment I1. The length of time 
individuals spent in the compartments E, I1, I2 and I3 
was drawn from a Poisson distribution with means pro-
vided in Table  S1. Individuals in the I2 compartment 
has a daily probability of transitioning to I3 which was 
dependent on their age (see Supplementary Material). 
Individuals in I3 had an age-dependent daily probabil-
ity of dying (see Supplementary Material).

Simulations
For this paper we conducted simulations for the nine 
multiplex networks described (with different combina-
tions of homophily by predisposition and modularity), 
for 50 values of the Social Construction and Reassur-
ance Effects (paired draws from independent uniform 
distributions) and 10 values of the Awareness Effect. 
We then conducted simulations in which the Awareness 
Effect (observational learning of symptomatic infection) 
applied to a) contacts in the communication layers, b) 
contacts in the infection layer and c) contacts from both 
layers combined. For scenario b) we repeated the full set 
of simulations with 0.5, 0.2 and 0.05 probability of symp-
tomatic contacts being detected at each day. This resulted 
in a total of 27,000 independent simulation runs. In each 
simulation, individuals were allocated initial values of 
concern whereby 20% of the adult population would be 
expected to be adherent at the start of the simulation. 
For each simulation run we simulated a maximum time 
period of 300 days or stopped simulations when no indi-
viduals were in the E, I1, I2 or I3 compartments. The 
simulation algorithm was similar to that used in Silk et al. 
[15] and is detailed in the Supplementary Material.
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Analysis
To compare between different runs of the simulations 
we quantified the height of the epidemic peak at a pop-
ulation level by aggregating the daily counts of sympto-
matic infections in all 10 communities. This measure of 
the height of the epidemic peak indicated how success-
fully each simulated population managed to “flatten the 
curve” with their adherence to mitigating behaviours 
[4]. We compare epidemic peaks from when individuals 
learned about symptomatic network neighbours from 
different types of social contact while considering val-
ues of the Social Construction and Reassurance Effects. 
To help explain some of the differences between the 
infection and communication layers in their ability to 
“flatten the curve” we also examined the similarity of 
connections in these layers by quantifying the propor-
tion of contacts in each layer that were also present in 
the other for each multiplex network.

Results
When we assume an individual can identify 100% of 
symptomatic contacts, the Awareness Effect is more 
effective in flattening the curve when people respond to 
illness in their infection layer rather than in their com-
munication layer (panels a) versus b) in Figs.  2 and 3). 
When this is the case, even relatively weak Awareness 
Effects can contribute to flattening the curve. Using 
information from the infection layer  alone is nearly as 
effective as using information from both the infection 
and communication layers except when the Awareness 
Effect is very weak (compare panels b) and c) in Figs.  2 
and 3). When social construction is weak there is an 
important difference, regardless of the strength of the 
Reassurance Effect (Fig.  2). When social construction 
is instead strong, it plays an important role in flattening 
the curve except in the case when the Reassurance Effect 
is also strong, meaning that differences caused by the 
source of information for the Awareness Effect are only 

Fig. 2  The relationship between the height of the epidemic peak (i.e. maximum simultaneous number of symptomatic [I2] individuals) and 
strength of the Awareness Effect (unitless; the extent to which individuals become more concerned for each symptomatic network neighbour 
they have; see Supplementary Material) when Social Construction is weak (< 0.3). An individual learns of symptomatic contacts from a) their 
communication layer, b) their infection layer (learning from 100% of contacts) and c) both layers together. The colour of points in panels (a-c) 
indicates the strength of the Reassurance Effect: yellow indicating a strong Reassurance Effect through to purple indicating a weak Reassurance 
Effect. In panel d) we contrast the height of the epidemic peak directly for selected values of the Awareness Effect. Boxes indicate the interquartile 
range, the bold horizontal line the median and the whiskers extend to the full range of the data
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noticeable when this is the case (Fig. 3). Consequently, we 
focus on the case when Social Construction is weak for 
subsequent results.

A second notable difference that arises when people 
respond to prevalence in their infection layer rather than 
the communication layer is that the strength of the Reas-
surance Effect becomes less important. When individu-
als respond to illness in their communication layer, the 
epidemics always have higher peaks with a strong Reas-
surance Effect (also reliant on the communication layer) 
even when the Awareness Effect is strong and the curve 
has been flattened (Fig.  2a). However, when the Aware-
ness Effect is stronger (> 0.6), learning about illness from 
the infection layer or both layers results in similar epi-
demic peaks regardless of the strength of the Reassurance 
Effect (Fig. 2b and c).

When we assume that individuals can partially iden-
tify the symptomatic contacts in their infection layer, 
the mitigating effect is reduced considerably in our net-
works (Fig. 4). When there is a 50% chance of an individ-
ual detecting an ill neighbour in their infection layer, the 
height of the epidemic peak remains lower than when an 
individual gains information on the prevalence of infec-
tion from their communication layer, with the difference 
increasing as the Awareness Effect gets stronger. When 
there is a 20% chance of detection in the infection layer, 
the epidemic peak is marginally higher than when (accu-
rate) information is used from the communication layer 
with a weak Awareness Effect and slightly lower with a 
strong Awareness Effect. When there is a 5% chance of 
detection the mitigating influence of the Awareness 
Effect is very limited indeed and restricted to strong 
Awareness Effects.

Fig. 3  The relationship between the height of the epidemic peak (i.e. maximum simultaneous number of symptomatic [I2] individuals) and 
strength of the Awareness Effect (unitless; the extent to which individuals become more concerned for each symptomatic network neighbour 
they have; see Supplementary Material) when Social Construction is strong (> 0.3). An individual learns of symptomatic contacts from a) their 
communication layer, b) their infection layer (learning from 100% of contacts) and c) both layers together. The colour of points indicates the 
strength of the Reassurance Effect: yellow indicating a strong Reassurance Effect through to purple indicating a weak Reassurance Effect
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Fig. 4  The relationship between the height of the epidemic peak (i.e. maximum simultaneous number of symptomatic [I2] individuals) and 
strength of the Awareness Effect (unitless; the extent to which individuals become more concerned for each symptomatic network neighbour 
they have; see Supplementary Material) when Social Construction is weak (< 0.3). We show the relationship when Awareness is acquired through 
the communication layer (grey) and the infection layer when 100% (blue), 50% (yellow), 20% (orange) and 5% (red) of symptomatic contacts are 
detected each day. Boxes indicate the interquartile range, the bold horizontal line the median and the whiskers extend to the full range of the data

Fig. 5  The relationship between the height of the epidemic peak and how an individual finds out about symptomatic contacts when the 
Social Construction Effect is weak (< 0.3) for an Awareness Effect of 0.1 plotted separately for each of the nine multiplex networks used in the 
study. Networks 1-3 have no homophily in either layer, networks 4-6 have homophily in both layers and networks 7-9 have homophily in the 
communication layer only. In networks 1, 4 and 7 both layers have a relative modularity of 0.4, in networks 2, 5 and 8 both layers have a relative 
modularity of 0.6, and in networks 3, 6 and 9 the relative modularity of the infection layer is 0.6 and the relative modularity of the communication 
layer is 0.4. Plots for other Awareness Effects our qualitatively similar (see Fig. S1)
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The structure of the network was relatively unimpor-
tant in determining the success with which populations 
were able to “flatten the curve” (Fig.  5, Fig. S1). Most 
strikingly, there was a small negative impact on the value 
of information from the communication layer when there 
was homophily only in that layer and not in the infection 
layer (networks 7-9). When this was the case epidemic 
peaks remained higher when individuals acquired infor-
mation on local prevalence from their communication 

layer. This pattern was driven by their being a greater 
mismatch between the two layers when there was only 
homophily in the communication layer; a lower propor-
tion of edges in the infection layer were also present in 
the communication layer (Fig. 6). It is harder, therefore, 
to flatten the curve when key aspects of structure of com-
munication and infection layers are mismatched and 
individuals gain information on illness from their com-
munication layer. Otherwise there were no clear and 

Fig. 6  The proportion of contacts in each layer of the multiplex network that are present in the other layer. Panel a) shows the proportion 
of infection layer contacts also present in the communication layer and panel b) show the proportion of communication layer contacts also 
present in the infection layer. Networks 1-3 have no homophily in either layer, networks 4-6 have homophily in both layers and networks 7-9 have 
homophily in the communication layer only. In networks 1, 4 and 7 both layers have a relative modularity of 0.4, in networks 2, 5 and 8 both layers 
have a relative modularity of 0.6, and in networks 3, 6 and 9 the relative modularity of the infection layer is 0.6 and the relative modularity of the 
communication layer is 0.4
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consistent patterns related to network structure over the 
range of structures tested here. Results were qualitatively 
similar regardless of the strength of the Awareness Effect 
(Fig. S1).

Discussion
Our study helps illustrate that building a perception of 
infection risk using trusted social contacts can drive 
community-level patterns of protective behaviours 
against disease outbreaks, but only plays a substantial 
role when there is limited information available about the 
illness of close physical contacts. Accurate information 
on prevalence in an individual’s likely physical contacts is 
very effective in enabling individuals to construct a reli-
able perception of their risk of infection and so flatten 
the epidemic curve when this leads to behaviour change. 
However, the advantage brought about by an individual’s 
knowledge of the prevalence in their “infection layer” 
declines very rapidly as the accuracy of this information 
deteriorates. Homophily in the network can compro-
mise the ability of communities to respond to the actual 
risk present, especially when it generates mismatches 
between network layers (most strikingly when the alter-
native is accurate information on likely physical con-
tacts). These results have strong, direct implications for 
individuals living in circumstances in which their physi-
cal contacts are likely removed from their social spheres 
of influence. Critically, this pattern reflects large urban 
centres in which individuals may physically contact many 
people using public transportation, or riding elevators 
and moving among offices or apartments in large high-
rise buildings, but are likely instead to rely on a mostly 
separate community of family, faith, or recreational activ-
ities for social community and conversation from which 
they will form their perceptions of risks and norms.

Of course, this main result relies on the low overlap 
between contacts present in both the communication 
and disease layers that shape an individual’s perceptions 
and risks (see Fig. 6). If those layers were instead identi-
cal (as in small, remote rural communities or highly seg-
regated, small, well-mixed communities as exist affiliated 
with some religious groups), then the communication 
layer and infection layer will be equivalent in the infor-
mation they provide, meaning that more information is 
available on local prevalence in an individual’s infection 
layer and so improving the decision-making of individu-
als based on observations of their personal networks.

Our results show that the availability of accurate infor-
mation from an individual’s infection layer is much more 
effective in mitigating disease spread (i.e. “flattening the 
curve”) than using only their communication layer, and 
that when this is the case using information from both 
only performs marginally better than using the infection 

layer alone. However, as the availability of accurate infor-
mation from the infection layer declines, the success of 
mitigation declines very rapidly. In our networks, a > 20% 
chance of detecting each symptomatic neighbour in the 
infection layer is required for mitigation to be more suc-
cessful than when individuals use their communication 
layer alone.

The former result suggests that populations comprised 
of individuals who tend more towards independent risk 
assessment than towards reliance on community leader-
ship may respond better to public health interventions. 
However, the latter result indicates the importance of 
highly accurate information from the infection layer 
at a community level. Therefore, any social norms that 
reduce observability of infection in a local community 
can undercut the efficacy of recommended behavioural 
interventions. This is especially important in shaping 
public messaging since both within group density (i.e. 
modularity) and closeness of beliefs within a community 
(i.e. homophily) can have less of an impact than the infor-
mation on which the members of that community rely 
(Fig.  5). Finding ways to provide people more accurate 
information on infection prevalence among their likely 
contacts becomes even more important if people are 
using this information to gauge their personal risk and 
adjust their behaviour accordingly.

We therefore strongly support the adoption of pub-
lic reports of identified cases in local communities that 
come into regular potential contact with each other. 
While this can be challenging to achieve in many socie-
ties, and requires sensitivity to personal privacy, regular 
announcements/reminders at a city, company, school, 
or neighbourhood level of active disease prevalence 
can potentially provide critical and effective reinforce-
ment for the individual adoption of behaviours that can 
protect everyone. One well-established route to provid-
ing accurate information about contacts in the infection 
layer is through manual or digital contact-tracing. These 
approaches are known to be highly effective in mitigat-
ing COVID-19 outbreaks [39–42], but can be limited 
by resources or by uptake [43, 44]. However, a further 
alternative is to provide accessible, general information 
about potential exposure locations. For example, this has 
formed an integral part of Nova Scotia’s effective public 
health strategy during the current pandemic [45]. It may 
be that when sufficiently publicised (e.g. through conven-
tional and social media), information on exposure loca-
tions is effective through both helping people identify 
their own potential exposures and also helping people 
who didn’t visit these locations build a more complete 
perception of their risk of infection that is not apparent 
through their own social (communication) ties. The latter 
could mean these approaches provide a clear additional 
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benefit to using contact tracing alone where information 
is (necessarily) less publicly available.

Awareness itself is not without complexity. The central-
ized collection and analysis of data at regional or national 
scales involves logistical challenges and can cause delay 
in reporting that information back to the public [46]. It 
is also frequently the case that communities pay more 
attention to, and place greater trust in, local sources of 
information than in more remote sources [47]. Policies 
that focus on community leadership to ensure a local 
focus for awareness helps to address both of these diffi-
culties. Our study highlights the need for leaders of social 
groups to ensure attention is paid to cases of COVID-19 
in their community. Their actions can have a positive 
impact both through providing more accurate informa-
tion on prevalence within an individual’s infection layer 
and by helping to prevent misperceptions of risk through 
mismatched layers in an individual’s social network. 
They are also likely to act as influential others that play 
a disproportionate role in shaping a community’s social 
norms around protective behaviours (e.g. “mavens” [18, 
48–50];). Luckily, this is in keeping with the mission of 
many social groups focused on community support. 
Communities of worship, social action organizations, 
and community volunteer groups have all been active 
participants across the globe in making sure that indi-
viduals who are unwell but not so severely impacted as 
to be hospitalized have access to groceries, medicines, 
and wellness checks. By actively highlighting the need for 
these services within their own community, these actions 
themselves support broader adoption of preventative 
behaviours and thereby not only help individuals already 
affected by COVID-19, but actively decrease the likely 
magnitude of local impacts from the pandemic.

A further complication is provided by other learning 
processes (e.g. the Social Construction and Reassurance 
Effects modelled in our study) that may influence each 
individual’s behaviour. Our model shows the poten-
tial importance of perceived social norms in helping to 
elevate concern and promote adherence with protective 
behaviours. When social construction of concern was 
strong there was a more substantial reduction in epi-
demic peak, even when individuals learned about their 
infection risk from their communication layer. However, 
misperceptions of social norms related to health behav-
iours have been widely documented, and could poten-
tially impact health behaviour [51, 52]. Misperceptions 
about social norms around protective behaviours in the 
context of COVID-19 (or other respiratory pathogens) 
might be expected for various reasons [52]. For example, 
a common protective behaviour is for people to stay at 
home (and reduce social contacts). However, once they 
have adopted these behaviours these adherent citizens 

are less likely to be encountered by others which could 
lead to others underestimating concern in their commu-
nity [52]. Our models also showed that people relaxing 
their concern from having their social ties in the commu-
nication layer healthy impacted the relative value of per-
ceiving infection risk from these same contacts. When 
the Reassurance Effect was stronger, perceiving direct 
risk from the communication layer became less effec-
tive, especially when individuals played close attention to 
social norms. When individuals had accurate information 
from their infection layer instead then the strength of the 
Reassurance Effect was much less important, indicating 
that the types of approaches to provide this information 
discussed above can be important in counteracting ero-
sion in concern over time.

While our model provides valuable insights into the 
influence of how individuals form their perception of risk 
on epidemic dynamics, we (necessarily) make a number 
of simplifying assumptions that are important to take into 
account when interpreting the results. First, we assume 
that individual adherence to protective behaviours is 
binary at any one point in time. In reality, non-pharma-
ceutical interventions consist of a diversity of protective 
behaviours and if individuals vary in their adherence to 
different ones it may complicate these results [33–35]. 
Second, while we generated plausible multiplex networks 
applying these types of modelling approaches will be fur-
ther enhanced by applying them to data-driven network 
structures. Empirical data on human contact networks 
has become available during the current pandemic [53, 
54] but the ability to combine this with information on 
other social ties (i.e. the communication layer) remains 
a major challenge. Third we made a number of assump-
tions about how people perceive their risk of infection, 
respond to information about social norms and what 
causes reductions in concern over time. The availability 
of more empirical data related to protective behaviours 
and behaviour change from the current pandemic (e.g. 
[55–58]) can be used to better develop these components 
of the model and select appropriate theoretical models of 
behaviour change [10].

Conclusions
One of the most fundamental challenges in creating 
effective public health policies is the design of recom-
mendations that will not only achieve theoretical out-
comes but will be adopted by enough of a willing public 
to accomplish those outcomes in the real world. Inte-
grating an understanding of how individual perceptions 
shape behaviours, and how social context itself shapes 
perceptions has become one of the critical stumbling 
points in our local, national, and global response to the 
COVID-19 pandemic. Our results clearly show that local, 
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accurate, rapid, and trusted information can enable bet-
ter emergent behaviours. Thankfully, these paths are 
within the capability of our public health community and 
local community leadership to provide.
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