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Abstract. Brown adipose tissue uncoupling protein 
(UCP), an integral polytopic protein of the mitochon- 
drial inner membrane, is composed of at least six 
transmembrane segments whose net hydrophobic char- 
acter derives from paired amphiphilic helices. The 
protein is synthesized in the cytoplasm as a polypep- 
tide (307 amino acids) lacking a cleavable targeting 
(signal) peptide. Deletion mutagenesis and fusion pro- 
tein constructions revealed the existence of at least two 
import signals: one lying between UCP precursor 
amino acids 13-105 and the other downstream of posi- 
tion 101. The former resulted in both targeting and 
membrane insertion of a fusion protein, whereas the 
latter targeted UCP 102-307 into the organelle but 
failed to result in membrane insertion. When a strong 
matrix-targeting signal derived from precarbamoyl 

phosphate synthetase was fused to UCP amino acids 
169-307 or 52-307 (containing three and five trans- 
membrane domains, respectively), the fusion proteins 
were efficiently imported to the soluble matrix com- 
partment where correct signal cleavage took place. We 
suggest that assembly of UCP into the inner mem- 
brane follows a coordinate insertion pathway for in- 
tegration and may use more than one signal sequence 
to achieve this. In this respect, it might share certain 
mechanistic features with the insertion of polytopic 
proteins into the endoplasmic reticulum. The data also 
suggest, however, that integration of the amino-termi- 
nal third of UCP into the inner membrane may be re- 
quired to help or enhance insertion of the remaining 
UCP transmembrane domains. 

M 
ITOCrIONI~RIAL inner membrane uncoupling pro- 
tein (UCP) ~ is responsible for thermogenesis in 
brown adipose tissue by functioning to return pro- 

tons that have been expelled by the respiratory chain, thus 
circumventing ATP synthase. The uncoupling of respiration 
from ATP synthesis results in production of heat (for a re- 
view. see reference 19). 

UCP shows strong structural similarities to two other inner 
membrane proteins, the ADP/ATP carrier (2, 28) and phos- 
phate carrier (28). All three contain a similar threefold re- 
peat of ,x,100 amino acids. In the case of UCP, physi- 
call-chemical analyses (16) and computer modeling (2, 28) 
predict a protein that is largely buried in the lipid bilayer; the 
amphiphilic character of the transmembrane domains, how- 
ever, suggest that they are stabilized in the membrane by 
paired helical structures (2). Runswick et al. (28) predict six 
transmembrane segments, whereas Aquila et al. (2) suggest 
a similar arrangement, but with an additional 13-strand span- 
ning the bilayer. 

The three proteins are the products of nuclear genes; they 

1. Abbreviations used in this paper: CCCP, carbonyl cyanide m-chloro- 
phenylhydrazone; ER, endoplasmic retieulum; pCPS and CPS, precursor 
and mature carbamyl phosphate synthetase, respectively; pOCT and OCT, 
precursor and mature carbamyl transferase, respectively; UCP, uncoupling 
protein. 

are synthesized in the cytoplasm and subsequently imported 
into mitochondria by a posttranslational mechanism (8, 28, 
29). UCP and the ADP/ATP carrier are made without a tran- 
sient (targeting) signal sequence whereas the precursor to the 
phosphate carrier protein contains an NH2-terminal exten- 
sion of 49 amino acids (28). In the case of yeast ADP/ATP 
carrier protein, topogenic information facilitating import has 
been shown to reside within the amino-terminal one-third (115 
amino acids) of the protein (1), and more recently (26) a dis- 
tal targeting function was identified in the carboxyl-terminal 
two-thirds of the Neurospora crassa homologue. 

Although the mechanism of protein insertion into mito- 
chondrial membranes is not well understood, it may share 
a number of similarities to the analogous process in the en- 
doplasmic reticulum (ER) (5). At least in the case of simple 
bitopic transmembrane proteins, it has been proposed that 
two functionally distinct topogenic domains are used: an 
NH~-terminal matrix-targeting signal and a distal stop-trans- 
fer sequence (11, 20, 23). Precursor proteins destined for the 
matrix lack the stop-transfer domain and, therefore, follow 
a default pathway analogous to protein sorting in the secre- 
tory apparatus (15); the position of the stop-transfer domain 
relative to the matrix-targeting signal has been found to 
influence sorting to the outer versus the inner membrane dur- 
ing import into mitochondria in vitro (23). 
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Figure 1. Schematic representation of UCP cDNA and topology of 
the corresponding polypeptide in the mitochondrial inner mem- 
brane. The transmembrane segments of UCP, designated I-VI, con- 
nect three relatively hydrophilic domains (A, B, C) located at the 
matrix side of the inner membrane (IMM) with short domains in 
the intermembrane space (IMS) (after references 2, 28). The posi- 
tions of these regions in the linear coding sequence of UCP cDNA 
are indicated in the upper panel, while the lower panel presents a 
simplified scheme for their disposition in the inner membrane (2, 
28). The middle panel shows the position of certain amino acids of 
the UCP precursor which has an amino-terminal methionine 
(amino acid 1) lacking in the mature protein. Recombinant pSP64 
constructs. ( Upper panel ) pSPUCP encodes full-length UCP poly- 
peptide. UCP cDNA was excised from pUCPratl5 (27) with Pst 
I and further digested with Taq I to remove the 5'-untranslated re- 
gion; the Taq I-Pst I fragment was purified and inserted into the 
Pst I site of the SP64 polylinker via an oligonucleotide adaptor 
(GACCATGGTGAGTT), which also restored the correct UCP cod- 
ing sequence, pSPUCPdI-12 encodes UCP lacking amino acids 1-12 
and was constructed as above except that the adaptor, GGTGAGTT, 
was used for ligation into pSP64, pSPUCP13-51-OCT and pSPU- 
CP13-105-OCTencode UCP amino acids 13-51 and 13-105, respec- 
tively, attached to 209 carboxyl-terminal amino acids from OCT 
(21). A Pst I-Bgl II fragment, encoding the amino-terminal 146 
amino acids of pOCT, was deleted from pSP019 (21), and the 
deleted fragment replaced with either of two fragments purified 
from pSPUCPdl-12 after digestion to completion with Pst I and par- 
tial cutting with Sca I; forpSPUCP13-51-OCT, the shorter Pst I-Sca 
I fragment (encoding UCP amino acids 13-51) was inserted directly 
after blunting of the Bgl II end of the cut plasmid with Klenow en- 
zyme. For pSPUCP13-105-OCT, the longer fragment (encoding 
UCP amino acids 13-101) was inserted via the oligonucleotide 
linker, ACTTCTCTTCA, which creates a cohesive end for Bgl II 
and restores UCP up to amino acid 105. pSPUCPlO2-307codes for 
a carboxyl-terminal fragment of UCP. A Sca I-Pst I fragment cod- 
ing for UCP amino acids 102-307 was inserted between the Hind 
III and Pst I sites in the pSP64 polylinker, using an oligonucleotide 
adaptor (AGCTTGGGCTGCAGACCATGGGGT) which creates a 
Hind III end (UCP 101-307 begins with met-gly), pSPCPS-UCP169- 
307 and pSPCPS-UCP52-307 encode hybrid proteins containing the 
amino-terminal 96 amino acids from pCPS (21) fused to the car- 
boxyl-terminal 169-307 or 52-307 amino acids of UCP. They were 
constructed by purifying a 596-bp Pst I fragment from pHN291 
(24) corresponding to the 5'-end of pCPS cDNA, inserting it into 

Compared with bitopic transmembrane proteins, UCP 
presents a different set of  problems: first, it is a polytopic 
protein spanning the membrane at least six times and, sec- 
ond, unlike bitopic proteins anchored by a single, uniformly 
hydrophobic transmembrane segment, the individual trans- 
bilayer segments of UCP are amphiphilic and, therefore, ac- 
quire a net hydrophobic character via pairing with another 
segment (2). In the case of polytopic polypeptides assembled 
into the ER, the current evidence supports the idea that in- 
dividual domains are inserted via separate signal sequences 
(4, 9). In view of the fact that we demonstrate here the exis- 
tence of at least two targeting signals in UCP, a similar mech- 
anism may apply to polytopic proteins of the mitochondrial 
inner membrane as well. However, amphiphilic transmem- 
brane domains of UCP lose the ability to insert into the inner 
membrane when placed in the context of  an amino-terminal 
nonUCP polypeptide. We provide evidence suggesting that 
insertion of the amino-terminal one-third of UCP into the in- 
ner membrane may be required to facilitate insertion of  the 
remainder of  the polypeptide. 

Materials and Methods 

General 
Routine procedures for recombinant DNA manipulations, transcription in 
the pSP64 system, translation in a rabbit reticulocyte lysate in the presence 
of [3~S]methionine, isolation and purification of rat heart mitochondria, 
and analysis of total import products by SDS-PAGE are described in previ- 
ous articles (3, 21). Details are provided in the figure legends. 

Mitochondrial Import 

Recombinant pSP64 transcripts were translated in a messenger-dependent 
rabbit reticulocyte lysate system containing 1 mCi/ml of [3SS]methionine 
(1,000 Ci/mmol) for 30 min at 30°C. Aliquots were diluted to 75 I11 with 
KMH (10 mM Hepes, pH 7.5, 80 mM KCI, and 2 mM magnesium acetate) 
and added to 75 ltl of freshly purified mitochondria from rat heart uniformly 
suspended in MRM-succinate (10 mM Hepes, pH 7.5, 250 mM sucrose, 1.0 
mM dithiothreitol, 1.0 mM ATE 0.08 mM ADP, 2.0 mM K2HPO4, pH 
7.5, and 5 mM sodium succinate), to yield a final concentration of 0.5 mg/ml 
mitochondrial protein in the import assay. The mixtures were incubaP, A for 
30 rain at 30°C, the mitochondria recovered by centrifugation in a microfuge 
operating for 5 rain at 12,000 g, and dissolved in hot SDS sample buffer 
for analysis by SDS-PAGE. Additional details are provided in the figure 
legends. 

Results 

The various plasmid constructs used in this study are de- 
scribed in the legend to Fig. 1. They include all or parts of 
rat UCP cDNA (27) cloned in the pSP64 in vitro expression 
vector system. We found, however, that removal of the 5'-un- 

the Pst I site in the polylinker of pSP64, linearizing at an internal 
Nco I site, filling in the cohesive ends with Klenow enzyme, and 
inserting the appropriate UCP cDNA fragment: for pSPCPS-UCP- 
169-307, a Hind III fragment containing the 3' half of UCP cDNA 
was isolated from pSPUCP, blunt-ended with Klenow, and inserted 
into the blunt-ended Nco I site of the pCPS plasmid; for pSPCPS- 
UCP52-307, a Sea I-Pst I fragment (blunted with T4 DNA poly- 
merase) encoding UCP amino acids 52-307 was isolated from 
oSPUCP and inserted into the blunt-ended Nco I site of the pCPS 
plasmid. For in vitro transcription, the recombinant pSP64 plas- 
mids were linearized with Eco RI. 
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Figure 2. Import of pOCT and 
UCP by heart mitochondria in 
vitro, pSP019, pSPUCE and 
pSPUCPdI-12 were transcribed 
and translated in a reticulocyte ly- 
sate in the presence of [35S]me- 
thionine, after which import was 
carried out as described in Ma- 
terials and Methods; total prod- 
ucts were analyzed by SDS-PAGE 
and fluorography. (a) pOCT; (b) 
UCP; (c) UCPdl-12. Lanes 1 and 
7, 20% of input pOCT and 33% 
of input UCP, respectively; lanes 
2 and 8, mitochondrial pellets af- 
ter import; lanes 3 and 9, before 
isolating mitochondria after im- 
port, mixtures were incubated at 
4°C for 30 min with 100 txg/ml 
proteinase K (PROZ.K), at which 
time phenylmethylsulfonyl fluo- 
ride (final concentration, 2 mM) 
was added and the mixture in- 

cubated for an additional l0 rain; lanes 4 and 10, as in lanes 3 and 9 except that import was performed in the presence of 1.0 ~tM CCCP; 
lanes 5 and 11, after import, mitochondria were recovered, suspended (0.5 ~tg protein/laD in 0.1 M Na2CO3, pH 11.5, sonicated vigorously, 
incubated on ice for 30 min, and the membranes recovered after centrifugation in an airfuge operating at 30 psi for l0 min; lanes 6 and 
12, as in lanes 5 and 11 except that import was performed in the presence of CCCE Lane 13, UCPdl-12. The arrowheads denote pOCT, 
mature OCT, 37K (an intermediate fragment routinely observed during pOCT import and processing in vitro), UCE UCPdl-12, and M ~3 
(resulting from internal initiation of polypeptide synthesis at UCP methionine-13). 

translated sequence (or at least the poly GC portion) from 
UCP cDNA was required for efficient translation to take 
place. 

Fig. 1 indicates the positions of the transmembrane seg- 
ments (I-VI) and extramembrane matrix domains (A-C) in 
the linear cDNA and polypeptide sequences (upper panel), 
as well as showing a simplified schematic illustration (lower 
panel) of the disposition of these regions in the mitochondriai 
inner membrane (2, 28); the extramembrane domains may 

Figure 3. Import of UCPdl-12. Conditions and treatments were the 
same as in Fig. 2. Lane 1, one-third of input; lanes 2-6, mitochon- 
drial pellets. Arrowhead denotes UCPdl-12. 

associate peripherally with the surface of the membrane on 
the matrix side rather than extend into the matrix space as 
illustrated (2). 

Import of  UCP and UCPdl-12 

After transcription-translation of UCP cDNA lacking the 
majority of its 5'-untranslated sequence, two polypeptide 
products were observed: full-length UCP, with an apparent 
molecular mass of 32 kD on SDS gels, and a slightly smaller 
product migrating with a size of '~  30 kD (Fig. 2, lanes 7-12). 
Because the latter comigrated with a mutant of UCP in which 
amino acids 1-12 had been deleted (Fig. 2, lane 13), the 
smaller translation product likely derived from polypeptide 
initiation at an internal AUG coding for methionine at posi- 
tion 13 of the UCP polypeptide sequence (6, 27). 

Import and insertion of UCP and UCPdl-12 into the inner 
membrane of isolated heart mitochondria is demonstrated by 
the data presented in Figs. 2 and 3; for comparison, import 
of pOCT, a well-characterized precursor to a matrix protein 
(13, 22), was also documented. To distinguish between the 
large amount of high input levels of UCP and UCPdl-12 
which sedimented with mitochondria after import incuba- 
tions (Fig. 2, lane 8) and that fraction that entered the or- 
ganelle and assembled into the inner membrane, two criteria 
were used: acquisition of A~-dependent resistance to exoge- 
nous proteinase K and Aw-dependent insolubility in 0.1 M 
Na~CO3, pH 11.5. Earlier studies (12, 25) have established 
that a mitochondrial electrochemical potential (Aw) is re- 
quired for protein import into or across the inner membrane; 
thus, incubation in the presence of carbonyl cyanide m-chloro- 
phenylhydrazone (CCCP), an uncoupler which collapses the 
electrochemical gradient across the inner membrane, should 
render input UCP and UCPdl-12 entirely sensitive to exoge- 
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Figure 4. UCP amino acids 13-51 fail to deliver a reporter protein 
into mitochondria. UCP13-51-OCT was produced after transcrip- 
tion-translation of pSPUCPI3-51-OCT (Fig. 1); conditions and 
treatments were the same as described in Fig. 2. Lane 1, one-third 
of input; lanes 2-4, mitochondrial pellets. Arrowhead denotes 
UCP13-51-OCT, 

Figure 5. Import of UCPI3-105-OCT. The polypeptide was pro- 
duced by transcription-translation of pSPUCPI3-105-OCT (Fig. 
1). Conditions and treatments of import assays are described in Fig. 
2. Lane 1, one-third of input; lanes 2-5, mitochondrial pellets. Ar= 
rowhead denotes UCP13-105-OCT. 

nous protease. That this was the case is demonstrated in Fig. 
2, lanes 9 and 10 (see also Fig. 3). Acquisition of protease 
resistance, therefore, was due to protein transport into or be- 
yond the inner membrane rather than resulting from UCP 
gaining access to cryptic sites in the outer membrane. Fur- 
thermore, CCCP rendered the input polypeptide completely 
extractable by alkaline Na2CO3 (Fig. 2, compare lanes //  
and 12). Sonication of mitochondria in 0.1 M Na2CO3, pH 
11.5, releases the mitochondrial-soluble content (e.g., ma- 
ture ornithine carbamyl transferase (OCT), Fig. 2, lane 5) 
and membrane peripheral proteins and converts the orga- 
nelle to open membrane sheets composed of a phospholipid 
bilayer with retained integral proteins (10); the fact that UCP 
was entirely released by this procedure after incubation in 
the presence of CCCP (Fig. 2, lane 12) suggests that im- 
ported UCP otherwise acquires resistance to alkaline extrac- 
tion as a consequence of a strong interaction with the inner 
membrane phospholipid bilayer. 

As illustrated in Figs. 2 and 3, UCPdl-12 (M 13 in Fig. 2) 
appeared to import with somewhat less efficiency than full- 
length UCP; in other experiments, however, such a differ- 
ence was not observed. Thus, to avoid polypeptide initiation 
at two sites in UCP mRNA, hybrid proteins were constructed 
using the UCPdl-12 derivative, 

Topogenesis Conferred by UCP Amino Acids 13-105 
To assay the presence of topogenic information located to- 
ward the amino terminus of UCP, two hybrid proteins were 
constructed in which UCP amino acids 13-51 or 13-105 (see 
Fig. 1) were fused to a reporter polypeptide. For the latter, 
we used a COOH-terminal 209-amino acid fragment from 
OCT; this fragment does not itself carry targeting informa- 
tion but is imported when fused behind a heterologous mito- 
chondrial targeting signal (20). UCP13-105-OCT (Fig. 5), 
but not UCP13-51-OCT (Fig. 4), was imported by mitochon- 
dria in vitro, though not with the same efficiency as UCP or 
UCPdl-12 (Figs. 2 and 3). Furthermore, by the criterion of 
A~-dependent acquisition of resistance to alkaline extraction 
(Fig. 5, lanes 4 and 5), UCP13-105-OCT appeared to be de- 
livered and inserted into the inner membrane; the low 
amount of carbonate-resistant product seen in Fig. 5, lane 5, 
may reflect nonspecific binding to membranes. In the case 
of UCP13-51-OCT, a large fraction of input polypeptide 
sedimented with mitochondria after import but it remained 
sensitive to external protease (Fig. 4). Although the data 
show that UCP amino acids 13-51 provide insufficient in- 
formation to direct import, they do not rule out the possibil- 
ity that this region contributes to the overall process. Indeed, 
deletion of this region (d2-51) was found to severely retard 
UCP import (data not shown). 

Large Carboxyl-terminal Fragment of UCP 
Is Inefficiently Imported 
To extend the findings that UCP amino acids 13-105 are 
sufficient to direct both import and membrane insertion of 
a chimeric protein (Fig. 5), we examined the possibility that 
a second set of topogenic sequences may reside downstream 
of this region in UCP. A deletion in UCP cDNA was per- 
formed (Fig. 1) in which codons specifying UCP amino acids 
1-101 were removed and replaced with codons specifying 
met-gly; transcription-translation of the mutant cDNA re- 
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Figure 6. Import of UCPdI-12 and UCPI02-307. The two polypep- 
tides were produced by transcription-translation of (a) pSPUCPdl- 
12 and (b) pSPUCP102-307. Conditions and treatments of import 
assays are given in Fig. 2. Lanes I and 5, one-third of input; lanes 
2-4 and 6--8, mitochondrial pellets. Arrowheads denote UCPdl-12 
and UCP102-307. 

suited in the synthesis of a polypeptide beginning with met- 
gly followed by amino acids 102-300 of UCP (designated 
UCP102-307). The fragment was efficiently synthesized in 
vitro (Fig. 6 b). After addition of mitochondria, a small por- 
tion was imported and rendered inaccessible to exogenous 
protease in a A¥-dependent manner (Fig. 6, compare lanes 
7and 8). Compared with import of UCPdl-12 under identi- 
cal conditions, however, the extent of import of UCP102-307 
was relatively modest, attaining levels of only about one-fifth 
of those observed for the product of UCPdl-12 import (Fig. 
6, compare lanes 3 and 7), as determined by densitometric 
analysis. Furthermore, in a number of separate experiments, 
we routinely found that UCPI02-307 after import was not 
resistant to extraction with alkaline Na2CO3 (not shown), 
indicating its lack of integration into the mitochondrial inner 
membrane bilayer. 

Strong Matrix-targeting Signal 
Translocates UCP Transmembrane Domains to the 
Soluble Matrix Compartment 

In view of the fact that UCP102-307 was imported into mito- 
chondria but did not integrate into the inner membrane, the 
possibility arises that such integration cannot occur without 

Figure 7. Import and process- 
ing ofpCPS-UCPI69-307. The 
precursor was produced by 
transcription-translation of 
pSPCPS-UCP169-307 (Fig. 1). 
Conditions and treatments of 
import assays are described in 
Fig. 2. Lane 1, mitochondrial 
pellet; lane 2, treatment with 
proteinase K; lane 3, treat- 
ment with 0.1 M Na2CO3, pH 
11.5. p, precursor; ra, pro- 
cessed product. 
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Figure 8. Radiosequence analysis of [3H]leucine-labeled product 
after import and processing of pCPS-UCPI69-307. The import de- 
scribed in Fig. 7 was repeated except that [3H]leucine replaced 
[3SS]methionine in the translation mixture; after import and pro- 
teinase K treatment, the product designated m in Fig. 7 was elec- 
troeluted and subjected to automated Edman degradation on a gas- 
phase sequencer (model 470A; Applied Biosystems, Inc., Foster 
City, CA), as previously described (22). Correspondence between 
peaks of radioactivity at cycles 1 and 12 with positions of leucine 
in the amino acid sequence of mature CPS indicates correct pro- 
cessing between leu 38 and leu 39 (24) of the precursor polypeptide. 

prior insertion of the amino-terminal one-third of UCP. To 
examine this idea further, and to ensure that transport into 
mitochondria follows a standard import pathway, carboxyl- 
terminal fragments of UCP comprising either three or five 
transmembrane segments (Fig. 1) were fused behind a strong 
matrix-targeting signal derived from pCPS (pCPS and CPS 
are precursor and mature carbamoyl phosphate synthetase, 
respectively); the hybrid proteins were designated pCPS- 
UCP169-307 and pCPS-UCP52-307, respectively (Fig. 1). 
The contribution from pCPS corresponded to its amino- 
terminal 96 amino acids, the first 38 of which Comprise the 
signal sequence (21, 24). 

As shown in Fig. 7, pCPS-UCP169-307 was imported into 
purified heart mitochondria in vitro and processed to mature 
product (Fig. 7, lane 1 ); the processed product but not the 
precursor was resistant to exogenous proteinase K (Fig. 7, 
lane 2), import was prevented by CCCP (not shown) indicat- 
ing that translocation was otherwise into or across the inner 
membrane, and imported mature product was not retained 
with membrane after treatment with alkaline Na2CO3 (Fig. 
7, lane 3). Radiosequencing analysis (Fig. 8) revealed that 
pCPS-UCP169-307 had been cleaved at the normal pCPS 
processing site between leu 3s and leu 39 of pCPS (24), indi- 
cating that processing took place in the matrix where mito- 
chondrial signal peptidase is located (7, 18). The sequencing 
data, together with the CCCP and NazCO3 observation, 
demonstrate that pCPS-UCP169-307 was imported across 
the inner membrane and deposited in the soluble matrix 
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Figure 9. Import and processing of pCPS-UCP-52-307. The pre- 
cursor polypeptide was produced by transcription-translation of 
pSPCPS-UCP52-307 (Fig. 1). Conditions and treatments of import 
assays are described in Fig. 2. Lane 1, one-third of input; lanes 2-4, 
mitochondrial pellets. (p and m) Precursor and processed pCPS- 
UCP52-307, respectively. 

compartment where it was correctly processed to remove the 
pCPS targeting sequence. Similar results were obtained for 
pCPS-UCP52-307 (Fig. 9). 

Finally, the fate of UCP13-307 (i.e., UCPdl-12) which 
otherwise is imported and inserted into the mitochondrial in- 
ner membrane (Figs. 2, 3, and 6) was also examined when 
fused behind either the pCPS or pOCT signal sequence. The 
hybrid proteins were very inefficiently imported and pro- 
cessed, suggesting that the primary translation product 
largely assumed an import incompetent conformation; nev- 
ertheless, the small component that was imported was also 
freed from membrane after alkaline extraction (not shown). 
It would appear, therefore, that the ability of UCP amino 
acids 13-101 to signal membrane insertion (Fig. 5) was 
abrogated by the presence of a strong matrix-targeting signal 
located upstream of this region. 

Discussion 

The aims of this study were twofold: (a) to identify regions 
in the UCP primary translation product that contain topo- 
genic information for import and insertion into the mito- 
chondrial inner membrane, and (b) to determine if fragments 
of UCP containing multiple transmembrane segments can in- 
sert into the inner membrane when fused behind a strong 
matrix-targeting signal derived from the amino terminus of 
a heterologous protein, pCPS. 

Our results indicate that the amino-terminal one-third of 
UCP is essential for both import and membrane insertion of 
UCP. Upon deletion of this region, however, a second import 
signal located within the carboxyl-terminal two-thirds of the 
molecule was detected, but the downstream import signal 
supported only inefficient uptake into mitochondria and did 
not mediate membrane insertion. Whether or not this latter 
signal functions in the intact polypeptide is not known, but 
its presence is interesting in view of the fact that multiple sig- 
nal sequences appear to play an important role in assembling 
polytopic integral proteins into the ER (4, 9). Our findings, 
however, suggest that insertion of the amino-terminal third 
of UCP (i.e., the first repeat domain, I-A-II, Fig. 1) into the 
mitochondrial inner membrane may be required to facilitate 
integration of the remainder of the polypeptide, perhaps by 
inducing an appropriate conformation in the carboxyl-ter- 

minal fragment so that the second signal sequence can help 
direct insertion. Because UCP is composed of a threefold 
repeat structure (2, 28), we are currently investigating the 
possibility that downstream signals reside within each of the 
last two (III-B-IV and V-C-VI, see Fig. 1). 

To date, studies on the mechanism of insertion of proteins 
into mitochondrial membranes have concentrated on bitopic 
polypeptide precursors containing a single hydrophobic 
transmembrane domain located downstream of an amino- 
terminal matrix-targeting signal. The evidence suggests that 
in such situations the membrane anchor can function as a 
stop-transfer sequence, causing arrest of the polypeptide en 
route to the matrix and consequent insertion into either the 
outer or inner membrane phospholipid bilayer (11, 23). In this 
respect, the mechanism of sorting and membrane inser- 
tion of mitochondrial proteins may be analogous to that of the 
ER (5); indeed, viral ER stop-transfer sequences have 
been shown to function as membrane anchors in mitochon- 
drial membranes (20, 23), though apparently not in chlo- 
roplasts (17). 

A variation on this model might be necessary to explain 
the mechanism of membrane insertion for proteins such as 
UCP and the ADP/ATP carrier in which the targeting se- 
quence is not at the extreme amino terminus and which lack 
uniformly hydrophobic transmembrane segments. The am- 
phiphilic transmembrane segments of UCP would presum- 
ably acquire a hydrophobic character sufficiently compatible 
with a lipid environment as a result of interactions with other 
segments in the protein; insertion into the membrane of these 
interacting segments could occur during import led by inter- 
nal targeting signals (perhaps localized in the ectodomains 
A, B, and C, see Fig. 1). It might be expected, therefore, that 
alterations to the import-competent conformation of UCP 
might disrupt such interactions and prevent polypeptide ar- 
rest and assembly into the inner membrane. This would ex- 
plain our findings that pCPS-UCP169-307, pCPS-UCP52- 
307, and perhaps UCP102-307 were all imported but failed 
to insert into the inner membrane, despite the fact that they 
contain multiple segments which otherwise span the bilayer. 
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