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Abstract

Background: Microorganisms have evolved a number of mechanisms to thrive in cold environments, including the
production of antifreeze proteins, high levels of polyunsaturated fatty acids, and ergosterol. In this work, several yeast
species isolated from Antarctica were analyzed with respect to their freeze-thaw tolerance and production of the three
abovementioned compounds, which may also have economic importance.

Results: The freeze-thaw tolerance of yeasts was widely variable among species, and a clear correlation with
the production of any of the abovementioned compounds was not observed. Antifreeze proteins that were
partially purified from Goffeauzyma gastrica maintained their antifreeze activities after several freeze-thaw cycles. A
relatively high volumetric production of ergosterol was observed in the yeasts Vishniacozyma victoriae, G. gastrica and
Leucosporidium creatinivorum, i.e, 19, 19 and 16 mg I, respectively. In addition, a high percentage of linoleic acid with
respect to total fatty acids was observed in V. victoriae (10%), Wickerhamomyces anomalus (12%) and G. gastrica (13%),
and a high percentage of alpha linoleic acid was observed in L. creatinivorum (3.3%).

Conclusions: Given these results, the abovementioned yeasts are good candidates to be evaluated for use in
the production of antifreeze proteins, fatty acids, and ergosterol at the industrial scale.
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Background

Currently, there is a well-established and increasing global
market for biomolecules used in industrial, medical, and
biotechnological fields, such as antifreeze compounds,
polyunsaturated fatty acids (PUFAs) and ergosterol.
Among the antifreeze compounds, antifreeze proteins
(AFPs) and ice-binding proteins (IBPs) have great biotech-
nological potential in the cryopreservation of mammalian
and plant cells [1], preparation of frozen food and the
cryopreservation of transplant organs [2, 3]. AFPs were
first described almost four decades ago in Antarctic mar-
ine fishes [4] and have subsequently been discovered in a
broad range of organisms, including snow mold fungi [5],
sea ice diatoms [6], snow algae [7], bacteria [8—11] and
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yeasts [12—14]. AFPs are a large, non-homologous protein
family with diverse structures [15, 16] and a common abil-
ity to bind to ice and modify its morphology and to inhibit
ice recrystallization [17, 18], reducing cell injury due to ice
formation. The isolation and purification of AFPs are la-
borious and costly processes, which limits their use at in-
dustrial scales [3, 18]. Thus, there has been a continuous
search for cheaper sources of AFPs.

PUFAs are amphipathic molecules that have essential
biological functions, such as the maintenance of cell
membrane fluidity and permeability and enzyme activity,
among others functions [19, 20]. Furthermore, the im-
portance of PUFAs in the adaptation of organisms that
inhabit cold environments or in the response to cold
stress has been demonstrated [21-24]. PUFAs have also
gained attention due to their roles in human health,
therapeutics, and nutrition [25-27], and PUFAs are
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currently commercially obtained from plant seeds and
some marine sources [25, 26]. Sterols are essential lipids
in most eukaryotic cells that have important structural
and signaling functions, with cholesterol, phytosterol,
and ergosterol being the primary sterols present in verte-
brates, plants and fungi, respectively [28]. Ergosterol is
important economically, mainly because it is a precursor
of vitamin D2 and has the potential for development of
anticancer drugs since it inhibits the growth of different
human cancer cell lines in vitro [29-32]. Thus, efforts
have been made to improve the production of ergosterol
in the yeast Saccharomyces cerevisiae for large-scale
production [33, 34].

Due to the broad spectrum of applications for anti-
freeze compounds, ergosterol, and PUFAs, there has
been a continuous search for attractive and novel
sources of these products for their commercial produc-
tion, such as microorganisms. Microorganisms have high
growth rates and simple nutritional requirements. In
addition, the ability to genetically manipulate and to per-
form large-scale fermentations with microorganisms
makes them attractive model organisms. Among micro-
organisms, yeasts that thrive in extreme cold environ-
ments are of special interest because they naturally
produce the previously mentioned compounds as part of
their adaptive mechanisms to cold and freezing condi-
tions [35, 36]. Because Antarctica has one of the driest
and coldest climates on Earth, yeasts that thrive in Ant-
arctica are good candidate sources of the previously
mentioned compounds.

In previous studies, we reported the isolation and
characterization of yeast species from different terrestrial
habitats of Antarctica, focusing on the production of
economically attractive hydrolytic enzymes and com-
pounds, such as carotenoid pigments and mycosporines
[37-43]. In this work, we analyzed the production of
extracellular AFPs, PUFAs, and ergosterol in these Ant-
arctic yeast species. For each type of compound, a po-
tentially suitable yeast source was identified that could
be a good candidate for further studies to evaluate its
potential use in the commercial production of these
compounds.

Methods

Yeasts and culture conditions

The yeast species used in this work are listed in Table 1
and were isolated and identified from soil and water sam-
ples from King George Island in the sub-Antarctic region
[43]. The culture media used in this study were as follows:
yeast-malt medium (YM), 0.3% yeast extract, 0.3% malt
extract, 0.5% peptone; yeast nitrogen base (YNB), 0.67%
yeast nitrogen base without amino acids, 0.5% peptone;
Vogel’s minimal medium (VM), 13% Nas citrate-2H,0,
12.6% KNOs, 14.4% (NH4)H,PO, 8% KHyPO, 1%
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Table 1 Yeast species used in this work

Species T(QO
Candida parapsilosis 30
Candida sake 22
Cryptococcus gastricus (Goffeauzyma gastrica) 22
Cryptococcus gilvescens (Goffeauzyma gilvescens) 22
Cryptococcus victoriae (Vishniacozyma victoriae) 22
Dioszegia fristingensis 22
Leucosporidiella creatinivora (Leucosporidium creatinivorum) 22
Leucosporidiella fragaria (Leucosporidium fragarium) 22
Metschnikowia bicuspidata 10
Mrakia blollopis 15
Mrakia gelida 22
Mrakia sp. 22
Rhodotorula glacialis (Phenoliferia glacialis) (T11Rs) 22
Rhodotorula glacialis (Phenoliferia glacialis) (T8Rg) 22
Rhodotorula laryngis (Cystobasidium laryngis) 22
Rhodotorula mucilaginosa 30
Sporidiobolus salmonicolor 22
Wickerhamomyces anomalus 30

The current taxonomic classification is given in parenthesis. T, best
temperature for growth

MgSO,7H,0, 10 pl trace element solution, and 5 pl
0.1 mg ml™' biotin solution. The media were supple-
mented with 2% glucose and contained 1.5% agar when
agar-solidified medium was used. The yeasts were grown
at various temperatures according to the optimal growth
temperature for each species (Table 1).

Tolerance of yeast to freeze-thaw cycles

The yeast strains were grown until the late log-phase of
growth in YM medium supplemented with 2% glucose,
after which 15 ml of each culture was aliquoted in separ-
ate falcon tubes. Each freeze-thaw cycle (FTC) consisted
of freezing the culture aliquot in the falcon tube at -
20 °C for 12 h, after which it was thawed at 22 °C for
30 min. Sample aliquots were collected after each FTC,
and the number of viable cells remaining was deter-
mined. The percentage of yeast survival was calculated
by comparison to the number of viable cells in the
original culture.

Extraction and purification of secreted proteins

Yeast cultures (100 ml) were centrifuged at 8000 g for
10 min at 4 °C, after which the supernatants were fil-
tered through a sterile 0.45-pm pore size polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA).
Then, ammonium sulfate was added stepwise to cell-free
supernatants to reach 80% saturation, followed by incu-
bation at 4 °C for 2 h with orbital agitation. The protein
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pellets obtained after centrifugation at 10,000 g at 4 °C
for 10 min were suspended in 5 ml of water and dialyzed
against 1000 ml of water for 12 h with 2 changes of
water using a dialysis bag with a 10-kDa cut-off. The
same procedure was performed for each step of sample
fractioning by ammonium sulfate precipitation from 20
to 80% saturation. For chromatographic purification, a
Superdex 75 10/300 GL column (Merck, Darmstadt,
Germany) equilibrated with 20 mM sodium phosphate
buffer (pH 7.0) and 150 mM NaCl was used as the mo-
bile phase with a flow rate of 0.2 ml min~*. The chroma-
tographic runs were performed using an AKTA prime
purification system (General Electric, New York, USA),
with protein elution monitored at 280 nm, and 0.2-ml
fractions were collected. Fractions corresponding to pro-
tein peaks were dialyzed as described above and were
tested for antifreeze activities. The protein profile was
determined by 15% SDS-PAGE, and proteins were quan-
tified using a BCA kit (Pierce BCA protein assay kit,
Thermo Scientific, IL, USA) according to the manufac-
turer’s instructions. To assess protein glycosylation, the
SDS-PAGE gels were stained using a Pierce glycoprotein
staining kit (Thermo Scientific, IL, USA) according to
the manufacturer’s instructions.

Evaluation of the antifreeze properties of protein samples
The antifreeze properties of protein samples were evalu-
ated by determining the inhibition of ice recrystallization
using a method based on the aggregation of gold nanopar-
ticles [44, 45]. Briefly, gold nanoparticles (AuNP) were
synthesized by heating 300 mM HAuCl,-3H,O until it
began to boil, after which 2 ml of 30 mM sodium citrate
dehydrate was added and the solution was boiled for
20 min and then cooled to ambient temperature with con-
tinuous stirring. Next, one volume of 2-mercaptosuccinic
acid was added, and the mixture was agitated for 1 h at
ambient temperature. To assess the antifreeze properties
of protein samples, the AuNP solution and a protein sam-
ple (50 pl each) were mixed in one well of a microtiter
plate, which was frozen at — 20 °C for 1 h and then thawed
at 22 °C for 30 min. The absorbance spectrum from 400
to 800 nm was recorded using an Epoch microplate spec-
trophotometer (Biotek, Winooski, VT, USA) before and
after freezing. The Asyo/Agso ratio was calculated before
(BFR) and after (AFR) the freezing step, and the BFR/AFR
ratio was determined for each sample. The closer the
BER/AER value is to one, the greater the antifreeze activity
of the tested sample.

Sterol extraction and identification

Sterols were extracted using the method described by
Shang et al. [46]. First, the cell pellet from 10 ml of yeast
culture was mixed with 4 g of KOH and 16 ml of 60%
ethanol. After incubation at 80 °C for 2 h, sterols were
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extracted with 10 ml of petroleum ether and quantified
at 282 nm using a molar extinction coefficient of
11,900 ecm™! M™! [47]. For the reverse phase
high-pressure liquid chromatography (RP-HPLC) ana-
lysis, samples were dried at 25 °C and suspended in
200 pl acetone. Samples were then loaded onto a
LiChroCART RP18 125-4 column (Merck KGaA,
Darmstadt, Germany) using methanol:water (97:3, v/v)
as the mobile phase at a 1.8 ml min~ ' flow rate. Ana-
lyses were performed in an LC-10ATVP Shimadzu in-
strument equipped with a diode array detector, and
sterols were detected at 280 nm.

Analysis of fatty acid composition

Yeasts were cultured in 8 I of YM medium supple-
mented with 1% glucose in a BIOFLO 415 fermenter
(New Brunswick Scientific, Edison, NJ, USA) until the
stationary phase of growth was reached. Cell pellets were
collected by centrifugation at 4000 g at 4 °C for 5 min
and were thoroughly washed with distilled water. Oil ex-
traction and analysis were conducted according to the
method described by Bligh and Dyer [48] and the AOAC
official method 969.33, which were performed by an ex-
ternal service (ANALAB CHILE S.A., www.analab.cl).

Results

Tolerance to freeze-thaw cycles

Yeast cultures were subjected to FTCs as described in
the Materials and Methods, although the freezing time
varied for some yeast species that showed no loss of sur-
vival between successive FTCs. As shown in Fig. 1, the
freeze-thaw tolerance varied among the studied yeasts
species: Dioszegia fristingensis, Leucosporidium creatini-
vorum, Candida parapsilosis, and Vishniacozyma victor-
iae exhibited the highest tolerance, displaying survival
percentages of 8, 5 3, and 1%, respectively, after six
FTCs. By contrast, the yeasts Wickerhamomyces anoma-
lus, Goffeauzyma gastrica, Mrakia gelida, and Mrakia
blollopis showed the lowest freeze-thaw tolerance, as less
than 0.1% of cells survived after two FTCs. The remain-
der of the assayed yeast species showed moderate
freeze-thaw tolerance compared to those mentioned
above. For comparative purposes, some yeasts with high,
moderate and low freeze-thaw tolerance were selected
for further study.

In the previous assay, yeasts were cultivated at their
optimal growth temperature before being submitted to
FTCs. We then evaluated whether incubation at a lower
temperature prior to FTCs would improve their
freeze-thaw tolerance. To test this possibility, L. creatini-
vorum and G. gastrica, species with high and low
freeze-thaw tolerances, respectively, were cultured at
their optimal growth temperature until the late exponen-
tial phase of growth was reached. Next, the yeasts were
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Fig. 1 Tolerance to freeze-thaw cycles. Yeast cultures were frozen at — 20 °C and then thawed at 22 °C. The freezing time varied according to the
results obtained for each yeast species in successive FTCs. The values are the average of three determinations. The error bars were not included
to maintain the clarity of the plot

incubated at 4 °C for 24, 48 and 72 h before being sub-
jected to FTCs. No freeze-thaw tolerance improvement
was observed for either strain in all assays performed
(data not shown).

Evaluation of the antifreeze properties of proteins
secreted by yeasts and their purification

Total extracellular proteins were obtained from cell-free
supernatants of yeast cultures, after which they were an-
alyzed by SDS-PAGE and assayed for their antifreeze
properties (Additional file 1: Figure S1). The BFR/AFR
ratio was also determined for 1 pg ml™' bovine serum
albumin (BSA) (used as the control) and for protein
samples extracted from non-inoculated YM medium,
which had values of 0.24 and 0.51, respectively. Protein
samples with a BFR/AFR ratio higher than those ob-
served for BSA and non-inoculated YM medium were
obtained from L. creatinivorum (0.82), C. parapsilosis
(0.94) and G. gastrica (0.91). The components of YM
medium such as proteins and pigments co-precipitated
when the culture supernatant protein samples were ob-
tained, which could influence the determination of anti-
freeze properties. For this reason, the yeast biomass and
extracellular protein yields of the three yeast species
mentioned above were compared when cultivated in YM
medium and the less complex Vogel, YNB, and YNB-P
media. Although the results obtained using the last three
media were lower than those obtained using the YM
medium (Additional file 2: Table S1), the best results
were obtained using the YNB-P medium supplemented
with 2% glucose for all three yeast species. Therefore,

YNB-P supplemented with 2% glucose was selected for
further protein purification steps and analysis.

Figure 2 shows the protein content (=210 kDa accord-
ing to the cut-off of the dialysis bag used in the purifica-
tions) and antifreeze activity analyses of protein samples
fractionated using different concentrations of ammo-
nium sulfate. The highest BFR/AFR values were ob-
served for the protein fractions obtained from the L.
creatinivorum, C. parapsilosis and G. gastrica protein
samples at 80, 60 and 60% ammonium sulfate saturation,
respectively. These fractions were subjected to additional
purification steps using several chromatographic
methods, and the best results were obtained using cat-
ionic exchange chromatography (Fig. 3). A protein band
with an rMW of approximately 100,000 (S100) and two
other bands with an rMW less than 35,000 (S35) (box A
in Fig. 3) could be distinguished in the protein samples
from G. gastrica, all of which are glycosylated proteins
(box B in Fig. 3). For the protein samples from the yeasts
L. creatinivorum and C. parapsilosis, no clear protein
bands were observed (data not shown). Interestingly, no
antifreeze activity could be detected when the protein
samples containing the S100 or the S35 protein bands
from G. gastrica were assayed independently. However,
the antifreeze activity was restored and reached a similar
level as the original protein sample (the 60% ammonium
sulfate saturation fraction) when fractions containing
each protein band were mixed (Fig. 4a). The protein mix
was subjected to several FTCs and assessed for anti-
freeze activity after each cycle. As shown in Fig. 4b, the
protein mix maintained its antifreeze activity until the
sixth FTC but decreased rapidly after additional cycles.
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Fig. 2 Fractioning and antifreeze properties of proteins secreted by yeasts. The different yeast species were cultured in YNB-P medium until the
stationary growth phase. The proteins were fractionated from cell-free supernatants using increasing saturation percentages of ammonium sulfate
(indicated at the top of the SDS-PAGE gels). The antifreeze activity (BFR/AFR) of each protein fraction is indicated at the bottom of each gel well.
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The results from the fatty acid analyses are summarized
in Table 2, including the composition details for PUFAs.
Details for the composition of saturated and monoun-
saturated FAs are included in Additional file 3: Table S2.
Among the identified monounsaturated FAs, higher per-
centages of oleic acid (C18:1) were observed in Dioszegia
fristingensis (57%), Rhodotorula mucilaginosa (57%) and

Cystobasidium laryngis (63%), corresponding to 35, 34
and 42% of their total FAs, respectively. Eicosanoic acid
(EPA, C20:1) was present at high percentages in R. muci-
laginosa (1.7%) and C. laryngis (2.1%), representing 1
and 1.4% of total FAs, respectively. With respect to
PUFAs, the highest percentages, from 30 to 37%, were
observed in the yeasts W. anomalus, G. gastrica, V. vic-
toriae and L. creatinivorum. Among PUFAs, the highest

-
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Fig. 3 Chromatographic separation of proteins from yeast samples. The sample corresponding to the ammonium sulfate fraction with the highest
antifreeze activity from L. creatinivorum (dotted line), C. parapsilosis (discontinuous line) and G. gastrica (continuous line) was loaded onto a Superdex
75 10/300 GL column. The mobile phase consisted of 20 mM sodium phosphate buffer at pH 7.0 and 150 mM NaCl at 0.2 ml min~". A, SDS-PAGE
analysis of fractions numbered from 1 to 5 (indicated in the corresponding chromatogram) from G. gastrica. B, Analysis of protein glycosylation: E,
original extract; LP, low-molecular-weight proteins; HP, high-molecular-weight proteins; P, positive control; N, negative control. M, protein marker
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Fig. 4 Freeze-thaw tolerance of proteins from G. gastrica. A, antifreeze properties of protein samples corresponding to fractions: 60% ammonium
sulfate (F60%), rMW 100,000 (S100), MW lower than 35,000 (S35) and a mix of S100 and S35 (S100-535). B, antifreeze properties of $100-S35
determined after several freeze-thaw cycles. The values are the average of three determinations, and the error bars correspond to the
standard deviation

percentages of linoleic acid (LA, C18:2) were observed
in G. victoriae (30%), W. anomalus (33%) and G. gastrica
(35%), representing 10, 12 and 13% of total FAs, respect-
ively. The highest percentage of alpha linoleic acid
(ALA, 18:3) was observed in L. creatinivorum (11%),
corresponding to 3.3% of total FAs.

Extraction and identification of sterols

The yeast species were grown in YM medium supple-
mented with glucose at their optimal growth tempera-
tures until the stationary phase of growth, and yeast
pellets were obtained. Sterols were extracted from the
pelleted yeast cells and were quantified and analyzed by

Table 2 Fatty acids composition in Antarctic yeasts

RP-HPLC. The yeasts with the highest sterol contents
(higher than 3 mg g~ ' dry weight) were M. blollopis, L.
creatinivorum, D. fristingensis and M. gelida (Table 3).
The effect of cultivation temperature on the produc-
tion of sterols was evaluated from 10 to 30 °C for
yeasts with high (M. blollopis and L. creatinivorum)
and low (R. mucilaginosa) sterol contents. No signifi-
cant changes in total sterol contents for either yeast
were observed when they were cultivated at the dif-
ferent temperatures (Fig. 5).

The sterol composition of the different yeast species
was analyzed by RP-HPLC. In all cases, a major peak
was observed that corresponded to ergosterol according

Yeast species Fatty acids, %

Saturated Monounsaturated Polyunsaturated
Total LA(C18:2) ALA(C18:3) €202 <
L. creatinivorum 23.1 427 30.2 186 10.8 0.8
C. parapsilosis 449 200 16.8 13.5 1.9 14
V. victoriae 373 29.6 33.1 30.1 22 08
D. fristingensis 11.0 60.9 28.1 218 6.3 ND
R. mucilaginosa 15.5 60.0 206 17.8 2.2 0.6
C. laryngis 202 67.1 121 11.5 nd 06
S. salmonicolor 437 419 144 144 nd nd
W. anomalus 219 373 36.7 33.1 3.1 0.5
G. gastrica 133 433 364 349 nd 15
M. gelida 493 38.1 12.6 126 nd nd
M. blollopis 440 29.7 263 245 0.7 1.2

nd not detected, LA(C18:2) linoleic acid, ALA(C18:3) alpha linolenic acid, C20:2 < PUFAs of 20 carbons with more than two unsaturation
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Table 3 Analysis of sterols content in different yeast species

Yeast species Biomass Total®, mg g™'
L. creatinivorum 40+ 0.1 403 £0.12%
C. parapsilosis 82+10 194 +0.17
V. victoriae 126 £ 24 152 £ 002
D. fristingensis 36 £02 343 £025
R. mucilaginosa 58+03 207 + 0.04*
C. laryngis 6.5+03 244 + 0.09%
S. salmonicolor 50+ 06 263 +0.13
W. anomalus 71 +02 223 + 0.08*
G. gastrica 87+08 2.13 £ 0.22%
M. gelida 32+£02 3.11 £002
M. blollopis 14 +0.1 691 +0.24

2, normalized by dry weight of yeasts; ®, percentages calculated according to
analysis by RP-HPLC. *, data from Villarreal et al. [38]. The values are the
average of three determinations

to the retention time and absorbance spectrum
(Additional file 4: Figure S2). These results indicate that
M. blollopis and L. creatinivorum had the highest ergos-
terol content by yeast dry weight among the assayed
strains, ie., 6.9 and 4.0 mg g ', respectively. However,
considering the culture volume, the major ergosterol
producers were V. victoriae, G. gastrica and L. creatini-
vorum, which produced 19.2, 18.5 and 16.1 mg 1" of
ergosterol, respectively.

Discussion

In this work, yeast species isolated from Antarctica were
analyzed for the production of ice-binding proteins, un-
saturated fatty acids and ergosterol, compounds associ-
ated with tolerance to cold and freezing conditions and
that are economically attractive. From a physiological
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perspective, none of these metabolites alone could be
correlated with the tolerance to freeze-thaw cycles per-
formed in this study (Additional file 5: Figure S3), sug-
gesting that there is a complex response to this stress
that may involve other factors not analyzed in this study,
such as the production of intracellular IBPs and compat-
ible metabolites.

Antifreeze activity was detected in the secreted pro-
teins of L. creatinivorum, C. parapsilosis, and G. gastrica.
However, it is important to mention that if some of the
studied yeasts secreted AFPs with a minor molecular
weight > 10 kDa, these could not be detected due to the
purification methodology used in this study. In spite of
this, our work increases the number of yeast species
from which AFPs or antifreeze activity has been re-
ported, which so far have been described only for Gla-
ciozyma antarctica, Glaciozyma sp. AY30 (formerly
Leucosporidium sp. AY30), and Rhodotorula glacialis
[49]. AFPs were partially purified only from G. gastrica,
in which at least three proteins with rMWs of 30,000 to
100,000 are responsible for this activity. The majority of
antifreeze proteins described so far are small (less than
25 kDa) [15], and to the best of our knowledge, there
are no reports describing several proteins acting together
to produce antifreeze activity. These proteins maintained
their antifreeze activity after several FTCs, a desirable
characteristic for potential applications as additives for
preserving the viability of frozen cells. The most studied
IBP is a 26-kDa glycosylated protein from an Artic Gla-
ciozyma sp. [50], and its application in preserving several
types of eukaryotic cells, including erythrocytes and
mouse oocytes, has been documented [12, 51-53]. Com-
mercially, natural and synthetic AFPs are expensive, and
studies on those expressed in bacteria, yeast and insect
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Fig. 5 Sterol contents in yeasts cultivated at different temperatures. The yeasts M. blollopis (white columns), L. creatinivorum (black columns), and
R. mucilaginosa (grey columns) were grown until the early stationary phase of growth, and sterols were extracted and quantified from the cell
pellets. The biomass (in g I” ") reached by each culture at each assayed temperature is indicated in each column. The values are the average of
three determinations, and the error bars correspond to the standard deviation
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cell culture systems are necessary for more efficient ex-
pression and scale-up production [54]. Furthermore,
there is a constant search for IBPs with new properties
for application in different fields, for which more
in-depth characterization of the IBPs described here is
necessary to evaluate their applicability.

One of the most studied adaptations of yeasts that
live in cold environments is their lipid metabolism,
which allows them to maintain membrane fluidity at
low temperatures, an example of which is the in-
creased production of unsaturated FAs [22]. In six of
the Antarctic yeast species investigated in this study,
the percentage of unsaturated FAs was higher than
70%, which is consistent with others studies and indi-
cates that Antarctic yeasts produce a higher propor-
tion of unsaturated FAs than yeasts isolated from
other environments [55-57]. Oleic, eicosanoic, linoleic
and alpha-linoleic acids, which are economically im-
portant FAs since they must be incorporated in mam-
malian diets [19, 58, 59], were all identified at high
percentages in at least one of the yeast species ana-
lyzed in this work. Taking into account the total FAs,
the percentages of PUFAs in the yeast species ana-
lyzed in this work ranged from 12 to 37%, which are
very high values compared to the 4% obtained in a
genetically engineered strain of S. cerevisiae [60]. Al-
ternatives to current sources of PUFAs are desirable
to lower the cost of production and to eliminate the
fishy flavor of PUFAs-fortified foods. Yeasts have
many attributes that support the economic feasibility
of their large-scale production, such as high growth
rates and production yields using inexpensive growth
media, as well as the ability to increase their product-
ivity through culture optimization and genetic manip-
ulations [61-63]. Although lipid or PUFA synthesis
has been achieved through genetic engineering, the
culture conditions that favor lipid accumulation, the
high synthesis of PUFAs and cell growth are lacking,
which limits large-scale economic production [64].

In all yeast species analyzed in this study, almost
100% of sterols found corresponded to ergosterol. Al-
though the highest specific content of ergosterol was
observed for M. blollopis, V. victoriae produced the
highest amount of ergosterol per liter of culture. The
commercial sources of ergosterol correspond to
strains of S. cerevisiae; however, the ergosterol con-
tent is finely regulated in this yeast species at the
transcriptional level, resulting in a low production
[65]. The ergosterol contents of M. blollopis and L.
creatinivorum were comparable to a genetically modi-
fied strain of S. cerevisiae [33, 34], raising the possi-
bility of future improvements of their natural
ergosterol production at an industrial scale through
the modification of culture conditions.
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Conclusions

From a physiological perspective, none of the com-
pounds analyzed in this study may solely explain the
freeze-thaw tolerance observed for the yeast species in-
vestigated, suggesting a complex response to this stress
that may include other cellular mechanisms that were
not considered. With respect to the production of eco-
nomically important compounds, we identified yeasts
that are good candidates for the industrial production of
AFPs, PUFAs and ergosterol.
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