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Percutaneous coronary intervention (PCI) is one of the most effective reperfusion

strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion

(I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths.

The pathological processes of myocardial I/R injury include apoptosis, autophagy, and

irreversible cell death caused by calcium overload, oxidative stress, and inflammation.

Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury

that contributes to final infarct size (IS) and bound with hospitalization of heart

failure as well as all-cause mortality within the following 12 months. Therefore, the

addition of adjuvant intervention to improve myocardial salvage and cardiac function

calls for further investigation. Phytochemicals are non-nutritive bioactive secondary

compounds abundantly found in Chinese herbal medicine. Great effort has been

put into phytochemicals because they are often in line with the expectations to

improve myocardial I/R injury without compromising the clinical efficacy or to even

produce synergy. We summarized the previous efforts, briefly outlined the mechanism

of myocardial I/R injury, and focused on exploring the cardioprotective effects and

potential mechanisms of all phytochemical types that have been investigated under

myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic

candidates for further development and research on combating myocardial I/R injury.

Nevertheless, more studies are needed to provide a better understanding of the

mechanism of myocardial I/R injury treatment using phytochemicals and possible side

effects associated with this approach.
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INTRODUCTION

AMI remains the world’s leading cause of morbidity and
mortality (1). Of all the deaths, adverse acute ischemic events,
such as ST-elevation myocardial infarction (STEMI), are the
main triggers (2). In recent years, most of the endeavors in
the processing of STEMI have been focused on guaranteeing
the prompt coronary revascularization of the culprit artery
and exploitation of pharmacological regimens for further
preservation of the coronary blood flow (3, 4). Early primary
percutaneous coronary intervention (pPCI; within 2 h since
symptoms onset) has proved effective in reducing ischemia time
to improve the outcomes of patients with STEMI (5); however,
the cardiomyocytes begin to die having experienced a long-term
ischemic environment. Even though reperfusion proves effective
in limiting this process, it causes a spike of further cardiomyocyte
injury (known as “reperfusion injury”) that contributes to final
IS (6), which remains a crucial determinant of prognosis and is
bound with hospitalization of heart failure as well as all-cause
mortality within the following 12 months. While the ischemic
injury increases with the severity and the duration of blood
flow reduction, reperfusion injury achieves its maximum with a
moderate amount of ischemic injury (7). Therefore, the addition
of adjuvant intervention to limit cardiomyocyte death during
myocardial I/R injury has become necessary.

The exact mechanisms of how the homeostasis of cardiac
cells is impaired during myocardial I/R injury are not fully
understood (8). Pathological changes, such as calcium overload,
inflammation, apoptosis, neurohumoral activation, autophagy,
and oxidative stress, are considered to be of equal contribution
to I/R injury (9). Phytochemicals, the secondary metabolites

Abbreviations: AMI, acute myocardial infarction; STEMI, ST-elevation

myocardial infarction; pPCI, primary percutaneous coronary intervention;

IS, infarct size; I/R, ischemia-reperfusion; NADH+, nicotinamide adenine

dinucleotide; ROS, reactive oxygen species; STAT3, signal transducer and activator

of transcription 3; BCL-C, B-cell lymphoma-C; Bcl-xL, B-cell lymphoma-

xL; mTOR, mammalian target of rapamycin; Cyt c, cytochrome c; Bcl-2,

B-cell lymphoma-2; Bax, BCL2-associated X; H/R, hypoxia-reoxygenation;

VSMC, vascular smooth muscle cell; 3-MA, 3-methyladenine; HMGB1, high-

mobility group box protein 1; GSK-3β, glycogen synthase kinase-3β; PI3K,

phosphatidylinositol-3-OH kinase; Akt, protein kinase b; ATP, adenosine

triphosphate; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B

cells; BRCA1, breast cancer type 1 sensitive protein; NLRP3, nod-like receptor

protein 3; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; Nrf2, nuclear

factor-erythroid 2-related factor 2; STIM1, stromal interaction molecule1; Sal-B,

salvianolatic acid B; 6-G, 6-Gingerol; CK-MB, creatine kinase-MB; LDH, lactate

dehydrogenase; ERK, p-extracellular signal-regulated protein kinase; MEK, (p)-

mitogen-activated protein kinase kinase; CG, Calycosin-7-O-β-D-glucoside; NO,

nitric oxide; HKL, honokiol; TAB, tournefolic acid B; ER, endoplasmic reticulum;

AMPK, adenosine monophosphate-activated protein kinase; JAK2, Janus kinase

2; SalA, salvinolic acid A; SA, salvinolic acids; EGCG, epigallocatechin-3-gallate;

JNK, c-Jun N-terminal kinases; ERK, extracellular signal-regulated kinase;

BCF, bauhinia championii flavone; GAS, gastrodin; AS-IV, astragaloside IV;

ISBA, isovaleroylbinankadsurin A; RISK, reperfusion injury salvage kinase;

GLA, glaucocalyxin A; GB, ginkgolide B; BBR, berberine; ERS, endoplasmic

reticulum stress; SOD, superoxide dismutase; HSP70, heat shock proteins 70;

PMS, plantamajoside; DATS, diallyl trisulfide; EE, eleutheroside E; TLR4, toll-

like receptor 4; RAPA, rapamycin; SHR, spontaneous hypertension rat; TCM,

traditional Chinese medicine.

and natural components of herbs, mainly composed of non-
nutritive bioactive compounds, have long been recognized as
promising therapeutic candidates for novel drugs (10). They are
synthesized only in specific plant cells and do not take part
in the energy metabolism nor the catabolic or anabolic ones
(11). More than 10,000 phytochemicals have been discovered so
far, including saponins, polyphenols, carotenoids, terpenes, and
alkaloids, while many remain unknown (12). In recent years, they
have attracted more attention as modulators of many cellular
signaling pathways and by the ability of health improvement (13).
For example, metabolic disorders, such as cardiovascular disease,
cancer, and obesity, may benefit frommany phytochemicals (14).
Research and clinical studies have demonstrated the compounds’
biological effects, such as antioxidant, anti-inflammatory, and
cytotoxic activities, suggesting that these natural products may
be potential to alleviate the myocardial I/R injury (15, 16).

This review provides a concise summary of the efforts of
former researchers on how phytochemicals alleviate myocardial
I/R injury and highlights the evidence of their cardioprotective-
related mechanisms. We aim to present new insight into the
development of potential treatments for myocardial I/R injury.

THE MECHANISM OF MYOCARDIAL I/R
INJURY

Many pathways that induce cell death, also known as apoptosis,
programmed necrosis, or necroptosis, are initiated bymyocardial
I/R injury, involving several signaling pathways (9). Therefore,
it is necessary to find improved protective strategies to prevent
myocardial I/R injury, of which the related mechanisms have
been widely studied. A growing number of pieces of research,
both in vitro and in vivo, have proved phytochemicals to be
potently cardioprotective on myocardial I/R injury, mainly by
restraining irreversible cell death caused by apoptosis, autophagy,
and necrosis via preventing calcium overload, oxidative stress,
and inflammation (17) (Figure 1).

Apoptosis
Apoptosis exists in several cellular organisms. Stimulation of
apoptotic pathways leads to cell death in ischemic heart cells (18).
Generally, the high level of reactive oxygen species (ROS) can
be lethal for I/R-injured cells and attributed to cardiomyocyte
apoptosis (19). It is proved that during myocardial I/R injury,
apoptosis-related genes, such as signal transducer and activator of
transcription 3(STAT3), B-cell lymphoma-C(BCL-C), and B-cell
lymphoma-xL(Bcl-xL) in the myocardial tissue, are rearranged
(20). There is evidence that the increased expression of these
genes produces protective proteins against apoptotic pathways
and reduces physiotherapy (21). Ca2+ signaling, which can be
modulated and synchronized by mitochondria, is an essential
part of apoptosis. Accumulation of Ca2+ in mitochondria leads
to apoptosis (22). In porcine models of chronic myocardial
ischemia and hibernation, autophagy-enhanced cardiomyocytes
were negative for apoptosis, while apoptotic cells were negative
for autophagy, suggesting that autophagy plays a protective role
against apoptosis in this model (23). mTORC1 can sense cellular
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FIGURE 1 | A simplified scheme of the mechanism of acute myocardial I/R injury. During acute myocardial ischemia, ischemic cardiomyocytes switch to anaerobic

metabolism to provide ATP. However, this results in the Na+-H+ exchanger to extrude H+ and results in intracellular Na+ overload, which activates the 2Na+-Ca2+

exchanger to function in reverse to extrude Na+ and leads to intracellular Ca2+ overload. The endoplasmic reticulum also markedly reduces Ca2+ reuptake, which

exacerbates intracellular Ca2+ overload. Ca2+ can also induce MPTP opening. During reperfusion, the influx of oxygen fuels production of ROS (oxygen paradox).

Other sources of ROS include xanthine oxidase (endothelial cells) and NADPH oxidase (neutrophils). ROS can damage virtually every biomolecule found in cells,

promote the opening of mPTPs, and activate inflammatory and thrombogenic cascades to exacerbate cell injury.

nutrient status (24) and inhibits myocardial I/R injury. Growth
factor receptor-bound protein 1(GRb1) treatment antagonizes
the inhibitory effect of mTORC1 (25). B-cell lymphoma-2(Bcl-2)
has the potential to inhibit apoptosis, mitochondria disruption,
the following cytochrome c(Cyt c) release, and, finally, caspase
activation (26). Pretreating with Eupatilin can increase Bcl-
2 expression, decrease BCL2-associated X(Bax), and cleaved
caspase-3 expression induced by hypoxia-reoxygenation (H/R) in
H9c2 cells (27).

Autophagy
Autophagy is essential to maintain cellular homeostasis. But
its effects on myocardial I/R injury are paradoxical (17).
Autophagy is characterized by the formation of a cup-shaped pre-
autophagosomal double-membrane structure, which surrounds
cytoplasmic material and closes to form the autophagosome
(19). Autophagosome clearance, which can cause autophagy
acceleration and cardiomyocyte death, is damaged during I/R
injury (28). The knocking out of Beclin1 heterozygous eliminates
myocardial I/R-induced autophagosome formation, as well as
reduces myocardial infarction and cell death (29). Likewise,
3-methyladenine (3-MA) reduces autophagy caused by I/R
via prohibiting autophagy and increases survived cells (30).
Hesperidin can inhibit excessive autophagy by triggering the
PI3K/Akt/mammalian target of the rapamycin (mTOR) pathway.
Hesperidin was found to be capable of reinforcing p-PI3K, p-
Akt, and p-mTOR levels and downregulating LC3II and Beclin1,

whereas its specific inhibitor, LY294002, obviously invalidated all
the effects mentioned above (31).

On the contrary, autophagy has been widely reported to be
beneficial to myocardial I/R injury. The recovery of myocardium
function after I/R benefits from a high level of autophagy.
However, the depletion of adenosine triphosphate (ATP) is
possibly the reason for autophagosome-lysosome pathway
impairment during ischemia, which correlates with permanent
injury in contractile function (32). With enhanced autophagy,
apoptosis decreases in cardiac myocytes, same as autophagy
in apoptotic cells in the porcine model of chronic myocardial
ischemia and hibernating myocardium. Therefore, there is a
deduction that cells are protected by autophagy against apoptosis
in this model (33). Also, glucose deprivation-mediated cell death
can be promoted when autophagy is inhibited (29). It can be
concluded that when autophagy is upregulated, cells are likely to
survive during I/R. Resveratrol is found to alleviate I/R injury of
the myocardium in diabetic patients by promoting programmed
cell death and via upregulating Beclin 1 and LC3-II (34).

Ca2+ Overload
When there is myocardium hypoperfusion, affected
cardiomyocytes switch to use less oxygen, leading to lactate, H+,
and nicotinamide adenine dinucleotide (NADH+) accumulation
and cytosolic pH decrease. To reestablish acid-based balance,
the plasmalemma Na+/Ca2+ exchanger is activated. Then,
the extracellular H+ ions accumulated during ischemia raise
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the proton gradient across the plasmalemma and further
result in cytosolic Ca2+ increase (9). In addition, under
physiological conditions, inactive calpains compete with their
endogenous inhibitor calpastatin and are stored in cellular
cytosol (35). Calpain is activated by the elevation of intracellular
calcium levels, and its conformational changes promote the
intracellular translocation of Ca2+, where phospholipids
close Ca2+ channels, activating downstream proteins or
diminishing the Ca2+ threshold for calpain activation (36).
Myocardial ischemia/reperfusion injury is associated with a
calcium homeostasis imbalance (37). In vivo studies showed
an increment in intracellular Ca2+ concentration caused by
ischemia/reperfusion in isolated perfused mammalian hearts
(36). Reperfusion leads to rapid alterations in ion flux and
alters the state of ion exchange, resulting in intracellular
calcium overload (38). Increased calcium overload plays a key
role in apoptosis, cell cycle, and differentiation, modifying
cardiomyocyte function.

Oxidative Stress
Oxidative stress is the result of an imbalance between oxidants
and anti-oxidants. When the blood supply in an ischemic area
is reestablished, the influx of oxygen produces excessive ROS,
which is harmful to the ischemic area. This phenomenon is called
the oxygen paradox, meaning that reperfusion after ischemia
can result in injury rather than protection. This is because
ROS modifies the metabolism in cells and tissues, leading to
dysfunction or even cell death (39). ROS is the reason why I/R
is deleterious for cells and tissues (40). Thus, oxidative stress
reduction may combat I/R injury, and further investigations
are needed. NF-E2-related factor 2(Nrf2), a member of the NF-
E2 family of nuclear basic leucine zipper transcription factors,
promotes the detoxification of pro-oxidative stressors. The Nrf2
signaling pathway plays a critical role in protecting the ischemic
myocardium from myocardial I/R injury. Nrf2 deficiency mice
show increased oxidative stress as well as an aggravated cardiac
injury during I/R (41).

Inflammation
Inflammation is a strong shield to protect the body, but
dysfunctional inflammation has much to do with the
pathogenesis of many diseases. Leukocyte infiltration can
be activated in the infarcted myocardial region via a complex
inflammatory pathway to protect unaffected regions (42).
Evidence shows that, in a heart, reperfused areas can be harmed
by an excessively activated inflammatory reaction (43). Nuclear
factor kappa-light-chain enhancer of the activated B cells (NF-
κB) signaling pathway is crucial to cardiac I-R injury. NF-κB
interacts with the nucleus by regulating more than 200 genes,
among which some produce inflammatory cytokines, which
ultimately lead to excessive inflammation. H9C2 cells, which are
damaged by hypoxia through BRCA1/ROS-regulated NLRP3
inflammasome/IL-1β and NF-κB/TNF-α/IL-6 pathways, can be
improved by Paeonol (44). When intercellular macromolecular
proteins aggregate, they are called inflammasomes, which
promote the maturation of inflammatory cytokines (45). NLRP3
consists of NLRP3, ASC, and caspase-1 precursor (Pro-Casp-1)

(46) and is the most widely studied inflammatory pathway for
now. Artemisinin can reduce the oxidative stress reaction due to
its NLRP3-regulating ability (47).

CARDIOPROTECTIVE PHYTOCHEMICALS
ATTENUATING MYOCARDIAL I/R INJURY

We thoroughly illustrated the phytochemicals proved to possess
protective effects in the heart against I/R injury. Because of
their variety, phytochemicals have been classified into phenols,
saponins, lignans, terpenes, alkaloids, quinones, polysaccharides,
carotenoids, coumarin, and other compounds for a better
summary in this review.

Phenols
Phenolic compounds constitute one of the most ubiquitous
groups of plant metabolites and are an integral part of
both human and animal diets (48). Among numerous natural
phytochemicals used to prevent myocardial I/R injury, phenolic
compounds are particularly important because of their unique
properties. Although, these compounds were first known for
their antioxidant properties, several studies over the years have
shown that they can exert protective effects against myocardial
I/R injury. The mechanisms underlying these potential benefits
include the regulation of different cell signaling pathways and
gene expression.

Paeonol
Paeonol (2′-hydroxy-4′-methoxyacetophenone), isolated from
the plant Moutan Cortex, was found to possess broad
pharmacological effects on treating atherosclerotic lesions. This
is associated with alleviating endothelial injury, ameliorating
inflammation and oxidative stress, repressing platelet activation
and aggregation, inhibiting vascular smooth muscle cell (VSMC)
proliferation and migration, as well as lowering blood lipids
(49–53). Pretreating with paeonol can significantly improve
the hypoxia-reoxygenation (H/R) damage and the BRCA1
expression of H9C2 cells through the BRCA1/ROS-regulated
NLRP3 inflammasome/IL-1β and NF-κB/TNF-α/IL-6 pathways.
It may be a candidate drug for treatingmyocardial I/R injury (44).

Oridonin
Oridonin is a wide-studied flavonoid compound extracted from
Isodon rubescens (Hemsl.) H.Hara, and it has a multitargeting
anticancer effect (54). Lu et al. demonstrated that it exerts
cardioprotective effects by reducing I/R-induced inflammatory
injury. Pretreating with oridonin also reduced oxidative stress
and downregulated the NLRP3 inflammasome pathway. These
recent findings have shown the molecular mechanism of its
alleviating myocardial I/R injury. Applying oridonin could help
prevent and treat myocardial I/R injury (55).

Baicalin
Baicalin is a flavonoid compound isolated from the roots of
Scutellaria baicalensis Georgi. It proves effective in treating
diseases like cancer, osteoarthritis, hepatitis, and nephritis
(56–58). It was reported that baicalin exerted antioxidant,
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anti-apoptotic, and anti-inflammatory properties (59). Studies
demonstrated that baicalin was protective for rat cardiomyocytes
through downregulating H/R-induced injury (60). It was
demonstrated by Kong et al. that baicalin reduced I/R damage
in the heart by its antioxidant and paracrine effects (61).
Luan et al. demonstrated that by regulating the Akt/NF-κB
signaling pathway, baicalin downregulated myocardial apoptosis
and inflammation (62). Liu et al. reported that LV functions
were improved and myocardial apoptosis was suppressed by
baicalin via suppressing the CaSR/ERK1/2 signaling pathway
in myocardial I/R injury rats (63). Xu et al. reported the
protective effect of baicalin, via the JAK/STAT pathway,
on myocardial I/R injury. In addition, baicalin reduced
cardiomyocytes damage, downregulated cell death caused by I/R,
and inhibited inflammation response in the heart by interfering
with macrophages (64).

Resveratrol
The natural compound resveratrol was mainly extracted in
fruits, such as peanut, grape, and berry. It has been demonstrated
that resveratrol downregulates the pathological progression
in many disease models, such as cancer or diabetes mellitus
(65–67). Currently, resveratrol has been demonstrated to carry
a potentially cardioprotective property against myocardial
I/R injury via regulating inflammatory, angiogenesis, energy
metabolism, mitochondrial function, and cardiomyocyte
apoptosis (68, 69). Compared with vehicles, resveratrol
significantly reduced the size heart infarction area in small animal
studies both in vivo and ex vivo. Neither the reperfusion time
nor the route of administration affects the effects of resveratrol
(70). Resveratrol also exerts protection on myocardial post-I/R
damage through inhibiting stromal interaction molecule1
(STIM1)-mediated store-operated Ca2+ accumulation (71),
upregulating of Beclin-1 and LC-3II expression to induce
autophagy (34) and regulating phosphorylation levels of proteins
relative to the PI3K/Akt/e-NOS pathway (72). Concluding from
the available data, resveratrol presents a significant limiting effect
against myocardial I/R damage.

Polydatin
Polydatin, isolated from Reynoutria japonica Houtt., is another
monocrystalline compound like resveratrol. The difference
between them is at position C-3, where polydatin has the
substitution of a glucoside group instead of a hydroxy group
(73, 74). Polydatin exerts several pharmacological properties,
such as anti-inflammatory, antioxidant (75), and alleviation of
cardiac remodeling induced by pressure overload (74). Ling
et al. reported that this compound aggravated autophagy and
inhibited cell death during I/R or H/R, and co-treatment with
adenovirus carrying short hairpin RNA for Beclin 1 and 3-MA,
an autophagic inhibitor, would reverse this effect. Polydatin-
treated mice showed a significantly reduced IS in heart tissue
and a better heart function, compared with vehicle-treated
mice, whereas these effects could be partly antagonized by 3-
methyladenine (3-MA). These findings showed that polydatin
treatment after infarction lowered myocardial I/R damage by

enhancing autophagy to clear impaired mitochondria and to
downregulate ROS and apoptosis (76).

Salvianolic Acid B
Salvianolic acid B (Sal B), derived from Salvia miltiorrhiza
Bunge., is a water-soluble compound (77). Sal B exerts
multiple effects, such as reducing inflammatory factor expression,
inhibiting cell death, and alleviating oxidative stress (78, 79).
Former evidence has shown that Sal B can alleviate oxidative
stress, modulate calcium overload, promote endothelial function,
stabilize mitochondrial membrane potential, and upregulate
microRNA-30 (80), making it protective against myocardial I/R
injury. A recent study has revealed that Sal B could alleviate
myocardial I/R damage dose-dependently, promote cardiac
function, decrease myocardial infarction size, reduce myocardial
injury marker expression, inhibit inflammatory responses,
increase PI3K/Akt expression, and decrease high-mobility group
box protein 1(HMGB1) expression. The mechanism is that Sal B
ameliorated myocardial I/R damage by promoting PI3K/Akt and
decreasing the release of HMGB1 in rats (81).

6-Gingerol
6-Gingerol (6-G), a main component of gingerols and a phenolic
compound isolated from Curcuma longa L., exerts antioxidative,
antiapoptotic, and anti-inflammatory effects (82). Sampath
et al. demonstrated that 6-G could prevent atherosclerosis via
reducing cell death caused by excess oxidative stress (83). El-
Bakly et al. found 6-G significantly protected cardiomyocytes
by inhibiting cell death via alleviating oxidative stress and
doxorubicin-induced myocardial damage (84). Lv et al. reported
that pretreating with 6-G remarkably promoted cardiac function
and decreased IS and I/R-induced creatine kinase-MB levels.
6-G alleviates myocardial I/R injury by reducing I/R-induced
cardiomyocyte cell death and upregulating the PI3K/Akt
signaling pathway. This evidence proved that 6-G may be a
candidate drug for alleviating myocardial I/R injury (85).

Oleuropein
Oleuropein, a glycoside compound, is of antispasmodic effects,
and can also reverse arrhythmia. In the rabbit isolated heart,
it increases the coronary blood flow by 50% (86). Oleuropein
can also lower blood pressure as it strongly inhibits the
angiotensin-converting enzyme, as a result of its highly reactive
2,3-dihydroxy glutaraldehyde structure. A study reported that
oleuropein protected the heart from myocardial I/R injury. In
a myocardial I/R rat model, oleuropein reduced CK-MB and
lactate dehydrogenase (LDH) levels as well as infarction size
in the heart. Oleuropein also inhibited the caspase-3 pathway
and reduced p53, p-IκBα protein, p-extracellular signal-regulated
protein kinase (ERK), and phosphorylated (p)-mitogen-activated
protein kinase kinase (MEK) expression. This evidence proved
that by regulating the MEK/ERK/STAT3 signaling pathway,
oleuropein inhibits myocardial I/R in rats (86).

Calycosin-7-O-β-D-Glucoside
Calycosin-7-O-β-D-glucoside (CG) is a major isoflavone
extracted from Astragalus mongholicus Bunge, which has been
proved to exert anti-inflammatory (87) and antioxidant abilities
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(88). Studies demonstrated that CG could decrease the size
of cerebral infarction in the process of cerebral I/R injury,
maintain the stability of the blood-brain barrier, and reduce
the I/R-induced neuronal injury (89). In vitro and in vivo
experiments showed that CG activated the JAK2/STAT3 pathway
and upregulated the secretion of IL-10, and, therefore, can
protect cardiomyocytes from I/R-induced cell death (90).

Puerarin
Puerarin (7,4’-dihydroxy-8-C-glucosylisoflavone) is an
isoflavone of broad pharmacological abilities (91), including
treating cardiovascular and cerebrovascular diseases, which
can be a potential drug in alleviating I/R injury (92). Puerarin
lowers the lipid peroxidation level, and aldose reductase activity
decreases superoxide ion radicals and protects endothelial
cells (93). Studies showed that puerarin remarkably shrinks
the myocardial infarction size and increased pressure in the
left ventricular in rats with diabetes mellitus suffering from
myocardial I/R. Puerarin significantly reduced oxidative stress,
inflammation, and NF-κB protein expression. Furthermore,
puerarin raised the levels of VEGFA and Ang-I, as well as
increased nitric oxide (NO) production, caspase-3 activity, and
phosphorylated-endothelial NO synthase protein expression.
These findings illustrated that puerarin protected cardiomyocytes
and served to reduce myocardial I/R damage (94).

Hesperidin
Widely found in citrus fruits, hesperidin is a flavanone glycoside
with a molecular formula of C28H34O15 and a molecular
weight of 610.57 Da (95). Hesperidin has been found to possess
broad biological effects, including antioxidant, anti-cancer,
radio-protective, anti-inflammatory, and anti-allergic, properties
(96–99). Gandhi et al. reported that hesperidin reduced
arrhythmias and apoptosis caused in myocardial I/R injury, also
reduced inflammation and oxidative stress, decreased excessive
autophagy, and promoted the PI3K/Akt/mTOR pathway (31,
100).

Luteolin
Luteolin is a flavone widely presented in several plants. Former
experiments reported that Lut protected the cardiomyocytes
from I/R damage by decreasing microRNA-208b-3p expression
and inhibiting the PI3K/Akt pathway (101, 102), and partly
reversing the low expression and activity of SERCA2a in
the injured area (103). Other evidence demonstrated that it
modulated SERCA2a by SUMOylation at lysine 585 (104). These
studies demonstrated that luteolin prevents the heart from
suffering from I/R injury.

Honokiol
Honokiol (HKL) is isolated from Magnolia Officinalis Rehder
and E.H. Wilson, which has long been used as a herb in
traditional Chinese medicine. It is known for its effect of treating
various vascular diseases, including ischemia and infarction
(105). HKL was reported to be able to alleviate cerebral I/R injury
via relieving oxidative stress and downregulating inflammatory
reaction (106). Early evidence also proved that HKL could
limit the infarct area and reduce arrhythmia in rats with AMI

(107), in which its antioxidative and antiapoptotic abilities
played critical roles. What is more, HKL could also regulate the
SIRT1/Nrf2 signaling pathway, which was also important for its
cardioprotective effects (108). Tan et al. demonstrated that post-
treating with HKL reduced myocardial I/R injury and promoted
autophagic flux in C57BL/6 mice (109).

Tournefolic Acid B
Tournefolic acid B (TAB) is a newly discovered compound
isolated fromClinopodium chinense (Benth.) Kuntze, a traditional
Chinese herbal medicine with modern pharmacological effects,
such as anti-inflammatory, antitumor, antiradiation, and
lowering blood glucose. Yu et al. reported that TAB significantly
prevented the heart from being damaged by I/R injuries by
suppressing ER stress and oxidative stress through inhibiting
PI3K/AKT pathways. In vitro and ex vivo experiments, both
supported this conclusion, meaning that TAB likely inhibited cell
apoptosis by resisting oxidation-endoplasmic reticulum stress
via activating the PI3K/AKT pathway (110).

Orientin
Orientin, one of the major active flavonoids of Persicaria
orientalis (L.) Spach, is a traditional Chinese herb. It was
reported to exert broad pharmacological properties, including
anti-oxidant, anti-inflammation, and anti-apoptosis (111).
Former experiments have demonstrated that orientin protected
myocardium from I/R damage probably by reducing cell death
(112). Evidence showed that the protective effect of orientin
against myocardial I/R damage is partly regulated through subtle
induction of autophagy, which involves the AMPK-mTORC1
signaling pathway and the phosphorylation of Beclin 1/Bcl-2
interaction in ER (113).

Icariin
Icariin, a natural flavonoid glucoside, is of broad pharmacological
properties (114). Studies proved that icariin had antioxidant,
antidepressant, anti-inflammatory, neuroprotective, and male
sexual function improvement effects in vitro (115–119). In
congestive heart failure rats, icariin promoted left ventricular
function and attenuated cardiac remodeling via down-regulating
matrix metalloproteinase-2 and−9 activity and inhibited
cardiomyocyte death (119). Previous experiments have proved
that myocardial function was protected by icariin from
myocardial I/R damage in rats. It reduced IS, decreased I/R
injury, and inhibited its remodeling. These properties of icariin
are associated with lower blood indicators CK, IMA, and LDH
levels in the serum and upregulated PI3K/Akt/eNOS pathway in
rats’ ischemic tissue, making it a candidate drug for preventing
and resisting I/R injury in the early stage (120).

Curcumin
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-
heptadiene-3,5-dione], a natural compound isolated from
the roots of Curcuma longa L., exerts wide pharmacological
activities, including antioxidant, anti-inflammatory, and
anticarcinogenic abilities in several rodent models. Previous
experiments have suggested that curcumin is protective against
some cardiovascular pathological conditions leading to heart
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failure (121, 122). Curcumin can improve heart function and
ameliorate heart damage because it reduces oxidative stress and
cell death, specifically by activating the phosphorylation of JAK2
and STAT3, increasing the myocardium Bcl-2/Bax expression
and inhibiting caspase-3 (123).

Salvianolic Acid A
Salvianolic acid A is a water-soluble compound of Salvia
miltiorrhiza Bunge, which is known to exert broad effects,
including antioxidant, anticarcinogenic, anti-fibrotic, anti-
inflammatory, and anti-platelet aggregation (124, 125). A
previous study reported that, in diabetic rats, the JNK/PI3K/Akt
signaling pathway correlated with myocardial I/R injury, and Sal
A improved the recovery of heart function and prevented cell
death following I/R damage in this model. This study provided
critical evidence of the molecular mechanisms relating to Sal A’s
cardioprotective effects on I/R-injured diabetic rats (126).

Astilbin
Astilbin, a flavonoid compound extracted from the roots of
Smilax china L., which has been long used in the traditional
Chinese medicine clinical practice, has been found to have
anti-hepatic, anti-arthritic, and anti-renal injury effects (127–
129). Researchers have reported that in the early stages of STZ-
induced diabetes rats, Astilbin resulted in a better heart function
recovery caused by myocardial I/R damage via constraining
inflammation and reducing HMGB1, phosphorylating NF-κB in
ischemic myocardial tissue (130).

Eupatilin
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone), which
comes from the species of Artemisia plants, is a flavonoid of
bioactive properties. Increasing studies have demonstrated
that eupatilin exerts anti-allergic, anti-oxidant, anti-tumor, and
anti-inflammatory activities (131–133). Experiments proved that
eupatilin alleviated myocardial I/R damage via decreasing ROS
and cell death by activating the Akt/glycogen synthase kinase-
3β(GSK-3β) signaling pathway. Eupatilin is of therapeutic usage
in treating myocardial I/R injury (27).

Syringic Acid
Syringic acid (SA), a natural O-methylated trihydroxy benzoic
acid isolated from Dendrobium nobile Lindl., possesses broad
biological activities, such as anti-oxidant, anti-tumor, and anti-
inflammatory properties (134, 135). SA was found to prevent
I/R injury. Tokmak et al. (136) reported that pretreating with
SA in the spinal cord could reduce oxidative stress and neuronal
degeneration induced by I/R. SA also ameliorated renal I/R injury
(122). Liu et al. verified that SA exerted cardioprotective activities
against myocardial I/R damage via activating the PI3K/Akt/GSK-
3β signaling pathway and inhibiting the mitochondria-induced
cell death (137).

Epigallocatechin-3-Gallate
Epigallocatechin-3-gallate (EGCG), the most widely studied
catechin extracted from green tea leaves, was reported to
reduce cardiovascular risk (138) through anti-inflammation and
antioxidant activities, lowering serum cholesterol levels and

reducing atherosclerosis (139, 140). Also, EGCG pretreatment
limits IS caused by ischemia in the rat heart (141). Studies verified
that giving rats EGCG together with reperfusion protected their
hearts from regional myocardial I/R damage by activating pro-
survival kinases, involving PI3K-Akt/GSK-3β and inhibiting
cell death pathway p38 and JNK but not involving the ERK
pathway (142).

Icariin
Icariin was found in Epimedium brevicornu Maxim., and it is a
major compound of the herb Yin YangHuo in traditional Chinese
medicine. Its effects include anti-inflammation, antidepression,
and antineoplastic properties. It also improves male sexual
function, enhances bone healing, and protects neurons (143).
Icariin postconditioning could attenuate myocardial I/R injury in
the experimental rat model by activating the PI3K/Akt pathway
and reducing cell death (144).

Troxerutin
Troxerutin, also known as vitamin P4, a derived natural
bioflavonoid, owns wide biological properties including anti-
oxidation and anti-inflammation (145). Pretreatment with this
flavonoid extracted from Sophora japonica and Dimorphandra
gardneriana (146) could decrease the occurrence of arrhythmias
induced by I/R in diabetic and healthy rat hearts. Studies proved
that the possible mechanism of its cardioprotective abilities
may be the downregulating of inflammatory cytokines and
inflammatory reactions in the heart (147).

Tilianin
Tilianin proves effective in upregulating NO synthase expression
and NO production. It also acts as an anti-inflammatory
ingredient (148). A study demonstrated that Tilianin exerted a
significant protective effect on myocardial I/R-injured rat hearts
(149). Studies verified that Tilianin pretreatment ameliorated the
myocardial infarction and I/R damage in rats via the preservation
of mitochondrial functions. The underlying mechanisms of
Tilianin’s cardioprotective activities may be mitochondrial
preservation and cell apoptosis inhibition (150).

Isoquercitrin
Isoquercitrin is a natural compound present in vegetables, herbs,
and flowers (151). It has been discovered that isoquercitrin
reduces inflammatory, allergic reactions, and oxidative stress.
(152). Isoquercetin was reported to reserve mitochondrial
function and inhibit Cyt release induced by I/R injury in H9C2
cells (153). These findings verified that isoquercetin can be
a candidate drug with cardiovascular protective effects in the
treatment of myocardial I/R injury.

Vitexin
Vitexin (apigenin-8-C-β-D-glucopyranoside) is a flavonoid
derived from Acer rubrum L., Anthurium andraeanum, and
Cucumis sativus L. (154). Early studies have shown the
hypotensive property and anti-inflammatory ability of vitexin.
Recent pieces of research demonstrated vitexin’s potential
application for treating diseases like cancer (155). In vivo
studies verified that vitexin was protective against myocardial
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I/R damage in rat heart, of which the mechanism could be
related to its antioxidation ability and lowering of the levels
of inflammatory cytokines by inhibiting the expression of NF-
κB and TNF-α, as well as the upregulating phospho-ERK and
downregulating phospho-c-Jun expression (156).

Apigenin
As a member of the non-mutagenic flavone subclass, Apigenin,
isolated from the leaves of Apium graveolens L., exhibits
low levels of toxicity. Previous studies have revealed Api’s
broad bioactive effects, including antiviral, antibacterial, anti-
carcinogenic, antioxidant, and anti-inflammatory (157). Studies
showed that Api could inhibit the p38 MAPK signaling pathway
to protect the myocardium from I/R damage (158).

Bauhinia Championii Flavone
Bauhinia championii flavone (BCF) is extracted from the stem
of Phanera championii Benth., of which the extract promotes
blood circulation, reduces inflammatory and oxidative stress, and
prevents platelet aggregation (159). Jian et al. reported BCF’s
protective properties of myocardium suffering from I/R damage
in rats. The underlying mechanisms may depend on its ability to
inhibit lipid peroxidation and activate the anti-oxidative system,
its anti-inflammatory property by downregulating inflammatory
levels by inhibiting signaling pathways, such as TLR4/NF-κB. It
could also inhibit Bax/Bcl-2 ratios and caspase-3 activation (160).

Gastrodin
The phenolic glycoside gastrodin (GAS) is a monomeric
component derived from Gastrodia elata Blume and has a
variety of properties. It has long been used in treating
cerebrovascular and cardiovascular diseases (161). Previous
studies have demonstrated that GAS could reduce oxidative
stress, lower inflammatory levels, and elevate hypoxia tolerance
(162). Neighboring mitochondria and cardiomyocytes could be
protected by the pretreatment of GAS via promoting autophagic
flux and eliminating dysfunctional mitochondria (163).

Pinocembrin
The flavonoid pinocembrin, mainly found in Propolis, possesses
antibacterial, anti-oxidant, and anti-inflammatory properties
(164, 165). Pretreating with pinocembrin reduced cardiac
arrhythmia in I/R rats through the enhancement of Na+-K+-
ATPase and Ca2+-Mg2+-ATPase and the upregulation of Cx43
and Kir2.1 protein expression levels. Via upregulating gap
junction- or ion channel-related gene or protein expression,
cellular gap junction connexin function and IK1 current were
restored, and cardiac arrhythmia was suppressed by correcting
the P-R intermittent period, QRS duration, intracellular
transmission velocity (166).

Silibinin
Silibinin, a polyphenolic flavonoid, is the main active component
extracted from the seed of silybum marianum (milk thistle)
or artichoke (cynara scolymus) (167). Previous studies have
reported silibinin confers protective advantage in improving
both liver and cerebral function after I/R, which raises concern
about the role of silibinin against reperfusion injury in other

tissues, especially in myocardium (168, 169). Chen et al.
demonstrated silibinin reduces cardiomyocytes apoptosis,
attenuates mitochondrial impairment and endoplasmic
reticulum (ER) stress, alleviates ROS generation, neutrophil
infiltration, and cytokines release (170). Furthermore, silibinin
plus BAY 11-7082 (a selected NF-κB inhibitor) do not provide
incremental benefits in improving myocytes apoptosis, oxidative
stress, and inflammation in comparison with NF-κB signaling
inhibition only. Thus, silibinin could prevent myocardial I/R
injury by inhibiting cardiomyocytes apoptosis, reducing ER
stress and oxidative stress, and modulating inflammatory
response via deactivation of the NF-κB signaling pathway.

Saponins
Saponins are known as surface-active compounds that are widely
distributed in the plant kingdom (171). They comprise a non-
polar aglycone or non-saccharide moiety, coupled with polar
mono or oligosaccharides. Saponins mainly include four-ring
triterpene saponins and five-ring triterpene saponins. In recent
years, many studies have shown that the saponins extracted from
herbal are great protective of myocardial I/R injury in vivo and in
vitro. The mechanisms are diverse and mainly involve regulating
energy metabolism and calcium homeostasis, and inhibiting
oxidative stress and inflammation (172).

Polyphyllin I
Polyphyllin I (PPI) is a steroidal saponin extracted from the
roots of Paris polyphylla. PPI’s anti-cancer effect via inhibiting
the proliferation and growth of tumor cells has been proved
in previous studies, making it an anti-cancer drug candidate
(173–175). A recent study has shown that PPI could prevent
myocardial I/R injury, decrease myocardial death, and reduce the
inflammation response and oxidative stress after I/R. Also, PPI
activates NF-κB p65. Therefore, it can be deduced that PPI is
protective of myocardial I/R injury in rats (176).

Ginsenoside Rb1
Ginseng (Panax ginseng C.A.Mey.) can improve the immune
system (177). In many cases, Ginsenoside Rb1 (GRb1) represents
ginseng saponins of Panax ginseng C. A. Mey. Recent animal
studies have shown that GRb1 is protective of many myocardial
diseases, including myocardial I/R injury (178). In vivo and
ex vivo studies have demonstrated GRb1 reduced myocardial
I/R injury, and the underlying mechanism is by reducing both
CK-MB and Trop l levels after I/R. GRb1 improves cardiac
function as well as increases Bcl-2 expression by activating the
phosphorylation of mTOR, inhibiting apoptosis-related proteins
Bax and cleaved-caspase 3 (25).

Gypenoside
Chinese doctors have been using G. pentaphyllum [Gynostemma
pentaphyllum (Thunb.) Makino] to treat diseases for hundreds
of years (179). The main component of G. pentaphyllum is
gypenoside (GP), which is known for its antitumor, anti-
inflammatory, and anti-oxidative effects (180, 181). To our
interest, GP also exhibits protective property against I/R injury.
Qi et al. proved that GP protected I/R-injured cerebral neuronal
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(182). Chang et al. reported the mechanism of this protective
effect, which is by lowering the miR-143-3p level through the
activation of the AMPK/Foxo1 pathway. The changes in signaling
pathways eventually resulted in the improving condition of I/R-
induced OGD/R inH9c2 cells in rat myocardial tissue. No studies
before had unveiled gypenosides’ effect on miR functions, which
means this new finding could be used as a novel strategy for
myocardial I/R injuries (183).

Astragaloside IV
As one of the main active components extracted from
Astragalus membranaceus Bunge., the lanolin alcohol-shaped
Astragaloside IV (AS-IV) is a tetracyclic triterpenoid saponin
with high polarity, which has antiapoptotic effects. It has been
demonstrated that AS-IV possessed anti-ischemic properties
against cerebral I/R injury, pulmonary and cardiovascular
disease, diabetic nephropathy, and liver fibrosis (184, 185).
The pharmacologic effects of AS-IV include regulating the
calcium balance, antioxidative stress, anti-inflammatory, anti-
apoptosis, antifibrotic, anti-diabetes, immunoregulation, and
cardioprotective effect via different signaling pathways (184–
186). A review of AS-IV on animal studies demonstrated that
AS-IV’s cardioprotective effect of antioxidant, anti-apoptosis,
and anti-inflammatory in acute myocardial I/R injury depended
largely on improving the circulation and upregulation of
angiogenesis (187). A previous study reported that AsIV
treatment attenuatedmyocardial I/R injury via inhibition of Toll-
like receptor 4- and nuclear factor-κB-mediated inflammatory
responses and subsequent myocardial apoptosis in a rat
model (188). Further study demonstrated that AsIV treatment
attenuated myocardial injury, reduced cardiomyocyte apoptosis,
decreased [Ca2+]i, inhibited CaSR expression, and increased
ERK1/2 phosphorylation levels. These findings not only provided
the underlying mechanisms of the cardioprotective effect of
AsIV but also further demonstrated the pivotal role of CaSR in
myocardial I/R injury (189).

Ginsenoside Rg3
Ginsenoside Rg3 can improve cardiac functions by mitochondria
dynamic remodeling and increasing the number of mitochondria
(190). It can also attenuate myocardial I/R injury by regulating
Akt/endothelial NO synthase (191). Ginsenoside Rg3 exhibits
anti-apoptosis and anti-inflammation properties, which is the
underlying mechanism of heart function impairment induced by
I/R (192).

Ginsenoside Rb3
Ginsenoside Rb3, a component isolated from Panax ginseng
(Panax ginseng C. A. Meyer), is drawing increasing attention in
the treatment of cardiovascular diseases, including myocardial
I/R injury. It has been found out that ginsenoside Rb3 exhibited
a protective effect on neurons on the I/R injury model in vitro
by inhibiting cell death and inflammatory cytokines (193). It
was found by Ma et al. that ginsenoside Rb3’s protective effect
partly depended on inhibiting the NF-κB pathway, meaning that
ginsenoside Rb3 can be a potential treatment for myocardial I/R
injury (194).

Platycodin D
Platycodin D is among the main saponins of Platycodon
grandiflorus (195). It possesses a variety of effects, including
antiinflammation, anti-atherosclerotic, and anti-oxidant (196).
Studies showed that Platycodin D could protect the heart
from H/R-induced, Akt/Nrf2/HO-1 pathway-mediated oxidative
stress, cell damage, as well as cell apoptosis (197).

Lignans
Lignans are a large class of natural compounds comprising
two phenyl propane units. Lignans have been found rich
in fruits, seeds, and vegetables, and received widespread
interest due to their various biological activities, including
antioxidant, antitumor, antibacterial, antiviral, insecticidal,
fungistatic, estrogenic, and antiestrogenic activities (198).

Isovaleroylbinankadsurin A
Isovaleroylbinankadsurin A (ISBA) is a dibenzocyclooctadiene
lignan extracted from Schisandra Chinensis (Turcz.) Baill. (199).
ISBA possesses more than anti-inflammatory, anti-oxidant, and
anti-tumor abilities (200, 201). It was reported that ISBA
protected I/R-injured cardiomyocytes in models both in vitro
and in vivo. Apoptosis induced by H/R injury was significantly
inhibited via the mitochondrial-dependent pathway by ISBA.
ISBA’s protective effect on cardiomyocytes was mainly by
activating the reperfusion injury salvage kinase (RISK) pathway.
What is more, ISBA remarkably promoted the cellular anti-
oxidative capacity by activating the RISK pathway, and, therefore,
reduced oxidative damage induced by I/R injury by inhibiting
the ROS generation, which proved ISBA’s potential to be as a
candidate drug for cardiovascular diseases (202).

Schisandrin B
Schisandrin B (Sch B) is also derived from the fruit of Schisandra
chinensis (Turcz.) Baill., a common herb of traditional Chinese
medicine (203). Sch B exerts hepatoprotective, anticancer,
antioxidant, and antiinflammatory abilities (204). Zhang et al.
reported that the pretreatment of Sch B on cardiomyocytes could
decrease the size of the infarct area, promote the antioxidant
ability, inhibit the ERS-induced apoptosis, and protect the
myocardium (205).

Sauchinone
Sauchinone is also extracted from Schisandra Chinensis (Turcz.)
Baill. (206), which protects cardiomyocytes from I/R injury in
rats. Previous studies have shown it can inhibit p38, JNK, and
other cell apoptosis signaling pathways (207).

Terpenes
Terpenes represent one of the largest groups of plant secondary
metabolites, with ∼55,000 different structures (208). Depending
on the number of linked isoprene units, the resulting terpenes are
classified into hemi-, mono-, sesqui-, di-, sester-, tri-, sesquar-,
tetra-, and polyterpenes. For many decades, it has been suggested
that terpenes and terpenoids are potential chemopreventive and
therapeutic agents for various diseases (209).
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Glaucocalyxin A
Glaucocalyxin A (GLA) is derived from Isodon japonicus var.
glaucocalyx (Maxim.). H.W.Li exerts wide bioactive effects,
including inhibiting platelet aggregation (210), suppressing the
immune system, protecting DNA damage, and cytotoxic activity
(211). Previous studies have demonstrated that GLA restored
heart function, decreased infarction size, and inhibited apoptosis
signaling pathways in mice hearts injured by myocardial I/R.
These abilities of GLA may associate with its anti-platelet effect
and the reduction of microvascular thrombosis. With decreased
bleeding risk, GLA may be a potential therapy for alleviating
myocardial RI during cardiac revascularization (212). Another
study demonstrated that by activating the Akt/Nrf2/HO-1
pathway, GLA protectedH9c2 cells against H/R-induced damage.
Therefore, GLA might be a candidate drug for preventing and
treating MI (213).

Artemisinin
Artemisinin, isolated mainly from Artemisia annua L., is a
sesquiterpene lactone compound with a peroxisome bridging
group structure. Recent pieces of research have reported
that it was not only anti-malaria but also an anti-tumor
agent. Artemisinin can promote cell death, block cell cycle,
prevent angiogenesis, and tumor metastasis (214). Its protective
effect against I/R injury is mainly due to the activation
of the NLRP3 inflammasome pathway, but preconditioning
with artemisinin preconditioning could significantly suppress
NLRP3 inflammasome activation. On the rat I/R injury model,
artemisinin could reduce ROS and inflammation induced by
I/R injury, therefore promoting myocardial recovery, including
reducing the size of myocardial infarction and inhibiting
cardiomyocyte apoptosis and autophagy (47).

Geniposide
Geniposide (C17H24O10, GP), one of the major components
of the fruit of Gardenia jasminoides J. Ellis and is found
in nearly 40 species of herbal plants, is also a well-studied
iridoid glycoside (215). There have been a growing number
of studies on the bioeffects of geniposide over the past few
decades. It has been proved to be antidiabetic, antioxidant,
antithrombotic, analgesic, hepatoprotective, neuroprotective,
anti-inflammatory, antidepressant, cardioprotective, immune-
regulatory, and antitumoral (216). It reduced the myocardial
infarct area and apoptosis and promoted heart function. In
vitro studies demonstrated, in H9c2 cells, GP enhanced the
cell viability and prevented apoptosis during H/R. Both in vivo
and in vitro experiments demonstrated that GP downregulated
the expression of proteins related to autophagy and prevented
autophagosome accumulation. Rapamycin administration could
reverse these effects. In summary, GP protected cardiomyocytes
from I/R damage and inhibited autophagy by activating
AKT/mTOR signaling pathways (217).

Ginkgolide B
Isolated from the leaves of Ginkgo, Ginkgolide B (GB) is
a diterpene lactone compound and has a strong effect on
inhibiting platelet aggregation (218). Its anti-inflammatory,

antioxidant, and anti-apoptotic properties have made it
protective of stroke, both ischemic and hemorrhagic (219–
221). In hydrogen peroxide-treated H9c2 cells, they pretreated
with GB-activated PI3K/Akt/mTOR signaling pathway and
upregulated the phosphorylation levels of Akt and mTOR and,
therefore, inhibited cell apoptosis (222). Via activating the
A20-dependent NF-κB signal pathway, GB could also ameliorate
I/R-induced inflammatory damage both in vivo and in vitro
(223). Thus, GB protected against myocardial I/R injury by
inhibiting ER stress-induced apoptosis via the PI3K/AKT/mTOR
signaling pathway. This finding suggests GB may be a promising
therapy in treating I/R injury (224).

Araloside C
Araloside C is among the major triterpenoid compounds
derived from A. elata and was found to significantly promote
heart function (225). Araloside C was proved to protect the
myocardium from I/R damage by inhibiting ROS generation
as well as Ca2+ overload. It is demonstrated that such
cardioprotective effect is due to its ability to combine with the
Hsp90 protein and interact with the ATP/ADP-binding domain
of Hsp90 (226).

Triptolide
Isolated from Tripterygium wilfordii Hook.f., triptolide possesses
neuroprotective, anti-tumor, and anti-inflammatory abilities
(227). Triptolide can alleviate cerebral and hepatic I/R injuries
in experiments (228, 229), and it could promote heart condition
and reduce inflammation and oxidative stress induced by I/R in
rats. Such protective effects of the heart may relate to triptolide’s
influences on the Nrf2/HO-1 defense pathway (230).

Alkaloids
Alkaloids, a class of nitrogen-containing basic organic
compounds found in nature, are varied and complex. Alkaloids
are mainly plants, but some are also found in animals. Alkaloids
have an extensive pharmacological function. These significant
biological activities often play a therapeutic role in Chinese
herbal medicine management.

Berberine
Derived from several medicinal plants, such as Coptis Chinensis
Franch. and Berberis vulgaris L., berberine (BBR) is an alkaloid
with broad bioactive effects and has been used for treating many
diseases (231). It showed antiapoptotic and antiinflammatory
abilities both in cell and animal experiments (232). Huang
et al. reported it enhanced H/R-induced cell viability and
reduced I/R-induced IS and autophagy in cardiomyocytes (233).
Also, BBR decreased CK-MB, LDH, and cTnI serum levels by
decreasing myocardial cell death and promoting mitochondrial
functions (234). Besides, BBR protects neurons by modulating
cell death (235). It protects the myocardium frommyocardial I/R
injury via promoting proliferation, attenuating apoptosis via the
mitophagy-mediated HIF-1α/BNIP3 pathway (236).

Galanthamine
Galanthamine protects neurons via activating the cholinergic
pathway in the heart to prevent ischemic injury (237) and is
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important in promoting heart fitness and limiting IS (238). A
previous study reported that it reduced cardiac dysfunction and
alleviated endoplasmic reticulum stress (ERS)-related cell death
induced by I/R via downregulating the expression of CHOP,
Cleaved caspase 12, and caspase 3, as well as upregulating the
expression of CADD34 and BiP in rats. It could also mitigate I/R-
inducedmyocardial fibrosis in rats by inhibiting the expression of
α-SMA and Collagen I. It was demonstrated that the mechanism
of its cardioprotective and apoptosis-inhibiting effects were
suppressing AMPK/Nrf2 pathways (239).

Matrine
The quinolizidine alkaloid compound Matrine, extracted from
Sophora flavescens Aiton, which has been used as a herb in China,
possesses antivirus, antitumor, antiallergic, anti-inflammatory,
and antifibrotic effects (240–243). It activates the JAK2/STAT3
pathway and the upregulation of HSP70 expression. Guo et al.
reported that the compound remarkably increased cell viability
suppressed by H/R by decreasing lactate dehydrogenase and
inhibiting creatine kinase activity in vitro. Also, it was proven
to reduce CK-MB and TnI levels in the blood and decrease
the size of the infarcted area in the heart as well as the I/R-
induced apoptotic index of cardiomyocytes in vivo. It alleviated
myocardial I/R damage by increasing HSP70 expression via
activating the JAK2/STAT3 signaling pathway (244).

Palmatine
Palmatine, a natural quaternary protoberberine in the class of
isoquinoline alkaloids, possesses pharmacological effects, such as
anti-inflammatory and antioxidant (245–247). A previous study
demonstrated that it could protect cardiomyocytes from I/R
damage in rats. Its possible mechanism is relieving oxidative
stress and regulating inflammatory mediators (248).

Capsaicin
Capsaicin is extracted from capsicum plants, such as Capsicum
annuum L. and is widely used in food, medicine, and pharmacy
(249). Pretreating with this compound protects H9c2 cells from
H/R injury by upregulating 14-3-3η expression, modulating Bcl-
2 and Bax expression and activity, reducing ROS generation,
limiting mPTP opening, inhibiting caspase-3 activity, and,
ultimately, suppressing cardiomyocytes apoptosis (250).

Quinones
Quinones are mainly divided into four types: benzoquinone,
naphthoquinone, phenanthraquinone, and anthraquinone. They
naturally occur in bacteria, fungi, animals, and plants and have
a variety of pharmacological effects. They are produced in
organisms and are utilized as electron-transfer agents, pigments,
and in defense mechanisms (251).

Sodium Tanshinone IIA Sulfonate
Among the derivatives of tanshinone, IIA is sodium tanshinone
IIA sulfonate (STS), a major lipophilic constitute of Salvia
miltiorrhiza Bge (252). Studies have shown that it was
cardioprotective against several cardiovascular diseases and
neuroprotective against neural dysfunction (253–255). Previous
studies demonstrated that it also showed pharmacological actions

including anti-oxidative stress and anti-inflammation (256, 257).
The study provides some evidence that this compound was
significantly protective in treating myocardial I/R injury in rats.
Its antioxidant ability partly improves heart condition (258).

Shikonin
Shikonin is isolated from Lithospermum erythrorhizon
Siebold and Zucc., which has been used for treating several
inflammatories and infectious conditions (259). It has been
reported that it exerted anti-inflammatory, antibacterial,
antiviral, and antioxidant activities (260). The potential merits
of pretreating it in H/R-induced cardiomyocyte apoptosis are
partly regulated through activating the PI3K/Akt signaling
pathway (261).

Polysaccharides
Polysaccharides are widely distributed as natural ingredients
in vegetables and fruits. Several studies have shown that
the polysaccharides improve cardiovascular diseases through
various mechanisms, such as anti-oxidative stress, regulating
metabolism, anti-inflammatory, anti-cancer, and immunity-
booster properties (262).

Fucoidan
Fucoidan is a sulfated polysaccharide molecule that has been
known for its anticancer abilities. It is isolated mainly from
the cell wall of different species of brown algae (Phaeophyta),
a varied group of organisms (263). Omata et al. reported that,
in the rat myocardial I/R injury model, there is a limited
myocardial-IS and inhibited neutrophil accumulation, and one
of the possible mechanisms could be the blockade of P-selectin-
mediated neutrophil rolling on the vessel wall (264). Li et al.
reported fucoidan improved left ventricular systolic pressure
(LVSP), left ventricular end-diastolic pressure (LVEDP), and
the contractility index in the rat myocardial I/R injury model,
and could regulate the inflammation response via HMGB1 and
NF-κB inactivation in I/R-induced myocardial damage (265).

Carotenoids
Carotenoids are naturally found in the natural ingredients,
particularly in fruits, vegetables, and algae. At present, more than
750 kinds of carotenoids have been identified, of which there are
about 100 in edible foods. Carotenoids exhibit several biological
and pharmaceutical benefits, such as anti-inflammatory, anti-
cancer, and immunity-booster properties (266).

Lycopene
Lycopene is a natural compound whose antioxidant effects
have been widely studied (267). Previous studies demonstrated
that low levels of circulating lycopene are related to a higher
risk of cardiovascular diseases (268, 269). It was proved
that pretreatment with 1-µM lycopene before reoxygenation
remarkably decreased cardiomyocytes apoptosis induced by H/R.
Moreover, IV injection of 1-µMcirculating lycopene significantly
decreased the risk of MI during in vivo I/R in mice and effectively
inhibited the oxidation of fatty acid and the activation of JNK
signaling during reperfusion (270).
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Retinol Palmitate
Retinol palmitate, an analog of vitamin A, exhibits effective
peroxyl radical scavengers via suppressing peroxidation (271).
It has been proved to exert the ability to promote neuronal
differentiation, neural patterning, and axonal growth, making it
potentially neuroprotective against cerebral I/R damage (272). It
could also limit myocardial IS and inhibit cellular apoptosis via
the downregulation of proapoptotic-related proteins expression
and the upregulation of SOD-related proteins expression.
Tao et al. suggested that pretreating with retinol palmitate
effectively protected the heart from myocardial I/R injury
through balancing intracellular oxidants and antioxidants (273).

Coumarin
Coumarin compounds represent an important type of naturally
occurring and synthetic oxygen-containing heterocycles
with a typical benzopyrone framework. This type of special
benzopyrone structure enables its derivatives to readily interact
with a diversity of enzymes and receptors in organisms through
weak bond interactions, thereby exhibiting wide potentiality
as medicinal drugs compounds, inclusive of analgesic,
anticoagulant anti-inflammatory, antimicrobial, antineoplastic,
antioxidant, and immunomodulatory effects (274).

Osthole
Osthole is a compound mainly derived from Cnidium monnieri
(L.) Cusson and Angelica pubescens Maxim., and has been used as
tonics and aphrodisiacs in clinical practice of traditional Chinese
medicine for many years (275). Modern pharmacological studies
demonstrated that it possessed antitumor, anti-hepatic, anti-
allergic, anti-inflammatory, anti-apoptotic, and estrogen-like
effects (276–278). Wang et al. reported that this compound
was beneficial to functional recovery after myocardial I/R injury
by increasing SOD, GPx, and CAT activities, and decreasing
lipid peroxidation products, MDA, and 4-HNE in the damaged
heart tissues. The mechanism behind these effects was related
to decreasing the expression of the pro-inflammatory factors,
increasing anti-inflammatory cytokines, as well as lowering
HMGB1, phosphorylated IκB-α, and NF-κB proteins (279).

Esculetin
The natural coumarin compound Esculetin (6,7-dihydroxy
coumarin) possesses antioxidant, anti-inflammatory, anti-
nociceptive, and anti-tumor activities (280, 281). It also protects
against I/R injury. In H/R-stimulated H9c2 cells, esculetin
promotes cell viability and reduces lactate dehydrogenase (LDH)
release. It also reduces ROS and cell death, following H/R injury
through the JAK2/STAT3 pathway (282).

Others
Plantamajoside
Plantamajoside (PMS) is a phenylpropanoid glycoside extracted
from Plantago Asiatica L. with a long history in food and
medical application (283). PMS exhibits anti-inflammatory and
antioxidant properties (284, 285). Because of its protective effects
against cadmium-induced renal injury and its anti-inflammatory
and antifibrotic effects, it has been used to treat many diseases

(286, 287). In the in vitro I/Rmodel, a previous study investigated
the protective effects of PMS on H/R-stimulated oxidative stress,
inflammation, and apoptosis in H9c2 cells. PMS attenuated
myocardial I/R damage by reducing the inflammatory response,
oxidative stress, and apoptosis through Akt/Nrf2/HO-1 and NF-
κB signaling pathways (288).

Diallyl Trisulfide
Garlic (Allium sativum L.) has long before been recognized
as beneficial for several diseases. One of its main bioactive
compounds is diallyl trisulfide (DATS), also known as allitridin
or 4,5,6-trithia-1,8-nonadiene. DATS is a natural, stable, and safe
component that attracts H2S donors for in vivo studies with an
eye to clinical relevance (289). Jeremic et al. reported that DATS
consumption could improve heart functions and prevent the
oxidative and histoarchitectural variation in the heart suffering
from ex vivo induced I/R heart injury (290).

Eleutheroside E
Eleutheroside E (EE) is a bioactive component of Eleutherococcus
senticosus (Rupr. and Maxim.) Maxim. It significantly alleviates
physical fatigue and promotes endurance performance, protects
against neuritic atrophy and neuron apoptosis, and inhibits
inflammatory gene expression (291). Previous studies have
shown that treating with EE remarkably limited H/R-induced
damage in heart tissue by reducing oxidative stress, inactivating
NF-κB, and modulating metabolic responses. Moreover, EE
reprograms metabolic action. This evidence proved EE to
be potentially valuable in treating H/R-injured heart tissue
and emphasized the relationship between EE’s protection and
metabolic reprogramming (292).

Salidroside
Salidroside is a bioactive compound with anti-inflammatory,
anti-cancer, anti-oxidant, and anti-fatigue effects (293, 294).
A previous study demonstrated that the mechanism of Sal’s
protective effects against myocardial I/R damage was related
to the inhibition of the TLR4/NF-κB signaling pathway,
inflammatory response, and cardiomyocyte apoptosis (295).

Glycyrrhizin
Glycyrrhizin, one of the most effective ingredients of the root
extraction of Glycyrrhiza glabra L., is consisted of glucuronic acid
and glycyrrhetinic acid and possesses anti-allergic, anti-oxidant,
anti-ulcer, anti-viral, anti-cancer, and immunomodulatory effects
(296, 297). It also protects the liver and stabilizes the cell
membrane. This compound has been broadly used in Europe and
the Middle East (298). It was reported that, in rats, glycyrrhizin
triggered HMGB1 and the blocked p38 and JNK pathways,
ultimately reducing myocardial I/R damage by attenuating
oxidative stress, iNOS, and inflammatory reactions in vivo (299).

Cornuside
Cornuside is a secoiridoid glucoside derived from the fruit
of Cornus officinalis Siebold and Zucc., which has long
been used for attenuating inflammation and promoting blood
circulation. It has been found that the crude extract of this
fruit had pharmacological effects including, anti-neoplasm,
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TABLE 1 | The mechanisms of phytochemicals against myocardial I/R injury from experimental studies.

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Phenols

Paeonol Hypoxia for 2 h/reoxygenation

for 2 h in H9c2 cells

10 µmol/L for 18 h

beforeH/R

Suppressed oxidative stress,

down-regulated inflammatory

responses (BRCA1/ROS-regulated

NLRP3 inflammasome/IL-1β and

NF-κB/TNF-α/IL-6 pathways)

(44)

Oridonin LAD ligation ischemia for 0.5

h/reperfusion for 24 h in

C57BL/6 mice

10 mg/kg oral for 7 days

before I/R

Suppressed oxidative stress,

down-regulated inflammatory

responses (NLRP3 inflammasome

pathways)

(55)

Baicalin LAD ligation ischemia for 45

min/reperfusion for 180min in

SD rat

20, 60, 120 mg/kg oral for

14 days before I/R

Protected against inflammation

through reducing the phosphorylation

of JAK2/STAT3 and decreasing the

levels of iNOS and IL-1β

(64)

LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat / hypoxia for 6

h/reoxygenation for 4 h in

Primary rats’ cardiomyocytes

100 mg/kg oral for 14 days

befor I/R/10 µmol/L for

30min before H/R

Inhibited apoptosis (CaSR/ERK1/2

signaling pathway)

(63)

LAD ligation Ischemia for 30

min/reperfusion for 120min in

SD rat

50, 100, 200 mg/kg oral

before I/R

Inhibited apoptosis, and inflammation

(activated PI3K/Akt but suppressed

NF-κB signaling pathways)

(62)

Resveratrol LAD ligation ischemia for 30

min/reperfusion for 120min in

C57BL/6 mice/hypoxia for 3

h/reoxygenation for 3 h in

Neonatal rat ventricular

cardiomyocytes

50 mg/kg oral for 14 days

before I/R/10, 30, 50

µmol/L for 24 h before H/R

Exerted anti-apoptosis and inhibited

Ca2+ accumulation (STIM1 pathway)

(71)

LAD ligation ischemia for 30

min/reperfusion for 120min in

diabetic SD rat

20 mg/kg injection for 7

days before I/R

Inhibited oxidative stress (upregulated

SIRT1 and downregulated GSK3β,

contributing to improving the

expression of Nrf2)

(303)

LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

10 mg/kg oral for 287 days

before I/R

Activated autophagy (upregulated

Beclin 1/LC3-II), and inhibited

inflammatory responses (TNF-α, IL-6)

(34)

Hypoxia for 24 h/reoxygenation

for 24 h in cardiomyocytes

40 µmol/L for 24 h before

H/R

Suppressed myocardial apoptosis

(inhibited PI3K/AKT/e-NOS pathway)

(72)

6-Gingerol LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

6 mg/kg injection for 30min

before I/R

Inhibited cardiomyocyte apoptosis

(upregulated the expression of

PI3K/Akt signaling pathway)

(85)

Oleuropein LAD ligation ischemia for 30

min/reperfusion for 180min in

SD rat

20 mg/kg oral for 2 days

before I/R

Inhibited apoptosis and inflammation

via decreasing NF-κB expression and

IKB-α degradation pathway

(86)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Calycosin-7-O-

β-D-glucoside

LAD ligation ischemia for 45

min/reperfusion for 180min in

C57BL/6 mice

30 mg/kg oral for 30min

before I/R

Protected against cell apoptosis by

activating the JAK2/STAT3 signaling

pathway via up-regulation of IL-10

(90)

Puerarin LAD ligation ischemia for 30

min/reperfusion for 180min in

diabetic SD rat

25, 50, 100 mg/kg oral for

28 days before I/R

Suppressed apoptosis, oxidative

stress and inflammation

(up-regulation of VEGFA/Ang-1 and

down-regulation of NF-κB pathways)

(94)

Polydatin LAC ligation ischemia for 30

min/reperfusion for 120min in

C57BL/6 mice/hypoxia for 3

h/reoxygenation for 3 h in

Neonatal rat cardiomyocytes

7.5 mg/kg injection before

I/R/1, 10, 100 µmol/L for

1 h before H/R

Reduced ROS and cell death by

promoting autophagic flux to clear

damaged mitochondria

(76)

Hesperidin LAD ligation ischemia for 30

min/reperfusion for 240min in

SD rat

200 mg/kg oral for 3 days

before I/R

Inhibited excessive autophagy via

activating the PI3K/Akt/mTOR

pathway

(31)

Luteolin LAD ligation ischemia for 30

min/reperfusion for 24min in

C57BL/6 mice/hypoxia for 2

h/reoxygenation for 2 h in HL-1

cells

25 µg/kg injection for 3

days before I/R/8 µmol/L for

24 h before H/R

Enhanced SERCA2a through

SUMOylation at lysine 585 to protect

cardiomyocytes

(104)

Honokiol LAD ligation ischemia for 45 min/

reperfusion for 3 h in C57BL/6

mice/hypoxia for 3

h/reoxygenation for 3 h in

cardiomyocytes

10 µmol/L injection for

15min before I/R/5, 10, 20,

40, 80 µmol/L for 3 h before

H/R

Promoted autophagic flux (Akt

signaling pathway)

(109)

LAD ligation ischemia for 30 min/

reperfusion for 240min in

diabetic SD rat/hypoxia for 1

h/reoxygenation for 4 h in H9C2

cell

5 mg/kg oral for 7 days

before I/R/1,2,5 µmol/L for

2 h before H/R

Ameliorated oxidative damage and

apoptosis (SIRT1-Nrf2 signaling

pathway)

(108)

Tournefolic acid

B

Ischemia for 45 min/reperfusion

for 60min in isolating heart

0.5, 1.2µg/ml perfusate for

20min before I/R

Suppressed ER stress, oxidative

stress, and apoptosis (enhanced the

phosphorylation of PI3K and AKT,

inhibited the expression of CHOP and

Caspase-12, reduced the

phosphorylation of JNK, and

increased Bcl-2/Bax ratio)

(110)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Orientin Hypoxia for 12 h/reoxygenation

for 12 h in cardiomyocytes

3, 10, 30 µmol/L for 12 h

beforeH/R

Promoted autophagy and enhances

cell survival (increasing

AMPK-mTORC1 signaling pathway

and enhancing the interaction of

Beclin 1/Bcl-2)

(113)

Icariin LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

10 mg/kg injection after

ischemia

Reduced the apoptosis

(PI3K/Akt/eNOS pathway)

(120)

Curcumin LAD ligation ischemia for 30

min/reperfusion for 180min in

SD rat

10, 20, 30 mg/kg oral for 20

days before I/R

Decreasing oxidative damage and

inhibiting myocardium apoptosis

(JAK2/STAT3 signal pathway)

(123)

Salvianolic acid

A

Ischemia for 30 min/reperfusion

for 120min in isolating heart

20 µmol/L before I/R Exerted an anti-apoptotic effect and

improves cardiac function

(JNK/PI3K/Akt signaling pathway)

(126)

Astilbin LAD ligation ischemia for 30 min/

reperfusion for 24 h in diabetic

rat/hypoxia for 6 h/reoxygenation

in H9C2 cell

12.5, 25, 50, 100 mg/kg

injection for 4 h befor

I/R/1.5, 5, 15, 50 µmol/L for

24 h before H/R

Blocked inflammatory cascade

(HMGB1-dependent NF-κB signaling

pathway)

(130)

Eupatilin Hypoxia for 3 h/reoxygenation

2 h in H9C2 cell

0.1, 1, 10 µmol/L for 24 h

before H/R

Suppressed oxidative stress and

apoptosis (Akt/GSK-3β signaling

pathway)

(27)

Epigallocatechin-

3-gallate

LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

10 mg/kg injection after

ischemia

Mitigated cell death (activating the

RISK pathway and attenuating p38

and JNK)

(142)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Icariin LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

10 mg/kg injection for 5min

before I/R

Decreased inflammatory cytokine

TNF-α and IL-10, and inhibited

apoptosis (PI3K/Akt signaling

pathway)

(144)

Troxerutin LAD ligation ischemia for 30

min/reperfusion for 60min in

isolating heart

150 mg/kg oral for 1 month

before I/R

Exerted significant anti-arrhythmic

and anti-inflammatory effects

because of the inhibition of

inflammatory cytokines activity and

reduction of inflammatory reactions

(147)

Isoquercitrin Hypoxia for 6 h/reoxygenation

for 12 h in H9C2 cell

20, 40, 80 mg/ml for 24 h

before H/R

Inhibited apoptosis and ROS

generation by protecting

mitochondrial function and preventing

cytochrome c release

(153)

Silibinin LAD ligation ischemia for 30

min/reperfusion for 24 h in

C57BL/6 mice/hypoxia for 6

h/reoxygenation in H9C2 cell

100 mg/kg injection for 7

days before I/R

Inhibited cardiomyocytes apoptosis,

reduced ER stress and oxidative

stress, and modulating inflammatory

response via deactivation of NF-κB

signaling pathway.

(170)

Saponins

Polyphyllin I LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

150 mg/kg injection for 2

weeks before I/R

Inhibiting inflammatory response and

oxidative stress (NF-κBp65 signaling

pathway)

(176)

Ginsenoside

Rb1

LAD ligation ischemia for 45

min/reperfusion for 120min in

SD rat

20, 40, 80 mg/kg injection

for 3 days before I/R

Decreased the expression of

apoptotic related proteins e.g.,

cleaved-caspase 3 (mTOR signaling

pathway)

(25)

Gypenoside A Hypoxia for 2 h/reoxygenation

for 24 h in H9C2 cell

20 µmol/L for 24 h before

H/R

Suppressed miR-143-3p via the

activation of AMPK signaling

(183)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Ginsenoside

Rg3

LAD ligation ischemia for 30

min/reperfusion for 24 h in SD rat

5, 20 mg/kg oral for 7 days

before I/R

Attenuated apoptosis and

inflammation

(192)

Ginsenoside

Rb3

Hypoxia for 4 h/reoxygenation

for 24 h in H9C2 cell

2, 5 µmol/L for 24 h before

H/R

Inhibited apoptosis (JNK/NF-κB

activation signaling pathway)

(194)

Platycodin D Hypoxia for 4 h/reoxygenation

for 24 h in H9C2 cell

5, 10, 20, 40 µmol/L for

24 h before H/R

Inhibited oxidative stress and

apoptosis (Inducing the activation of

Akt/Nrf2/HO-1 pathway)

(197)

Lignans

Isovaleroylbinankadsurin

A

LAD ligation ischemia for 45

min/reperfusion for 120min in

C57BL/6 mice/hypoxia for 150

min/reoxygenation for 60min in

neonatal rat ventricle myocytes

and H9C2 cell

10, 20, 40 mg/kg injection

for 1 h before I/R/0.3, 1, 3

µmol/L for 1 h before H/R

Blocked the apoptosis and inhibiting

the ROS generation (activating GR

dependent RISK pathway)

(202)

Sauchinone LAD ligation ischemia for 30

min/reperfusion for 2 h in

isolating heart

10 mg/kg injection for

30min before I/R

Exerted anti-inflammatory and

antioxidant effects through inhibition

of phosphorylation of p38 and JNK

death signaling pathways

(207)

Terpenes

Glaucocalyxin A Ischemia for 1 h/reperfusion for

24 h in C57BL/6J mice

10 mg/kg injection after

ischemia

Reducted microvascular thrombosis (212)

Hypoxia for 24 h/reoxygenation

for 2 h in H9c2 cells

5, 10, 20, and 40 µmol/L for

2 h before H/R

Suppressed apoptosis and oxidative

stress (Akt/Nrf2/HO-1 signaling

pathway)

(213)

Artemisinin LAD ligation ischemia for 0.5

h/reperfusion for 2 h in SD rat

14 mg/kg oral for 2 weeks

before I/R

Suppressed NLRP3 inflammasome

activation (decreasing NLRP3, ASC,

cleaved caspase-1, IL-1β)

(47)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Geniposide LAD ligation ischemia for 0.5

h/reperfusion for 2 h in SD

rat/hypoxia for 12

h/reoxygenation for 4 h in H9c2

cells

100 mg/kg oral 30min

before I/R/40 µmol/L for

30min before H/R

Inhibited the expression of

autophagy-related proteins and

autophagosome accumulation

(activating AKT/mTOR signaling

pathways)

(217)

Ginkgolide B Ischemia for 1 h/reperfusion for

1 h in SD rat

15 mg/kg injection for

10min before ischemia

Inhibited ER stress-induced

apoptosis via PI3K/AKT/mTOR

signaling pathway

(224)

Ischemia for 40 min/reperfusion

for 120min in SD rat

8, 16, 32 mg/kg injection for

7 days before ischemia

Alleviated inflammatory response

(inhibiting NF-κB p65 subunit

translocation, IκB-α phosphorylation,

IKK-β activity, as well as the

downstream inflammatory cytokines

and proteins expressions via zinc

finger protein A20)

(223)

Triptolide LAD ligation ischemia for 45

min/reperfusion for 3 h in Wistar

rat

25, 50, 100 µg/kg injection

for 12 h before I/R

Reduced inflammation and oxidative

stress (Nrf2/HO-1 defense pathway)

(230)

Alkaloids

Berberine LAD ligation ischemia for 30

min/reperfusion for 120min in

Wistar rat/hypoxia for 4

h/reoxygenation for 3 h in H9C2

cell

300 mg/kg oral for 3 days

before I/R/50 µmol/L for 3 h

before H/R

Promoted mitochondrial autophagy,

reduced myocardial enzyme activity,

induced cardiomyocytes proliferation,

inhibited cardiomyocytes apoptosis

(HIF-1α/BNIP3 pathway)

(236)

Galanthamine LAD ligation ischemia for 30

min/reperfusion for 120min in

SD rat

1, 3 mg/kg injection for

30min before I/R

Prevented endoplasmic reticulum

stress-related apoptosis, and

myocardial fibrosis via promoting

AMPK and Nrf2-related proteins

(AMPKα1, Nrf2 and HO-1)

(239)

Matrine LAD ligation ischemia for 30

min/reperfusion for 24 h in SD

rat/hypoxia for 4 h/reoxygenation

for 6 h in cardiomyocytes

50, 100 mg/kg injection

before I/R/200, 400 µmol/L

after hypoxia

Decreased lactate dehydrogenase

release, creatine kinase activity, and

cardiomyocytes apoptosis

(JAK2/STAT3 signaling pathway)

(244)

Capsaicin Hypoxia for 3 h/reoxygenation

for 3 h in H9C2 cell

5, 10, 20, 40, 80 µmol/L for

36 h before H/R

Attenuated generation of ROS,

inhibited mPTP opening and

caspase-3 activation, downregulated

Bax, upregulated 14-3-3η and Bcl-2,

and ultimately reduced apoptosis

(250)

Quinones

Sodium

tanshinone IIA

sulfonate

LAD ligation ischemia for 30

min/reperfusion for 24 h in SD rat

8 mg/kg injection for 15min

before ischemia and for 0.5,

1, 2, 4, 6 h after ischemia

Protected against oxidative stress

and inflammatory responses

(NF-κB/HO-1 signaling pathway)

(258)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Shikonin Hypoxia for 12 h/reoxygenation

for 24 h in H9c2 cells

10, 20, 40 µmol/L for 48 h

before H/R

Suppressed apoptosis and increased

cell viability, attenuated LDH release

(PI3K/Akt signaling pathway)

(261)

Polysaccharides

Fucoidan LAD ligation ischemia for 30

min/reperfusion for 0.5–6 h in

Wistar rat

27 µg/kg/min injection from

10min before to 6 h after

reperfusion

Blockaded of P-selectin-mediated

neutrophil rolling on the vessel wall

(264)

LAD ligation ischemia for 30

min/reperfusion for 2 h in SD rat

50, 100, 200 mg/kg oral for

7 days before I/R

Regulated the inflammation response

via HMGB1 and NF-κB inactivation in

I/R-induced myocardial damage

(265)

Carotenoids

Lycopene LAD ligation ischemia for 20

min/reperfusion for 40min in

C57BL/6 mice/hypoxia for 2

h/reoxygenation for 2 h in HL-1

cells

1 µmol/L injection after

ischemia/1, 2, 4 µmol/L for

2 hafter H/R

Inhibited ROS accumulation and

inflammation (JNK signaling pathway)

(270)

Retinol palmitate LAD ligation ischemia for 40

min/reperfusion for 4 h in

C57BL/6 mice/hypoxia for 2

h/reoxygenation for 4 h in H9C2

cells

12, 36 mg/kg injection for 3

days before I/R/0.1, 1

µmol/L for 4 h before H/R

Inhibited oxidative stress and

apoptosis

(273)

Coumarin

osthole LAD ligation ischemia for 30

min/reperfusion for 24 h in SD rat

1, 10, 50 mg/kg injection

before I/R

Exerted antioxidant and

anti-inflammatory effect (inhibiting the

expression of HMGB1 and

IκB-α/NF-κB signaling pathway)

(279)

Esculetin Hypoxia for 3 h/reoxygenation

for 6 h in H9c2 cells

5, 10, 20, 40 µmol/L for

24 h before H/R

Suppressed oxidative stress and

apoptosis (JAK2/STAT3 signaling

pathway)

(282)

Others

Plantamajoside Hypoxia for 6 h/reoxygenation

for 12 h in H9c2 cells

10, 20, 40, and 80 µmol/L

for 24 h before H/R

Suppressed inflammation and

oxidative stress (Akt/Nrf2/HO-1 and

NF-κB signaling pathways)

(288)

Diallyl trisulfide Ischemia for 30 min/reperfusion

for 1 h in isolating heart

40 mg/kg oral for 3 weeks

before I/R

Suppressed oxidative stress and

apoptosis with increasing relative

gene expression of eNOS, SOD-1

and−2, Bcl-2 and decreasing relative

gene expression of NF-κB, IL-17A,

Bax, and caspases-3 and−9

(290)

Eleutheroside E Hypoxia for 4 h/reoxygenation

for 24 h in H9c2 cells

30, 60, and 100 µmol/L for

3 h before H/R

Reduced oxidative stress (NF-κB

signaling pathway)

(292)

(Continued)
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TABLE 1 | Continued

Phytochemical

name

Chemical structure

depiction

Study model Dose, route, and duration

of administration

Mechanism References

Salidroside Ischemia for 30 min/reperfusion

for 24 h in SD rat

20, 40 mg/kg oral for 7 days

before I/R

Suppressed inflammation and

apoptosis (TLR4/NF-κB signaling

pathway)

(295)

Glycyrrhizin Ischemia for 30 min/reperfusion

for 24 h in SD rat

0, 2, 4, 10 mg/kg injection

for 30min before I/R

Reduced oxidative stress, iNOS and

inflammatory reactions (blocked p38

and JNK signaling pathway)

(299)

anti-sepsis, antiinflammatory, anti-diabetic nephropathy, and
hepatoprotection effects (300, 301). It was reported that in
rats suffering from myocardial I/R injury, cornuside decreased
infarct volume, improved hemodynamics parameters, and
alleviated myocardial injury via inhibiting PMN infiltration and
MPO activity, decreased pro-inflammatory factors, and reduced
phosphorylated IB- and NF-B proteins (302).

Phytochemicals and Signal Transduction
Pathways
We systematically summarized the phytochemicals’
characteristics for their cardioprotective mechanisms in
preventing myocardial I/R injury from experimental studies
(Table 1). Various internal mechanisms related to myocardial I/R
injury that control the fate of cardiomyocytes by phytochemicals
interventions are systematically summarized (Figure 2). Among
several signal transduction pathways, NF-κB, PI3K/Akt,
Nrf2/HO-1, JAK2/STAT, mTOR, and AMPK signaling pathways
take an important position in the modulation of myocardial I/R
injury by phytochemicals.

NF-κB Signaling Pathway
NF-κB (Nuclear Factor-kappa B) is composed of different
transcription factors—the Rel family. The Rel/NF-κB family
regulates immune and inflammatory responses. Activated NF-κB
prevents ischemic injury and inhibits both inflammation and
apoptosis (304). Paeonol significantly alleviates hypoxia
and attenuates I/R injury in H9C2 cells through the
BRCA1/ROS-regulated NF-κB/TNF-α/IL-6 pathways and
NLRP3 inflammasome (44). Puerarin exerts a similar effect by
suppressing NF-κB and upregulating VEGFA/Ang-1 in diabetic
rats with myocardial I/R injury (94). Similarly, fisetin reduces
ischemic injury and oxidative damage by inhibiting cytokines,
such as IL-1β and TNF-α (305). Polyphenols modulate the
immune system by inhibiting NF-κB (304).

PI3K/Akt Signaling Pathway
PI3K and the downstream target serine/threonine kinase Akt are
crucial in various physiological processes. Activated PI3K/Akt
signaling pathways is protective in myocardial I/R injury
(306, 307). A study by Wang et al. suggests it is associated with
H/R-induced cardiomyocyte apoptosis in Shikonin pretreated
cells (261). Another study shows resveratrol inhibits I/R injury-
induced cardiomyocyte apoptosis by regulating phosphorylation
levels of PI3K/Akt/e-NOS pathway-related proteins (72).
The PI3K/Akt signaling pathway regulates the life cycle of
cardiomyocytes by regulating the morphology and function
(308). 6-Gingerol possesses similar potent via this pathway (85).

Nrf2/HO-1 Signaling Pathway
Normally, Nrf2is a transcription factor that regulates the
expression of several factors involved in the cellular defense
against oxidative stress and inflammation, including heme
oxygenase-1 (HO-1) (309). Once activated, it is stabilized and
translocates to the nucleus, and binds antioxidant response
element (ARE), which activates HO-1 (310). Numerous studies
have shown the potential role of the Nrf2/HO-1 pathway in
myocardial I/R injury (311). A study by Yu et al. found
Nrf2 accumulated more in the nuclear due to triptolide in
reperfused myocardium (230). Also, triptolide promoted the
activity and expression of HO-1. This study proved triptolide was
cardioprotective by activating the Nrf2/HO-1 defense pathway
in treatments in I/R injuries (312). In addition, Zhou et al.
demonstrated 160-nM triptolide pretreatment for a short period
(< 6 h) raised the levels of nuclear Nrf2 and HO-1 in H9c2
cardiomyocytes, but they are downregulated if pretreatment
lasted for a longer period (> 9 h) (313). Glaucocalyxin A is also
reported to increase cell viability and decrease oxidative stress
in H9c2 cells, resulting in fewer cell death from H/R-stimulated
oxidative damage. The protective effect of GLA is proved to be
associated with the activation of the Akt/Nrf2/HO-1 signaling
pathway (213).
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FIGURE 2 | The simplified mechanism scheme of phytochemicals in cardiovascular disease. Phytochemicals reduce the phosphorylation of STAT3 by inhibiting JAK2,

which is activated following the binding of cytokines and cognate receptors. Inhibition of the JAK/STAT pathway leads to decreasing of iNOS and NLRP3/IL-1β levels,

and thus protects against oxidative stress and inflammation. Activation of the AMPK signaling pathway may also play a key role in the anti-inflammation, further acting

on the mTOR and Nrf2 factors and participating in the actions of phytochemicals on oxidative stress, apoptosis, and autophagy. Moreover, the NF-κB signaling

pathway, activated by the BRCA1, JNK, and AKT, promotes the expression of TNF-α and IL-6, which regulate inflammation and apoptosis. The phytochemicals are

also against apoptosis and inhibit Ca2+ accumulation via the STIM1 pathway. The PI3K-AKT signaling pathway is activated by many types of cellular stimuli or toxic

insults, activates downstream mTOR, eNOS, and NF-κB, and sequentially regulates the inflammation and apoptosis.

JAK2/STAT Signaling Pathway
Several reports proposed that JAK/STAT signaling is associated
with cardiac dysfunction in myocardial I/R injury (314). JAKs
are rapidly recruited to the receptor and activated after the
upstream receptor molecule, and then catalyze its tyrosine
phosphorylation. This process supplies binding sites for the
SH2 domain of STATs, ultimately leading to specific gene
transcription. In particular, myocardial I/R injury activated
JAK1, and JAK2, in turn, activates STAT1 and STAT3. STAT1
promotes apoptosis, while STAT3 protects cardiomyocyte (315).
Ming Xu reported baicalin alleviated post-I/R myocardial injury
and reduced inflammation via JAK/STAT pathway (64). CG
pretreatment protected the myocardium against I/R injury
by upregulating IL-10 expression (90). Matrine can attenuate
myocardial I/R injury by upregulating HSP70, which can be
activated by the JAK/STAT pathway (244).

MTOR Signaling Pathway
mTOR is a mammalian target of rapamycin (RAPA) and
downregulates autophagy (316). Luo et al. found that GP
upregulated p-mTORSer2448 expression and inhibited autophagy,
but these effects were counteracted by RAPA. They also

observed that RAPA enhanced p-AKTSer473 expression, which
might be associated with the activation of upstream AKT by
mTOR inhibition (217). However, RAPA’s effects on activating
autophagy were inconsistent in myocardial I/R injury. In
myocardial I/R injury, GRb1’s effects are also controversial. Some
studies have shown that mTOR switched on I/R (317), whereas
others tend to hold the opposite view. Li et al. proved p-mTOR
to be in an inhibitory state in I/R injury. Remarkably, GRb1
treatment reversed the inhibitory state and activated it (25). P-
mTOR changes are dynamic after myocardial cell injury, and this
may account for the difference in the performance of mTOR in
I/R across studies.

AMPK Signaling Pathway
AMPK regulates cell homeostasis and reprograms metabolism.
Hou et al. reported Gal alleviated I/R-induced cardiac
dysfunction, reduced ERS-related apoptosis, and inhibited
myocardial fibrosis by suppressing AMPK/Nrf2 pathways (239).
The relationship between the cardio-protective effect of GP
depends on suppressing miR-143-3p via activating AMPK,
which furthered the understanding by connecting their function
with miRs (183).
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CONCLUSION AND PERSPECTIVES

To date, this review provides the most comprehensive overview
of the current knowledge of phytochemicals that interfere
with the myocardial I/R injury. Among the phytochemicals
with potential anti-I/R injury ability, phenolic compounds
take up the largest proportion (45.1%). Saponins, lignans,
terpenes, alkaloids, quinones, coumarin, carotenoids, and
other compounds make up the remainder, respectively. In
addition, phytochemicals extensively modulated autophagy,
oxidative stress, Ca2+ overload, apoptosis, inflammation, and
key regulatory targets and proteases activities. From this
point of view, phytochemicals may be a potential panacea
for myocardial I/R injury treatment, and studies on their
mechanisms rule out the possibility of applying a single molecule
as a pathophysiological cause of myocardial I/R injury, while
most natural products havemore than one “target” andmay affect
multiple pathways.

Although phytochemicals found in natural products have
made great progress in alleviating myocardial I/R injury, future
studies focusing on human clinical trials of several potent
phytochemicals and their combinations should be carried out.
Theoretically, animal models help to explore the probable
mechanism; however, there is still a huge anatomic and/or
physiological gap between the different species, which may
possibly be responsible for the inconsistency between preclinical
studies and clinical studies currently (70). Therefore, more
appropriate experimental models and precise pharmaceutical
intervention studies are needed to simulate human heart
physiology. Furthermore, phytochemicals must be investigated
for the risk assessment and safety evaluation to observe
any undesirable effects, which may hinder further use of

phytochemicals as a cardioprotective adjuvant in the human
body, as well as the enthusiasm for further pharmaceutical
development. In addition, there may be a paradox that the
cardio protection of phytochemicals is associated with inhibition
of cell death, but it is an antineoplastic activity with the
promotion of cell death (318). Cancer cells express different
levels of apoptosis-promoting or inhibiting proteases compared
to cardiomyocytes, which might partly explain these differences
(318). Overall, phytochemicals may be a potential panacea for
myocardial I/R injury treatment, but more research is needed
to support this promising means of enhancing prognosis and,
possibly, prevention.
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