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Abstract

Dual Processing Theories (DPT) assume that human cognition is governed by two distinct
types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based
on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeu-
tic medical decision-making. The DPM model indicates that doctors decide to treat when
treatment benefits outweigh its harms, which occurs when the probability of the disease is
greater than the so called “threshold probability” at which treatment benefits are equal to
treatment harms. Here we extend our work to include a wider class of decision problems
that involve diagnostic testing. We illustrate applicability of the proposed model in a typical
clinical scenario considering the management of a patient with prostate cancer. To that end,
we calculate and compare two types of decision-thresholds: one that adheres to expected
utility theory (EUT) and the second according to DPM. Our results showed that the deci-
sions to administer a diagnostic test could be better explained using the DPM threshold.
This is because such decisions depend on objective evidence of test/treatment benefits
and harms as well as type 1 cognition of benefits and harms, which are not considered
under EUT. Given that type 1 processes are unique to each decision-maker, this means
that the DPM threshold will vary among different individuals. We also showed that when
type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect
a decision; the decision is based on the assessment of benefits and harms of treatment.
These findings could explain variations in the treatment and diagnostic patterns docu-
mented in today’s clinical practice.

Introduction

A paradigmatic decision-making dilemma faced by clinicians is whether to observe the patient

without ordering a diagnostic test, order a diagnostic test and act according to the results of the
test, or administer treatment without ordering a test. Typically, this decision relies on the prob-
ability of disease and the relationship between the treatment’s harms and benefits. As described
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later in this paper, the assessment of the likelihood of disease and the evaluation of treatment’s
benefits and harms is often done intuitively, but this decision-making process can be formal-
ized under the “threshold model”.

According to the threshold model [1,2], when faced with a choice of observing the patient,
ordering a diagnostic test, or administering treatment, there is a probability of disease, also
known as threshold probability, at which a decision maker is indifferent between any two
choices (e.g. treating vs. ordering a test, or ordering a test vs. withholding treatment) [3-6].
Furthermore, decisions involving diagnostic testing rely on two probabilities of disease known
as testing and treatment thresholds. Testing threshold relates to the decision about ordering a
test vs. observing a patient and treatment threshold relates to the decision about administering
treatment vs. ordering the diagnostic test. According to the threshold model [1,2], if the proba-
bility of disease is smaller than the testing threshold, the test should be withheld. If the proba-
bility of disease is above the treatment threshold, then treatment should be ordered without
ordering a diagnostic test. The test should only be ordered if the estimated probability of the
disease is between the testing and treatment thresholds (Fig 1).

The threshold model relies on expected utility theory (EUT) and it was formulated almost 4
decades ago[1,2]. EUT suggests that when choosing between different strategies, the decision
maker should always select the strategy that leads to the outcome with the highest expected
utility. It has been well documented, however, that EUT is routinely violated by decision-mak-
ers [7-9]. These violations are typically attributed to the decision maker’s emotional, experien-
tial or intuitive responses to decision choices that are different from the EUT derived expected
utilities. Consequently, the main drawback of threshold model is its reliance on EUT as demon-
strated in our recent empirical study [10].

The importance of non-EUT based cognitive processes has recently been highlighted by
dual processing theories (DPT) of human reasoning and decision-making [11], which are
increasingly accepted as the dominant explanation of how people make decisions [5,7,12-19].
DPT posits that human cognition is governed by two types of processes [11,19]: type 1 pro-
cesses, which are intuitive, automatic, fast, narrative, experiential and affect-based, and type 2
processes, which are analytical, slow, verbal, deliberative and allow for abstract and hypotheti-
cal thinking. Therefore, the EUT model cannot be seen as an adequate model of medical deci-
sion-making.

Testing Treatment
threshold threshold
No treat Test Treat
No test No test

Probability of disease

Fig 1. Relation between the probability of disease and the threshold probabilities for testing and treatment (adopted from [3]).

doi:10.1371/journal.pone.0134800.g001
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To overcome the drawbacks of the EUT-based threshold model we recently developed a
Dual Processing Model (DPM) [12], which is based on DPT. The DPM [12] incorporates
regret to model type 1 processes and EUT to model type 2 processes. This is because regret is
one of the key emotions that play a major role in medical-decision making [20-22]. Two main
assumptions of DPM are that the extent of activation of type 1 processes is regulated by a
parameter v, and that when faced with a decision problem our initial responses tend to rely
mostly on type 1 processes [23].

In our previous work [12] we demonstrated the applicability of the DPM-based threshold in
a situation when no diagnostic test is available but a clinician has to make a decision whether
to administer treatment or not. Here, we extend our work to include a wider class of medical
decision-making problems that involve diagnostic testing.

Methods
Threshold models

EUT threshold model. Most decision theories agree that decision-making depends on
evaluation of harms (losses) and benefits (gains) associated with a given decision strategy. The
threshold model takes this into consideration by relating the threshold probability to benefit/
harms ratio. For example, the EUT threshold is calculated as:

1
PLEUT — m7 fOrHH > 0

Hpy

Where p,, gur € [0,1] is the threshold probability i.e. the probability of disease at which we are
indifferent between treatment vs. no treatment. B;; > 0 is the net benefits of treatment defined
as the difference in outcomes of treating and not treating a patient with disease, as realized by
type 2 (denoted also as IT in the equations) processes [12,24-29]. Hy; > 0 is the net harms due
to treatment, defined as the difference in outcomes of not treating and treating the patients
without disease as realized by type 2 processes[12,24-29]. Typically, the values of harms and
benefits are obtained from the best available evidence found in the literature [12,24-29]. Note
that for the validity of the p, pyr equation, Hy; must take values greater than zero. This require-
ment is clinically justifiable because in reality every treatment is associated with some harms.

Regret-based model. When treating a patient, a decision maker may face two types of
regret: regret associated with failure to provide necessary treatment (regret of omission) and
regret associated with administering harmful treatment (regret of commission)
[12,21,22,30,31]. These two regrets are used to compute the regret based threshold probability
as:

1
pt,RG = m, fOI‘HI > 0

Hp

where p; rg € [0,1] is the threshold probability at which a decision maker is indifferent between
treating or not a patient. By > 0 is the net benefits of treatment as realized by type 1 processes
and computed here as regret of omission. Hy > 0 is the net harms of treatment as realized by
type 1 (denoted also as I in the equations) processes and computed here as regret of commis-
sion. [12,21,22]. Both B; and H; values may be elicited using the Dual Analogue Scale described
elsewhere [21,22]. As with Hy;, H; must take values greater than zero so that p; ¢ is defined.

Dual Processing Model. DPM [12] assumes that the valuation of a risky choice is formed
as the combination of type 1 and type 2 processes. To demonstrate, consider a clinical scenario
(Fig 2) in which a decision maker is faced with a choice of treating (Rx) or not (NoRx) of a
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Outcome Utility Valuation

Disease
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05 1,2 1,2 14 Regret
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X3 Ul"l U,_’;_U,] Regret
05 3 ' :
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0.5 X4 Upa 0 Regret
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X3 Uz Uiz Utility
No Disease
X4 U4 Ui Utility

Fig 2. Decision tree describing a typical scenario in which a physician is considering administering
(Rx) / withholding treatment (NoRx) to/from his patient. x; represents an outcome; y is the involvement of
type 1 in the decision process; p is the probability of disease; Uj; is the utility of the outcome x; under type 1
process; Uy is the utility of outcome x; under type 2 processes; The valuation of an outcome x; under type 1 is
estimated as the regret associated with the outcome x;; the valuation of an outcome x; under type 2 is
estimated as the utility of the outcome x; ([12] for details).

doi:10.1371/journal.pone.0134800.g002

patient who has a disease with probability p. Each decision results in a specific outcome x;. For
example, outcome x; corresponds to the decision of treating a patient who had a disease and
outcome x, corresponds to the decision of treating a patient who did not have a disease. The
parameters x; > 0 and x;"" > 0 correspond to valuations of the outcome x; when the decision
maker employs type 1 and 2 processes respectively. Each outcome is also associated with type
1, Up; > 0, and type 2, Uy; > 0, utilities.

Solving the decision tree in Fig 2, we derive the DPM threshold probability, p, € [0,1], or the
probability at which we are indifferent between providing and withholding treatment, as [12]:

s gy (B} rens o

The interaction between type 1 and type 2 processes is represented by the parameter y €
[0,1]. y exemplifies the extent of activation of type 1 processes in the decision in such a way
that when it is zero the decision-making processes is based on type 2 processes according to the
EUT paradigm. As the value of y increases, so does the involvement of type 1 processes in the
decision. However, Eq 1 is not valid for values of ¥ = 1. In that case, based on the decision tree
depicted in Fig 2 for y = 1, the decision to treat or not depends solely on the explicit evaluation
of harms and benefits based on type 1 processes (see also the Special Case in S1 Appendix). As
a consequence, treatment should be administered only if benefits of treatment as assessed by
type 1 processes outweigh harms of treatment.
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y can be best visualized as the relative distance between the analytically derived threshold p,
rurand the regret derived threshold p; rg, or [32]:

. |pLEUT - pt.RGl
Yy = ming ———— 1
pLEUT

However, y can be affected by many different mechanisms that characterize type 1 pro-
cesses. Even though our model assumes a dominant role of regret, it does also incorporate
other mechanisms of type 1 cognitive processes.

If a patient’s probability of disease is greater than the threshold probability then the decision
maker favors treatment and withholds treatment otherwise. Eq 1 shows the impact of the
extent of treatment harms and benefits on decisions and how they relate to the DPM and EUT
thresholds. When the type 1 benefits of treatment as perceived by the decision maker are higher
than its harms, the DPM threshold is always lower than the EUT threshold. Conversely, the
DPM threshold is always greater than the EUT threshold if the type 1 harms of treatment are
perceived to be higher than benefits. These changes in the threshold often lead to different
choices than those predicted by the EUT and therefore may explain the violations of EUT in
decision-making described extensively in literature [7,8,21,22,33,34].

DPM with a diagnostic test. In many cases the use of a diagnostic test may assist the treat-
ing physician in decreasing diagnostic uncertainty. However, obtaining diagnostic information
may expose the patient to unnecessary risks [4] and therefore, a test should be ordered only
when benefits of testing outweigh its risks [3].

Typically, deciding when to perform a diagnostic test relates to the assessment of the prior
probability that a patient has a suspected disease [3]. If the probability of disease is very low or
very high, then performing a diagnostic test may be unnecessary. As explained above, accord-
ing to the threshold framework, there exists: 1. a probability at which we are indifferent
between performing a diagnostic test and withholding treatment; and 2. a probability at which
we are indifferent between performing a diagnostic test and administering treatment. These
probabilities are formally known as the threshold probabilities for testing and they are decom-
posed into 1. testing threshold (p,;) and 2. treatment threshold respectively (p,,) [3]. Here we
derive and present both threshold probabilities in terms of DPM [12].

We consider a generic scenario in clinical decision-making in which a decision maker is
considering one of three strategies for the management of a patient’s condition (Fig 3). These
strategies are: 1. do nothing (NoRx), 2. perform a diagnostic test (T), and 3. administer treat-
ment (Rx). The patient may have a disease (D) with probability p. Each strategy results in an
outcome x;, which is associated with a certain valuation, x;"” > 0 when type 1 processes are
involved and x;"" > 0 when type 2 processes are employed. Each outcome has a utility U;; > 0
for type 1 processes and Ujy; > 0 for type 2 processes. As described earlier, valuation of out-
comes under type 1 processes is performed using regret elicited using the Dual Visual Analogue
Scale (DVAS) while valuation of outcomes under type 2 processes is based on EUT and the lat-
est available evidence [12].

Solving the decision tree in Fig 3, we derive the following expected valuations for each strat-
egy (detailed derivation is presented in the S1 Appendix):

(UI‘Z - Um) +(1— V)[PUHJ +(1 _p)UH,Z}

V(NoRx) = % (U1,3 - U1.1) +(1 - V)[PUH,:s +(1-p) UH.4]
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Fig 3. Decision tree describing a typical scenario in which a physician is considering one the
following three strategies: administering treatment (Rx); withholding treatment (NoRx); and
performing a diagnostic test before deciding on treatment (Test). x; represents an outcome; y is the
involvement of type 1 in the decision process; p is the probability of disease; Uj; is the utility of the outcome x;
under type 1 and Uy, is the utility of outcome x; under type 2 cognitive processes; H, r denotes the harms of
test as realized by type 1 and H;, - denotes the harms of test as realized by type 2 processes; Py = pS+(1-p)
(1-Sp); P11 =pS/P1; P12 = (1-p)(1-Sp)/P1; P2 = (1-p)Sp+p(1-8); P21 = p(1-5)/P2; Pz = (1-p)Sp/P2; S is the test's
sensitivity and S,, the test’s specificity. The valuation of an outcome x; under type 1 is estimated as the regret
associated with the outcome x;; the valuation of an outcome x; under type 2 is estimated as the utility of the
outcome x;.

doi:10.1371/journal.pone.0134800.9003

and

V(T) = %(U 2 U174 + U1.3 - Ul.l) + (1 - V)[PSUUJ + (1 _P)(l - Sp)UH.Q +P(1 - S)U11.3

I,
+ (1 _p)SpUIIA] - (VHLT + (1 - "/)HU,T)

The notation for the expected valuations is as follows: Ur; > 0 and Uj;; > 0 corresponds to
the utilities of the x; outcome under type 1 and 2 processes respectively; p is the probability of
disease; y € [0,1] is the weight given to type 1 processes; S € [0,1] is the sensitivity of the diag-
nostic test; S, € [0,1] is the specificity of the diagnostic test; H; > 0 and Hy; > 0 denote the
harms associated with the diagnostic test as perceived by type 1 and 2 processes respectively.

Threshold probabilities for testing

Testing threshold. The testing threshold is the probability at which we are indifferent
between withholding treatment and ordering a diagnostic test [3]. Thus, working with the
expected valuations for NoRx and T, V(NoRx) = V(T), and solving for the threshold probability
we derive:

H B H
P = mind Py 14 : o (i (1) +a5n) [af fraclal @
| 4(1—y)(1—sp)(1+;ﬂ) H,\" H H,

1-S, Hy

Eq 2 is invalid for y = 1. In that case, decision makers should always choose not to treat
instead of testing i.e. ordering a diagnostic test does not contribute to the decision (see S1
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Appendix Special Case section for details). This result is a function of type 1 processes, which
do not have a role in calibration of probabilities, but treat each choice as “yes/no” outcome (see
Fig 3). Indeed, the key role of a diagnostic test is to decrease uncertainty by increasing/decreas-
ing probability of disease. When a decision-maker does not take this probability into account,
then there is no sense in considering a diagnostic test.

If the probability of disease is greater than or equal to p;; the decision maker favors the diag-
nostic test; otherwise, he/she prefers withholding treatment. The DPM testing threshold (Eq 2)
is always higher than the analytically derived EUT testing threshold if the relationship between
type 1 benefits and harms of treatment and harms of test is H+4H; r > B;. This relationship
shows that if the harms of test and treatment are perceived greater than the benefits of treat-
ment, the decision maker requires more certainty before testing. Conversely, the DPM testing
threshold is always lower than the EUT testing threshold if H+4H| 1 > Bj, which demonstrates
that the decision maker requires less certainty before testing. Note that the accuracy of the diag-
nostic test (expressed in terms of sensitivity and specificity) does not affect this finding. Both
Puwsurand py, are undefined for the special case of S, = 100%. However, as S,—100%, py,
rur—1 and p,—1. This finding demonstrates a decision maker’s aversion in providing diag-
nostic testing, which is perceived to lead to more harms than benefits. Note that the values of y,

Sp» S and (3_111) affect the degree (“depth”) by which the DPM testing threshold p,, is greater/

lower than the classic EUT threshold p,, giyrs however, they do not change the quality of the
relationship.

Treatment threshold. The treatment threshold is the probability at which we are indiffer-
ent between testing and administering treatment [3]. Working with the expected valuations of
Rxand T, V(Rx) = V(T), and solving for the threshold probability we derive:

HH HI HII

) H B H
P =mind p.por |1+ ’ ) (—' (1 ——’) - 4i) Lo forye[01] (3)

41— p)s, (1 - L

Sp

Eq 3 is invalid for y = 1. In that case, decision makers should always choose treating instead
of testing (see S1 Appendix Special Case section for details). As outlined above, this result is a
consequence of how type 1 processes work: by treating each choice as “yes/no” outcome there
is no sense in taking diagnostic test probabilities into account (see Fig 3).

If the probability of disease is greater than or equal to p,, the decision maker will choose to
administer treatment; otherwise, he/she will prefer to perform a diagnostic test. The DPM
treatment threshold (Eq 3) is always higher than the analytically derived EUT treatment
threshold if the relationship between type 1 benefits and harms of treatment and harms of test
is as follows: H; > Bj+4H; 1. This relationship shows that if the decision maker assumes that
the harms of treatment are higher than its benefits added to the harms of testing, then he
requires more certainty before proceeding with treatment. Conversely, the DPM treatment
threshold is always lower than the EUT treatment threshold if H; < Bj+4H; 1, which demon-
strates that the decision maker requires less certainty before proceeding with treatment. As
above, the test sensitivity and specificity does not affect this relationship. Both rules assume
that the diagnostic test is objectively assessed (via type 2 functioning) to be less harmful than

the treatment, Hy;, < Hy, which is almost always the case. The values of y, S, S, and (S—I’I)

affect the extent (“depth”) by which the dual threshold p,, is greater/lower than the classic EUT
threshold p,. gur but does not change the quality of the relationship.

To summarize, for y € [0,1) a decision maker will choose to perform a diagnostic test if the
patient’s probability of disease is p,; < p < p,». The probabilities p,, and p,, are functions of a
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decision maker’s attitudes towards treatment benefits and harms as well as harms of testing
and they are derived using both type 1 and type 2 cognitive mechanisms. The probability of
disease, p can be estimated by statistical evidence, and by the physician’s intuition and experi-
ence. When y = 1, the management choices are limited to treatment vs no treatment as testing
results in the overall lower valuation in comparison with the other two alternatives. Therefore,
the optimal decision is a function of the decision maker’s attitudes towards treatment benefits
and harms as assessed by type 1 processes (see S1 Appendix Special Case section for details).

Case Study

We will now demonstrate the applicability of the proposed method as it relates to decisions
regarding performing prostate biopsy in a patient suspected of having prostate cancer. Con-
cerns about prostate cancer may be raised by elevated values of the Prostate-specific Antigen
(PSA) biomarker and/or by abnormalities found through Digital Rectal Examination (DRE).
Further verification is obtained through a biopsy, which is currently the gold standard for diag-
nosis of prostate cancer. During the prostate biopsy, several needles are inserted through the
rectum wall into the areas of the prostate, where the abnormality is detected, to remove small
amounts of tissue, which are later analyzed in the lab. The patient may experience discomfort,
pain, bleeding, hematuria, infections, sepsis and vasovagal episodes as a result of the biopsy
[35-40]. Table 1 summarizes the risks and benefits associated with prostate biopsy as reported
in literature.

Contingent on the results of the biopsy, the treating urologist may choose to perform a radi-
cal prostatectomy and surgically remove a part or all of the prostate gland. The goal of the pro-
cedure is to cure or control the cancer. The procedure is performed either through an open
surgery, where the surgeon makes a cut in the abdomen or between the testicles and the back
passage, or laparoscopy, where the surgeon makes several small incisions in the pelvis. In both
cases, the patient may experience major or minor complications after or during the surgery
including heart problems, blood clots, blood loss, allergic reactions to anesthesia, infections,
erectile dysfunction, urinary incontinence, damage to the urethra or the rectum [41-43]. How-
ever, radical prostatectomy has statistically beneficial effect on patient’s survival compared to
observation[44-46]. Table 2 summarizes the risks and benefits of radical prostatectomy as
reported in literature.

For example consider the management strategies for a 66-year-old patient with elevated
PSA and abnormal DRE: 1. do nothing (e.g. observe or wait for 6 months to repeat PSA and
DRE), 2. perform a prostate biopsy and act accordingly, and 3. proceed directly with radical
prostatectomy. Based on the evidence provided on Tables 1 and 2 we define the type 2 benefits
and harms regarding radical prostatectomy as By = 2.5% to 10% and Hj; = 0.4%. The harms
associated with prostate biopsy are Hy; 1= 0.09%.

Table 1. Harms associated with cancer biopsy as reported in literature*.

Cancer biopsy

Harm (H) Size

Death (H) 0.09% [52]
Infections (H) 2-3% [37-39]
Hematuria (H) 50%-60% [35,36,38]
Discomfort, pain, bleeding, sepsis, vasovagal episodes (H) <10% [35-40]

* The data are related to transrectal ultrasound guided prostate biopsy.

doi:10.1371/journal.pone.0134800.t001
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Table 2. Benefits and harms of radical prostatectomy as reported in literature*.

Radical prostatectomy

Benefit (B) or Harm (H) Size

Survival (B) Absolute risk reduction: 2.5%-
10% [44—46]

Death (H) 0.4% [46]

Erectile dysfunction (H) 37% [46]

Urinary incontinence (H) 10.8% [46]

Heart problems (H), blood clots (H), blood loss (H), allergic <10% [41-43]

reactions to anesthesia (H), infections (H), damage to the urethra or
the rectum (H)

* The data are related to radical prostatectomy performed as an open surgery or laparoscopic.

doi:10.1371/journal.pone.0134800.t002

For demonstration and simplification purposes, we will first describe how the decision
dilemma described above would be solved relying solely on type 2 processes focusing on the
most important harms and benefits i.e. those related to survival. An elaborate modification of
the EUT model to include all harms and benefits reported in literature can also be implemented
as in [24]. We assume that the values of sensitivity and specificity of the biopsy are equal to
86% and 94% respectively [47] (the highest reported values for biopsy guided by transrectal
ultrasound (TRUS)). The EUT-based threshold probabilities, are derived by Eqs 2 and 3
(assuming y = 0) and they are equal to p;; ryr=0% and p,, rur=21% (considering maximum
benefit of treatment B;; = 10%). The results show that a decision maker will accept biopsy and
surgery at very low probabilities of prostate cancer: 0% for biopsy and 21% for surgery. That is,
according to the EUT model we should perform biopsy at the slightest suspicion of prostate
cancer (i.e., as long as it is greater than 0%!), and can recommend surgery at the estimated
probability of prostate cancer > 21%! No physician (or, a patient) would agree with such rec-
ommendations. The finding based on the EUT model also contradicts the influential, National
Cancer Network (NCCN) expert guidelines for prostate cancer [48] which indicates that a
prostate biopsy should be performed if the probability of prostate cancer exceeds 48% (indi-
rectly computed by a Gleason score of 8 or higher for symptomatic patients which translates
into 48% according to [49]).

Our finding of low threshold for the action may be attributed to the oversimplified assump-
tion focusing only on mortality, which is rather small: harms (death) attributed to biopsy
(0.09%) and prostatectomy (0.4%). If instead of death due to prostatectomy, we focus on erec-
tile dysfunction (37%), which reflects the main concern of patients with 20 or more years of life
expectancy, the threshold values increase considerably: p,; gyr=21% and p,, gur=49% (con-
sidering maximum benefit of treatment Bj; = 10%). In this case a decision maker opts out of
biopsy for probabilities less than 21% and requires more certainty for prostatectomy (49%).
The problem, however, is how to integrate multiple outcomes in the EUT model, particularly
since it is believed that the values people attach to different outcomes depend on the type 1
mechanisms, which processes the information on all benefits and harms in holistic fashion [4].

It is, therefore, necessary to arrive at decisions using cognitive mechanisms that employ
both type 2 and type 1 processes. In our model, this is easily accomplished by increasing the
value of y, which reflects the extent of type 1 processes in the decision process. As a result both
testing thresholds change. To compute the threshold values from Eqs 2 and 3 we need to elicit
the decision maker’s preferences towards biopsy (H; r) and towards prostatectomy (B, Hj). In
contrast to the valuation of outcomes through EUT that entail inquiries for every harm and
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Fig 4. EUT and DPM testing thresholds as functions of type 1 benefits/harms of prostatectomy ratio. The chart progression (Fig 4a—4d) shows the
effect of increasing type 1 harms of biopsy on the values of testing thresholds. Unlike the EUT threshold, as harms of biopsy (H, 7) increase (Fig 4b, 4c and
4d), the DPM testing threshold increases to the maximum indicating that a decision maker will never choose a biopsy. When benefits of prostatectomy are
higher than its harms (B;>H,), the decision maker opts for prostatectomy at practically 0% of disease. Note that the DPM model allows for the treatment
threshold to be lower than the testing threshold. This is rationally not possible within the EUT framework, but has been observed in clinical practice. As an

illustration consider the case where B;<H,. The DPM testing threshold (o) is always higher than the EUT testing threshold (o« gu7). This is because the DPM
testing threshold considers the decision maker’s attitudes towards treatment according to which the benefits of treatment are higher than its harms (e.g.
By>H,;). The same holds for the case of B;<Hj;, but only when H, >0 (i.e. the diagnostic test is harmful) (Fig 4b, 4c and 4d). If H, r= 0 and B,>H,, (Fig 4a), the

decision maker may choose test or treatment at the same probability of disease. Also, for most B,/H,, the DPM treatment threshold (p,,) is lower than the EUT
treatment threshold (o £u7)- Again, this is because the decision maker values treatment benefits higher that its harms.

doi:10.1371/journal.pone.0134800.g004

benefit individually, the type 1 processes valuate outcomes in a holistic manner by eliciting
regrets of omission and commission using the DV As [21,22]. Because type 1 processes are
unique to each decision-maker, we expect that the DPM-based thresholds will vary among dif-
ferent individuals.

Figs 4 and 5 graph the values of the EUT and DPM thresholds for testing as functions of the
type 1 treatment benefit/harm ratio (B;/Hj) for different values of type 1 harms of biopsy (Hj,
7). Both figures are generated for maximum benefit of treatment (B;; = 10%) however, Fig 4
assumes harms of treatment relate to survival (Hy; = 0.4%) and Fig 5 assumes harms of treat-
ment relate to erectile dysfunction (Hy; = 37%).

Fig 4 demonstrates that as the harms of biopsy (H| r) increase (Fig 4b, 4c and 4d), the decision
maker will always choose a minimal risk and high benefit prostatectomy over the biopsy. This
result is true for any type 1 treatment benefit/harm ratio (By/Hj). In addition, it is shown that the
treatment threshold decreases dramatically as the type 1 benefits of prostatectomy outweigh its
harms (B; > Hj) and that there exists a benefits/harms ratio at which a decision maker would opt
for prostatectomy at practically 0% probability of prostate cancer. These results appear to be dif-

ferent than those based on the EUT model, which recommends biopsy to practically all patients
and prostatectomy to the patients with probability of cancer greater than 21% regardless of the
decision maker’s preferences towards biopsy and prostatectomy. Note the important result in Fig
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Fig 5. EUT and DPM testing thresholds as functions of type 1 benefits/harms of prostatectomy ratio. The chart progression (Fig 5a—5d) shows the
effect of increasing type 1 harms of biopsy to the values of testing thresholds. The value of treatment threshold decreases as the ratio benefit’/harms of
prostatectomy increases (Fig 5a, 5b, 5¢ and 5d). The value of testing threshold also decreases as the ratio benefit/harms of prostatectomy increases but only
when the harms of biopsy are zero (Fig 5a). If the decision maker perceives biopsy as harmful (Fig 5b, 5¢ and 5d) the testing threshold increases to the point
that he will never choose biopsy. A prostatectomy becomes the preferred choice when B, > 2H, in Fig 5b; B, > H, in Fig 5c; B,> 0.8H, in Fig 5d.

doi:10.1371/journal.pone.0134800.9005

4: The treatment threshold is lower than the testing threshold, which is rationally not possible
within the EUT framework, but has been observed in clinical practice [20].

The results shown in Fig 5 are far more complicated and fascinating since in this case we
consider that the prostatectomy may cause erectile dysfunction in 37 out of 100 people (By; <
Hypp). It would be logical to assume that a decision maker would always prefer to undergo a diag-
nostic test with minimal harms before a harmful intervention. This behavior is demonstrated
in Fig 5a, where it is assumed that H; r = 0. However, the prostate cancer probability levels at
which a decision maker would opt in for either strategy changes based on the way the decision
maker experiences type 1 benefits and harms of prostatectomy. For example, in Fig 5a, the
decision maker will accept biopsy at a probability of prostate cancer greater than 40% (closer to
NCCN guidelines than the EUT threshold) and prostatectomy for probability greater than 90%
if he perceives type 1 harms of prostatectomy as greater than its benefits (e.g. H; = 8B;). If the
decision maker perceives type 1 benefits of prostatectomy higher than its harms (e.g. B; = 8H)),
he may tolerate biopsy for any probability of prostate cancer and accepts prostatectomy at a
probability greater than 60%.

Furthermore, as the harms of biopsy (H; 1) increase (Fig 5b, 5¢ and 5d), there is a range of
benefit/harms ratio above which the decision maker will prefer prostatectomy over biopsy. For
example, when type 1 harms of biopsy are believed to be 10% (Fig 5b), a prostatectomy is pre-
ferred to a biopsy (if type 1 benefits of prostatectomy are at least 2 times higher that its harms).
Similarly, when H; 1= 20% (Fig 5¢), a prostatectomy is preferred to a biopsy if its benefits are
slightly higher than its harms. Once again, this is rationally not possible within the EUT frame-
work[20], however, it is observed in current urological practice.
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Our case study clearly illustrates that the estimation of the exact values for each parameter,
particularly those valuated under type 1 functioning, is not a simple exercise and reflect the
complexity of real time decision making. It also demonstrates a variation in decisions made by
different decision makers, a finding that may explain why people violate EUT.

Discussion

In this article we described the derivation of a DPM for medical decision making to accommo-
date decisions that involve diagnostic testing. Our model is based on Dual Processing Theories
and assumes that human cognition relies on type 1 processes, which are intuitive and affect-
based, as well as type 2 processes, which are analytical and deliberate processes.

Most medical decision making models rely on EUT and have failed to explain variations
between the predicted versus the actual decisions people make. We hypothesize that this is
because most existing models depend only on the analytical process of human cognition and
ignore other experiential aspects of the decisions humans face[12,50].

Our DPM modifies the EUT threshold model for decision making to incorporate influences
by both modes of human cognition: intuitive, affect-based (type 1) and analytical processes
(type 2). The derived expressions (Eqs 2 and 3) show that the DPM thresholds modify the EUT
thresholds based on the way decision makers evaluate trade-offs of treatment. For example, the
DPM-based testing threshold is always higher than the EUT-based threshold when harms of
treatment and of test are assessed by type 1 processes to be higher than benefits of treatment.
On the other hand, the DPM-based treatment threshold is always lower than the EUT-based
threshold when harms of treatment are perceived by the type 1 processes to be lower than treat-
ment benefits and biopsy harms. As described in the Methods section, the test sensitivity and
specificity does not affect this relationship. The importance of our findings is best seen in the
context of the current attempts to curb waste associated with over-testing. The American
Board of Internal Medicine’s (ABIM) nine specialty societies representing 374,000 physicians
developed a list of each specialty’s “Top Five’ inappropriately prescribed diagnostic tests in
order to improve care by eliminating unnecessary tests and procedures [51]. For example, one
typical recommendation reads, “Don’t order annual electrocardiograms (EKGs) or any other
cardiac screening for low-risk patients without symptoms. False-positive tests are likely to lead
to harm through unnecessary invasive procedures, over-treatment and misdiagnosis.” The
problem with this guideline is how to determine how low is “low” (in terms of “low-risk”) and
how likely is “likely” (in terms of false positives)? That is, at which threshold probability the
test should actually be ordered? As illustrated in this paper, because the test characteristics do
not affect the thresholds, we do not need to worry about false-positives (or, false-negatives for
that matter). What matters is 1) objective data on treatment benefits and harms, and 2) how
the decision-maker perceives these data (via type 1 processes). Therefore, a solution to the cur-
rent health care waste could be to continue emphasizing the need for reliable, evidence-based
resources and to highlight the importance of cognitive mechanisms in the way we process the
information we access through the literature and collect during a clinical encounter. It has
been argued that mindful awareness of type 1 and type 2 processes [15] may help us improve
our decision-making processes. Our model provides the salient outline of these processes and
how these processes can be effectively approached in clinical practice and education.

We demonstrated the applicability of our approach in a hypothetical case study in which a
decision maker is considering radical prostatectomy for a patient who has elevated PSA and
abnormal DRE. As the decision maker is uncertain whether a radical prostatectomy is the
appropriate action for the particular patient, he also considers a prostate biopsy. Our results
demonstrated the inability of EUT to model the preferences and attitudes of individual decision
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makers towards treatment and diagnostic testing. On the other hand, the DPM threshold pro-
vides a convincing explanation as to why treatment decisions vary between decision makers.
We posit that this variation is contingent on the extent of activation of type 1 processes. Our
main point here is that type 2 processes (as adhered to the EUT model) will always produce the
same results, while it is type 1 processes that are unique to each decision-maker. In turn, it is
the extent of activation of type 1 processes that can explain excessive ordering of diagnostic
tests as well as overall variations in the treatment and diagnostic patterns documented in
today’s clinical practice.

Our model has limitations. Even though it is a simple mathematical expression, its applica-
tion is challenging since many of the model parameters are not easily elicited. Our suggestion,
which was implemented in this paper, is to use data from published literature to valuate out-
comes under type 2 processes and the Dual Visual Analogue scales developed in [21,22] to val-
uate outcomes under type 1 processes. In fact, we have shown that it is possible to elicit these
values [32] although we have not yet done it in the context of the diagnostic setting. Our next
step is to perform decision-making experiments initially in simulated environments, through
hypothetical scenarios, and later in real clinical environments. In both cases, we will compare
the decisions predicted by the DPM model to the actual decisions physicians make.

Throughout this article we avoided assigning a clear role to the decision maker. We believe
that our methodology can be used by physicians and/or by patients. It is our position, however,
that medical decision-making is shared between physicians and their patients. In such setting
physicians recommend alternative treatment strategies with their associated harms and bene-
fits and the patients eventually agree with the recommendation. We envision our methodology
as a part of a computerized decision support system operated by the physician to elicit the
patient’s preferences towards alternative forms of treatment.

Conclusions

We have extended the recently derived DPM for medical decision making to include a diagnos-
tic testing. Our model has the potential to explain the discrepancies found between optimal
and actual actions. Because it captures the salient elements of medical decision-making via few
parameters, our model has offered an important didactic value for medical education. Future
research involves testing our model in a simulated environment with a wide variety of health-
care professionals.
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