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Abstract: DNA replication is an essential biochemical reaction in dividing cells that frequently
stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch
and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication
forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in
DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides
an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by
sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During
IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised
by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs.
These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via
the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly
by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review,
we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed
light on DDT mode usage in vertebrate cells and tolerance of abasic sites.

Keywords: homologous recombination; translesion DNA synthesis; replication; activation-induced
deaminase; abasic site; DNA damage

1. Introduction

Cellular DNA is continuously damaged by chemical and physical agents from both endogenous
metabolic processes and exogenous insults. Replicative DNA polymerases replicate genomic DNA with
extraordinarily high accuracy, making only a single error per 106 nucleotides synthesized in vivo [1].
Due to this enzymatic property, replicative polymerases cannot accommodate nucleotides at damaged
templates and thus arrest replication [2]. Cells employ several mechanisms for releasing arrested
replication forks depending on the type of DNA lesions or the cell cycle phase [3]. One of the most
common and formidable lesions is the abasic site. Abasic sites are estimated to occur at a frequency
of over 10,000 sites per cell per day in mammalian cells [4,5]. These lesions can be repaired via
accurate base excision repair [6–9]. However, when the replication fork encounters unrepaired abasic
sites, they are dealt with by DNA damage tolerance (DDT) mechanisms that allow completion of
replication beyond the damaged template and prevent formation of deleterious double strand breaks
(DSBs) [10,11]. In general, there are two modes of DDT conserved in eukaryotes [10]. One mode is
mediated through homologous recombination (HR), which mediates continuous replication using a
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newly synthesized sister strand [10,12,13] (Figure 1A). A second mode is translesion DNA synthesis
(TLS), which employs specialized DNA polymerases, including polymerase η and polymerase ζ, to
permit continuous replication beyond the damaged template [14–18] (Figure 1B).
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Figure 1. Schematic representation of mechanisms releasing the arrested replication fork at the
damaged template. (A) Homologous recombination (HR)-mediated template switch releases the
arrested replication fork using intact newly synthesized DNA as the template strand and promotes
error-free bypass replication. (B) Translesion DNA synthesis (TLS) polymerases mediate direct bypass
replication across the damaged template in an error-prone manner.
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Figure 2. Schematic representation of the immunoglobulin variable (IgV) gene diversification 
mechanism in DT40 cells. The sequential actions of activation-induced deaminase (AID) and uracil 
DNA glycosylase (UNG) induce abasic sites in the IgV gene. The replication fork arrests at these 
lesions and induces template switch-mediated gene conversion with one of the 25 copies of upstream 
IgV pseudogenes carrying a ~10% mismatch rate, resulting in HR-mediated 
diversification/mutagenesis of the immunoglobulin gene (left), or TLS, resulting in somatic 
hypermutation at the dC/dG base pairs (right). 

The avian DT40 cell line derived from bursal B cells continues to diversify its IgV gene by gene 
conversion and somatic hypermutation during in vitro passage [32]. This cell line exhibits 
extraordinarily high gene-targeting efficiency, as an exception among vertebrate cell lines, and it is 
thus used in genetic studies due to the relative ease of establishing mutants [33]. Using this cell line, 
a number of studies have assessed the contribution of genes of interest to HR-mediated template 
switch and TLS via analyzing IgV diversification mechanisms [19]. Herein, we discuss how the DT40 
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Figure 2. Schematic representation of the immunoglobulin variable (IgV) gene diversification mechanism
in DT40 cells. The sequential actions of activation-induced deaminase (AID) and uracil DNA glycosylase
(UNG) induce abasic sites in the IgV gene. The replication fork arrests at these lesions and induces template
switch-mediated gene conversion with one of the 25 copies of upstream IgV pseudogenes carrying a
~10% mismatch rate, resulting in HR-mediated diversification/mutagenesis of the immunoglobulin
gene (left), or TLS, resulting in somatic hypermutation at the dC/dG base pairs (right).

When the blocking lesions are abasic sites, DDT processes serve additional functions, such
as generating immunoglobulin diversity in B cells [19,20]. Avian B cells diversify the
immunoglobulin variable (IgV) gene through HR-mediated gene conversion and TLS-mediated somatic
hypermutation [21]. In the initiation process of IgV diversification, activation-induced deaminase
(AID) leads to conversion of dC to dU on regions of single-stranded DNA, the exposure of which is
locally facilitated by the histone variant H3.3 [22], probably because nucleosome cores containing H3.3
are more unstable than those containing canonical H3 variants [23]. The uracil DNA glycosylase (UNG)
efficiently excises the uracil residues, yielding a high frequency of abasic sites [24,25] within a defined
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window of around 500 base pairs. The restriction of AID-mediated abasic sites to the IgV gene is
mediated by the cis-acting sequence referred to as DIVAC (diversification activator) [26]. The replication
stalling at these abasic sites either induces template switch-mediated gene conversion with one of
the 25 copies of upstream IgV pseudogenes carrying ~10% mismatch, resulting in HR-mediated
diversification/mutagenesis of the immunoglobulin gene, or they induce TLS, resulting in somatic
hypermutation at the dC/dG base pairs [14,15,24,27–31] (Figure 2). The induced hypermutations
are most likely a consequence of replication bypass across abasic sites, rather than bypass of dU,
as evidenced by the fact that most mutations are dC/dG to dG/dC transversions and loss of UNG
instead leads to replication over the dU, resulting in dC/dG to dT/dA transitions [24].

The avian DT40 cell line derived from bursal B cells continues to diversify its IgV gene by
gene conversion and somatic hypermutation during in vitro passage [32]. This cell line exhibits
extraordinarily high gene-targeting efficiency, as an exception among vertebrate cell lines, and it is
thus used in genetic studies due to the relative ease of establishing mutants [33]. Using this cell line,
a number of studies have assessed the contribution of genes of interest to HR-mediated template
switch and TLS via analyzing IgV diversification mechanisms [19]. Herein, we discuss how the DT40
cell line provides an opportunity to examine HR-mediated template switch and TLS at abasic sites via
sequencing the constitutively diversifying IgV gene.

2. Immunoglobulin variable (IgV) Gene Diversification in DT40 Cells

To examine IgV sequence diversification within the limited duration of in vitro passage (usually
2–5 weeks), the following methods increase the frequency of IgV sequence diversification and allow
effective measurement of the IgV diversification rate.

The first method is treating DT40 cells with a histone deacetylase inhibitor, trichostatin A (TSA).
This method increases the frequency of HR-mediated gene conversion 50- to 100-fold, with limited
effects on TLS-mediated somatic hypermutation [17,34]. Thus, for evaluating HR efficiency, TSA
treatment during in vitro passage of DT40 cells allows for sensitive detection of gene conversion events.
The mechanism underlying TSA-mediated activation of gene conversion has not been fully elucidated,
but a likely scenario is that TSA mainly affects the chromatin in the upstream IgV pseudogenes,
favoring their open configuration. Subsequently, the HR machinery can efficiently induce gene
conversion using these pseudogenes as donor sequences. This view is supported by the observation
that tethering of the heterochromatin protein HP1 to upstream IgV pseudogene regions diminishes
histone acetylation within this region and alters the outcome of IgV diversification, causing somatic
hypermutation to outweigh gene conversion [35]. The efficiency of gene conversion events can be
estimated without conducting sequence analysis. Specifically, the status of surface immunoglobulin M
(sIgM) expression in DT40 cl-18 cells, which carry a frameshift mutation in the IgVλ segment, alters
from negative to positive (sIgM gain) by gene conversion-mediated replacement of the frameshift
mutation. Thus, by measuring the rate of sIgM gain, the frequency of gene conversion can be estimated
(Figure 3A). The percentage of sIgM-positive cells within expanding subclones can be analyzed by
fluorescence activated cell sorting (FACS) [36].

Another method is AID overexpression during in vitro passage of DT40 cells. In this approach,
mouse AID (mAID) is overexpressed via infection with retrovirus containing the mAID gene, followed
by an internal ribosomal entry site and the GFP gene, as described previously [37]. With this method,
the expression level of the mouse AID protein is approximately 20 times higher than that of endogenous
chicken AID [38]. With the same methodology, chicken AID cannot be efficiently overexpressed,
presumably due to protein level control (author’s unpublished data). A variant of this method is to
establish clones overexpressing an enzymatically hyperactive form of human AID, hAIDup 7.3 [39],
which exhibits increased levels of deamination while generating an identical pattern of deamination to
the wild-type enzyme [22,39].
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The DT40 cells carrying wild type IgV gene, which can be disrupted by somatic hypermutation 
events. The rate of hypermutation events can be measured as a loss of sIgM expression in subclones 
by flow-cytometric analysis of sIgM staining. The sequence analysis of hypermutation event can be 
also carried out by selecting sIgM negative cells by cell sorter. 
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Figure 3. Schematic representations of the surface immunoglobulin M (sIgM) gain (A) and sIgM loss
assays (B). (A) Principle of the Ig gene conversion assay. The sIgM-negative DT40 clone contains a
frameshift in its rearranged V-Jλ segments, which can be repaired by pseudogene-templated conversion
events. The rate of Ig gene conversion can be measured as a gain of sIgM expression in subclones by
flow-cytometric analysis of sIgM staining. (B) Principle of the Ig hypermutation assay. The DT40 cells
carrying wild type IgV gene, which can be disrupted by somatic hypermutation events. The rate of
hypermutation events can be measured as a loss of sIgM expression in subclones by flow-cytometric
analysis of sIgM staining. The sequence analysis of hypermutation event can be also carried out by
selecting sIgM negative cells by cell sorter.

The overexpression of AID increases gene conversion at a rate similar to that of gene conversion
induced by TSA [38]. Moreover, somatic hypermutation is significantly increased by AID overexpression,
and hypermutation events are observed in nearly all IgV sequences analyzed, while somatic
hypermutation is barely detectable without AID overexpression. AID overexpression induces gene
conversion and somatic hypermutation at a ratio of approximately 1:2. AID overexpression during
in vitro passage of DT40 cells allows sensitive detection of gene conversion and somatic hypermutation.

An alternative approach to analyze hypermutation events without AID overexpression has also
been used. Instead of increasing the frequency of diversification, cells with spontaneously diversified
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IgV sequences can be selected by the status of sIgM expression using the cell sorter. Since the
hypermutation-mediated insertion of deleterious mutations results in the loss of sIgM expression,
starting from sIgM positive cells and selecting for sIgM negative cells is proposed to be a good readout
of the hypermutation events. In support of this hypermutation-mediated sIgM loss is the observation
that complete deletion of upstream pseudogenes (ψV−) diminishes gene conversion while increasing
hypermutation events and the frequency of sIgM loss [28]. However, the caveat with this approach
is that sIgM loss can also derive in good part from gene conversion-associated frameshift in wild
type (WT) cells [40]. Thus, perhaps a good compromise in this regard would be to use a cell line
with complete deletion of upstream pseudogenes (ψV−) and to approximate the sIgM loss with the
frequency of somatic hypermutation events (Figure 3B).

Importantly, the hypermutation analysis allows evaluation not only of TLS efficiency but also of
the mutation spectrum. In wild type cells, dG to dC transversion predominantly occurs [24], while
in certain cases when TLS polymerase(s) are inactivated, the mutation spectrum is altered, possibly
due to a shift of used TLS polymerase(s) in the bypass of replication across abasic sites in the IgV
gene [14,27,41].

Differentiating between hypermutation and gene conversion from the IgV nucleotide sequence
should be carried out as previously described [40]. Briefly, all sequence changes are assigned to one
of the following three categories: hypermutation, gene conversion or ambiguous mutation. A single
base substitution can be categorized as hypermutation or ambiguous mutation. Using the genome
database search, if one can find pseudogenes identical to the sequence containing the point mutation,
such mutation is categorized as ambiguous mutation, while if no identical donor sequence can be
identified, such point mutation should be categorized as hypermutation. An event with multiple
mutations having an identical pseudogene is interpreted as a single gene conversion event. If a
sequence containing multiple substitutions is not completely identical to one of the pseudogenes, but
has few mismatches, such mutations can be interpreted as deriving from a single gene conversion
event followed by several subsequent hypermutations.

3. Templated Mutagenesis by Gene Conversion

Ig gene conversion is mediated through HR as evidenced by the fact that deletion of upstream
homeologous IgV pseudogenes completely abolishes gene conversion [28] (Figure 4, Table 1, Pseudo V).
This observation also demonstrates that gene conversion and hypermutation are initiated from
a common DNA lesion mediated by AID, since loss of upstream IgV pseudogenes activates
AID-dependent hypermutation (Figure 4, Table 1). This idea is further strongly supported by the fact
that in DT40 cells mutated in Rad51 paralog genes BRCA1 or BRCA2, in which recruitment of the Rad51
DNA-strand exchange protein to damaged DNA is strongly impaired [40,42,43], gene conversion
is critically reduced and the IgV diversification is strongly shifted toward hypermutation (Figure 4,
Table 1). Inactivation of RAD54 (a gene encoding a key component of homologous recombination)
or FANCD2 (a gene responsible for Fanconi anemia, FA) reduces gene conversion without increasing
hypermutation [44,45] (Figure 4, Table 1). These pathways might contribute to gene conversion after
strand exchange, when the commitment towards Ig gene conversion has been made.

Ig gene conversion is initiated at the AID-mediated lesion (Figure 4, Table 1). HR mediates a
template switch to a homeologous upstream IgV pseudogene. HR is also accompanied by DNA
synthesis, which is facilitated by TLS-polymerases, as evidenced by the following observations.
Polη-deficient (POLη−/−) cells show a reduced gene conversion rate with increased length of gene
conversion tract in comparison with wild type cells [46] (Table 1). A role for Polη in D-loop extensions
during HR reactions in vitro has been reported [47–50]. These data indicate involvement of Polη in
Ig gene conversion and further imply that some backup polymerase(s) carrying higher processivity
might compensate for the absence of Polη in POLη−/− cells. Such backup polymerases might be
Polν and Polθ, since Ig gene conversion is completely abolished in POLη−/−/POLν−/−/POLθ−/−

cells [17] (Figure 4, Table 1). Thus, these TLS polymerases play roles not only in TLS but also in
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HR-mediated Ig gene conversion. The recruitment of TLS polymerases is promoted by ubiquitination
of the proliferating cell nuclear antigen (PCNA) [51–53]. However, the role of PCNA ubiquitination in
vertebrate HR and IgV diversification has not been fully elucidated.
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The heterotrimeric checkpoint clamp, consisting of the Rad9, Hus1, and Rad1 subunits (hereafter
referred to as 9-1-1), is structurally similar to PCNA and serves as a DNA damage sensor to mediate
the ATR signal axis [54–56]. The 9-1-1 clamp is loaded onto DNA by Rad17-RFC (replication factor C)
in vitro, which is analogous to the PCNA-RFC clamp loader system [57,58]. In vertebrates, Rad9 and
Rad17 play significant roles in HR as previously described [59,60]. RAD9−/− and RAD17/− DT40
cells show strongly reduced Ig gene conversion and increased hypermutation [38] (Figure 4, Table 1).
Considering limited effects on HR-mediated gene-targeting and DSB repair in comparison with severe
defects in Ig gene conversion by the loss of Rad9 or Rad17, the role of these factors might be confined
to a subset of the HR reaction initiated by replication fork stalling and associated with formation of
single strand DNA (ssDNA) gaps, rather than induced by DSBs.

Recently, mutations in the XPD family helicase gene DDX11 were identified in the hereditary
disorder Warsaw Breakage Syndrome (WABS) [61–64]. Cells from WABS patients have a shared feature
with Fanconi anemia (FA) with respect to the hypersensitivity to interstrand-crosslink (ICL) inducing
agents and increased chromosome aberrations, but to date DDX11 has not been formally classified
as an FA gene [61–64]. A recent study revealed that DDX11 plays a critical backup role for the FA
pathway regarding ICL repair in DT40 cells [65]. In addition to its role in ICL repair, DDX11 acts jointly
with the 9-1-1 clamp to promote HR induced by various lesions. DDX11−/− DT40 cells are epistatic
with RAD17/− with regards to DNA damage hypersensitivity and induction of sister-chromatid
exchanges and chromosome aberrations [65]. Interestingly, DDX11−/− DT40 cells show reduced
Ig gene conversion and hypermutation, with the effect of DDX11 in hypermutation being clearly
observed in a rad17 defective background [65] (Figure 4, Table 1). Thus, DDX11 may be involved in
the promotion of both HR and TLS for releasing stalled replication forks at lesions, with its function
in these two modes possibly being regulated by 9-1-1 and its loader, Rad17. This dual role of DDX11
in affecting both gene conversion and hypermutation is reminiscent of other FA genes [66] known
to integrate HR and TLS machineries to promote ICL repair. However, the interplay between the FA
pathway as delineated so far, and DDX11 at abasic sites, remains to be elucidated by future studies.

SPARTAN, a ubiquitin-PCNA-interacting regulator, plays a complex role in regulating mutagenesis
and in mediating repair of DNA-protein crosslink lesions. On one hand, SPARTAN promotes
TLS by recruiting Polη to DNA lesions, which involves its association with ubiquitinated PCNA
via its PCNA interacting peptide (PIP) domain and ubiquitin-binding zinc-finger 4 (UBZ4)
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domain [67–71]. On the other hand, SPARTAN recruits the p97 protein segregase and removes
Polη from DNA damage sites, thereby preventing mutations [72,73]. In addition to its function as
a ubiquitinated PCNA-binding TLS regulator, SPARTAN also mediates the repair of DNA-protein
crosslink lesions through its DNA-dependent metalloprotease activity [74–77]. Thus, the role of
SPARTAN at the stalled replication fork has been a matter of debate and remains controversial. Recent
analysis using DT40 cells revealed that SPARTAN promotes not only TLS-mediated Ig hypermutation,
but also Ig gene conversion [78] (Figure 4, Table 1). For promotion of Ig gene conversion, UBZ4 and
not the PIP domain of SPARTAN is required, suggesting that SPARTAN recognizes ubiquitinated
protein(s) other than PCNA to promote gene conversion [78]. Important questions for future studies
concern the mechanisms underlying SPARTAN’s role in the promotion of Ig gene conversion.

Moreover, as a general remark applied to most of the studies using AID overexpression to study
IgV gene diversification, the factors under study may affect AID activity itself, a possibility that has
not been formally ruled out. Recent work from the Sale Lab (Cambridge, UK) has used an ingenuous
strategy to address this issue, by co-overexpressing together with AID a bacterial uracil glycosylase
inhibitor and looking at whether the mutation rates induced by dU are similar to the ones observed in
control cells [22]. Likely, this strategy will be applied in the future to the study of other factors and this
will increase the knowledge of the mechanisms mediating AID regulation and IgV diversification via
bypass of abasic sites.

4. Nontemplated Somatic Hypermutation

Bypass replication by error-prone TLS polymerases causes hypermutation after the action of AID
and UNG. Studies in budding yeast have revealed that mono-ubiquitination of PCNA at lysine
164 serves as a signal for the recruitment of error-prone TLS polymerases to sites of perturbed
replication [79,80]. The role of PCNA ubiquitination was examined in ψV− DT40 cells, in which
upstream IgV pseudogenes are completely eliminated and gene conversion events are diminished [27]
(Figure 4, Table 1). The PCNA-K164R DT40 cells show impaired PCNA ubiquitination and exhibit
hypersensitivity to a wide variety of DNA damaging agents. Moreover, Ig hypermutation is critically
reduced in PCNA-K164R DT40 cells (Figure 4, Table 1), indicating that post-translational modification of
PCNA at lysine 164 is required for efficient TLS events in IgV gene diversification. Rad18, an E3-ligase
required for PCNA ubiquitination in yeast, is conserved in eukaryotic cells [79,81]. RAD18−/− DT40
cells exhibit a milder reduction in cellular tolerance to DNA damaging agents and Ig hypermutation in
comparison to PCNA-K164R cells (Figure 4, Table 1), and this mutant strain showed residual PCNA
ubiquitination [27,82]. Moreover, RAD18−/−/PCNA-K164R double mutant cells essentially show the
same phenotype as PCNA-K164R mutant cells [27]. These observations suggest that Rad18-mediated
PCNA ubiquitination is required for TLS events, but other ubiquitin ligases seem to function as a
backup for Rad18 in vertebrate cells. The mutation spectrum in PCNA-K164R DT40 cells is changed,
and this cell line shows biased reduction of dG:dC to dC:dG transversion [27]. Similarly, the loss
of Rev1 results in nearly complete loss of the dG:dC to dC:dG transversion mutation [27] (Figure 4,
Table 1). Ig hypermutation requires the deoxycytidyl transferase activity of Rev1 that is dispensable
for cellular tolerance to DNA damaging agents, suggesting that the transferase activity of Rev1
incorporates dC opposite to the abasic site [41]. More importantly, other types of IgV hypermutations
are also significantly reduced in PCNA-K164R cells, but not in REV1−/− cells, suggesting that PCNA
ubiquitination activates other TLS polymerases apart from Rev1.

POLη−/−/POLζ−/− DT40 cells also show reduced dG:dC to dC:dG mutations and increased
dG:dC to dA:dT mutations. Moreover, this cell line has a wild type level of Ig hypermutations [14].
These observations suggest that the absence of Polη and Polζ is largely compensated by the action
of other polymerase(s) possessing activity to preferentially incorporate dA opposite the abasic site.
Interestingly, POLζ−/− DT40 cells have pronounced defects in TLS across T-T (6-4) UV photoproducts,
while loss of Polη critically restores this defect. Similarly, POLη−/−/POLζ−/− DT40 cells exhibit
milder DNA damage sensitivity in comparison to POLζ−/− cells [14]. These observations suggest
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that actions of Polη in the absence of Polζ critically impair the functionality of TLS. The absence of
both Polη and Polζ can be substituted by other polymerase(s), such as Polδ. Loss of PolD3, the third
subunit of the Polδ holoenzyme, results in a five-fold reduction of Ig hypermutation efficiency [16],
suggesting a possible role of Polδ in TLS across abasic sites (Figure 4, Table 1). This view is supported
by the observation that a complete set of human Polδ holoenzyme, but not PolD3-deficient Polδ,
efficiently replicates across abasic sites in vitro [16]. Moreover, inactivation of the proofreading
exonuclease activity dramatically enhances TLS across abasic sites in vitro [15], suggesting that this
activity counteracts bypass replication presumably due to excision of incorporated nucleotides at
damaged templates. Strikingly, the expression of proofreading exonuclease activity-deficient Polδ by
introducing a heteroallelic point mutation (POLD1+/exo−) rescues the mutant phenotype of POLD3−/−

cells, and the Ig hypermutation in POLD3−/−/POLD1+/exo− returns to wild type levels [15]. These
observations suggest that PolD3 counteracts Polδ’s proofreading exonuclease activity in order to
promote TLS across abasic sites during IgV gene diversification, and support a pivotal role of PolD3
in Polδ-mediated TLS. The loss of PolD3 in POLη−/−/POLζ−/− DT40 cells results in synthetic
lethality, and this lethality is partially suppressed by the expression of proofreading exonuclease
activity-deficient Polδ [15]. Thus, TLS relying on Polη-Polζ and Polδ might participate in parallel
pathways promoting cell survival.

Either loss of Rev1 (REV1−/−) or Polη-Polζ (POLη−/−/REV3−/−) reduces dG:dC to dC:dG
transversions [14,27]. This might be attributable to the loss of Polζ activity in these mutant cells, as
evidenced by the following observations. DT40 REV1−/− REV3−/− REV7−/− triple mutant cells show
hypersensitivity to genotoxic agents as observed in each single mutant cell, indicating an epistatic
relationship between these factors [83]. These observations further suggest that Rev1, Rev3 and Rev7
function cooperatively in the TLS pathway as Polζ.

Other TLS polymerases, including Polν and Polθ, might also be involved in Ig hypermutation,
since inactivation of Polν and Polθ in POLη−/− cells significantly reduced Ig hypermutation [17]
(Figure 4, Table 1). However, to fully understand the redundancy as well as the division of labor
among polymerases in the TLS network further investigations are needed.

The spatiotemporal regulation of the repair of AID-induced abasic sites, that is, whether the
repair/bypass of these sites happens at the level of the fork, or behind the fork, remains an issue of
investigation. So far, indirect assays have been used to assess the involvement of a subset of the factors
implicated in this process in regulating fork speed and gap-filling. Specifically, DNA fiber assays
following UV or MMS (methylmethane sulfonate) damage can measure damage bypass events at the
fork, whereas alkaline sucrose gradient sedimentation of pulse labeled cells show the efficiency of
post-replicative processes [84]. For instance, POLη−/− POLζ−/− mutants show only defects in the
post-replicative gap-filling assay, whereas POLD3−/− mutants show defects only in the fork speed
assay [15,16]. Thus, although these assays do not probe for events at the IgV locus or in conditions
with increased abasic sites, these data suggest that IgV diversification may happen both at the fork and
in the G2 phase, and may be mediated by distinct factors.

5. Summary and Perspective

In this review, we summarized the current understanding of mechanisms promoting recovery
of arrested replication forks at damaged DNA templates as unveiled by the analysis of IgV gene
diversification in avian DT40 cells. This cell line exhibits extraordinarily high gene-targeting efficiency
and has thus been extensively used for genetic studies [33]. Moreover, this cell line provides a great
opportunity to analyze gene functions in replication fork recovery and/or gap-filling at damaged
templates by analyzing IgV gene diversification. Thus, genetic studies using the DT40 cell line might
continue to contribute to the understanding of DDT mechanisms in eukaryotic cells. The genes
involved in IgV gene diversification (gene conversion and hypermutation) are summarized in Table 1.

Genetic studies of yeast have greatly contributed to the understanding of mechanisms regulating
TLS and HR-mediated template switch to recover arrested forks at damaged DNA templates [79,85–89].
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The mono-ubiquitination on PCNA at lysine 164 by Rad6 (E2 conjugating enzyme) and Rad18 (E3
ligase) serves as a signal for promoting TLS [87], while extension of this ubiquitin to a polyubiquitin
chain by Ubc13 (E2 conjugating enzyme) and Rad5 (E3 ligase) facilitates template switch [85,89].
Studies in the mouse model using PCNA-K164R or RAD18−/− mutant cells demonstrated an
important role of PCNA ubiquitination in the maintenance of hematopoeotic stem cells, avoidance of
premature aging and DNA damage tolerance, highlighting the critical role of this pathway for genome
maintenance in mammals [90,91]. Studies using DT40 cells also revealed conserved mechanisms of the
Rad18-PCNA ubiquitination axis in TLS promotion and suggested the role of additional E3 ubiquitin
ligases in this ubiquitination process [27,82]. In addition to promoting TLS, Rad18 functions in concert
with another E3 ligase, Rnf8, and plays a significant role in HR promotion in DT40 cells [12], as it
does in budding yeast [89]. The role of Rad18 in the promotion of HR in vertebrate cells occurs via a
direct interaction with the RAD51 paralog Rad51C [92]. Thus, the roles of Rad18 and the mechanisms
of PCNA mono-ubiquitination might be considerably more complex in higher eukaryotic cells in
comparison to yeast cells. SHPRH and HLTF are identified human homologs of Rad5 [93–96], and
depletion of these E3 ligases resulted in reduction of PCNA poly-ubiquitination and rendered cells
hypersensitive to DNA damaging agents [93,94]. These observations highlighted the importance
of PCNA poly-ubiquitination via Rad5 homologs in human cells. However, SHPRH−/− DT40 cells
showed no detectable defects in the ubiquitination of PCNA or cellular tolerance to alkylating agents
and Ig diversification (Figure 4, Table 1), but they did show higher sensitivity to the topoisomerase II
inhibitor, etoposide, in comparison to wild type cells [97]. Moreover, HLTF is missing in the chicken
genome [97]. The redundancy of E3 ligases in PCNA ubiquitination might be linked to different
roles of this modification in genome maintenance and genetic plasticity. Moreover, in human cells,
Ubc13 (an E2 conjugating enzyme) plays a role in DSB repair. Rnf8 (E3 ligase), in complex with Ubc13,
ubiquitinates histone H2A surrounding DSB sites [98,99], and then the Rnf168 (E3 ligase)–Ubc13
complex further amplifies histone ubiquitination [100] to recruit downstream repair factors, including
BRCA1, that are required for the recruitment of Rad51 to DSB sites [101,102]. Similarly, UBC13−/−

DT40 cells show defective DSB repair due to impaired Rad51 recruitment [103]. Furthermore, Rnf8 (E3
ligase) also contributes to both Ig hypermutation and gene conversion in DT40 cells [104] (Figure 4,
Table 1). Taken together, these observations suggest that the Ubc13-Rad5 axis unveiled in yeast
studies cannot be directly extrapolated into higher eukaryotic cells, due to considerable redundancy in
ubiquitination enzyme networks and differential functions of the key enzymes. Moreover, the role
of PCNA in HR-mediated template switch has not been elucidated. Comprehensive analysis of the
ubiquitination pathway is warranted to fully dissect the molecular mechanisms of the ubiquitination
signal pathway in DNA damage responses.



Genes 2018, 9, 614 11 of 18

Table 1. Genes involved in Ig gene conversion and hypermutation.

Gene Name GC PM Method Reference

AID − − IgM gain and sequencing Arakawa et al., 2002 [105]
ASCIZ + 0 IgM gain, mAID overexpression and sequencing Oka et al., 2008 [106]
BACH2 − − IgM gain and sequencing Budzynska et al., 2017 [107]
BLM − NT IgM gain Kikuchi et al., 2009 [108]
BRCA1 − + IgM loss and sequencing Longerich et al., 2008 [42]
BRCA2 − + IgM loss and sequencing Hatanaka et al., 2005 [43]
CTNNBL1 − NT IgM gain Conticello et al., 2008 [109]
DDX11 − − IgM gain, mAID overexpression and sequencing Abe et al., 2018 [65]
DNA-PKCS NT 0 IgM loss Sale et al., 2001 [40]
E2A − 0 IgM gain and sequencing Kitao et al., 2008 [110]
FANCC − NT IgM loss and sequencing Pace et al., 2010 [111]
FANCD2 − − IgM loss, gain and sequencing Yamamoto et al., 2005 [45]
FANCJ − NT IgM loss and sequencing Kitao et al., 2011 [112]
FEN1 − NT IgM gain and sequencing Kikuchi et al., 2005 [113]
HDAC2 + 0 IgM gain and sequencing Lin et al., 2008 [114]
HERC2 − − mAID overexpression and sequencing Mohiuddin et al., 2016 [104]
KU70 NT 0 IgM loss Sale et al., 2001 [40]
MMS2 0 − IgM loss and sequencing Simpson et al., 2005 [115]
MSH6 0 0 IgM gain and sequencing Campo et al., 2013 [116]
NBS1 (p70) − + sIgM gain, mAID overexpression and sequencing Nakahara et al., 2009 [117]
PARP-1 − − IgM gain, mAID overexpression and sequencing Paddock et al., 2010 [118]
PCNA (K164R) NT − IgM loss and sequencing Arakawa et al., 2006 [27]
PMS2 0 0 IgM gain and sequencing Campo et al., 2013 [116]
POLD3 + − mAID overexpression and sequencing Hirota et al., 2015 [16]
POLH − − IgM gain and sequencing Kawamoto et al., 2006 [46], Kohzaki et al., 2010 [17]
POLN − 0 IgM gain, mAID overexpression and sequencing Kohzaki et al., 2010 [17]
POLQ − 0 IgM gain, mAID overexpression and sequencing Kohzaki et al., 2010 [17]
POLH/POLN/POLQ − − IgM gain, mAID overexpression and sequencing Kohzaki et al., 2010 [17]
POLZ (REV3) 0 NT IgM gain and sequencing Okada et al., 2005 [83]
Pseudo V − + IgM loss and sequencing Arakawa et al., 2004 [28]
RAD9 − + mAID overexpression and sequencing Saberi et al., 2008 [38]
RAD17 − + mAID overexpression and sequencing Saberi et al., 2008 [38]
RAD18 NT − IgM loss and sequencing Arakawa et al., 2006 [27]
RAD51B − + IgM loss and sequencing Sale et al., 2001 [40]
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Table 1. Cont.

Gene Name GC PM Method Reference

RAD51C − + IgM loss and sequencing Hatanaka et al., 2005 [43]
RAD51D − + IgM loss and sequencing Hatanaka et al., 2005 [43]
RAD52 NT 0 IgM loss Sale et al., 2001 [40]
RAD54 − NT IgM gain and sequencing Bezzubova et al., 1997 [44]
RECQL5 + NT IgM gain and sequencing Hosono et al., 2014 [119]
RNF8 − − mAID overexpression and sequencing Mohiuddin et al., 2016 [104]
RNF168 − 0 mAID overexpression and sequencing Mohiuddin et al., 2016 [104]
SPRTN − − IgM gain, mAID overexpression and sequencing Nakazato et al., 2018 [78]
SHPRH 0 0 sIgM gain and sequencing Tomi et al., 2014 [97]
REV1 0 − IgM loss and sequencing Simpson et al., 2003 [120]
UNG − + IgM gain, loss and sequencing Saribasak et al., 2005 [25]
XRCC2 − + IgM loss and sequencing Sale et al., 2001 [40]
XRCC3 − + IgM loss and sequencing Sale et al., 2001 [40]

GC and PM represent gene conversion and hypermutation, respectively. Positive, zero and negative effects by gene deletion or mutation are shown by +, 0 and −, respectively. NT:
not tested.
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