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Abstract

SNARE-mediated membrane fusion is a pivotal event for a wide-variety of biological processes. SNAP-25, a neuron-specific
SNARE protein, has been well-characterized and mouse embryos lacking Snap25 are viable. However, the phenotype of mice
lacking SNAP-23, the ubiquitously expressed SNAP-25 homolog, remains unknown. To reveal the importance of SNAP-23
function in mouse development, we generated Snap23-null mice by homologous recombination. We were unable to obtain
newborn SNAP-23-deficient mice, and analysis of pre-implantation embryos from Snap23D/wt matings revealed that Snap23-
null blastocysts were dying prior to implantation at embryonic day E3.5. Thus these data reveal a critical role for SNAP-23
during embryogenesis.
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Introduction

Vesicle-mediated intracellular protein trafficking is essential for a

wide variety of cellular processes including both constitutive protein

transport and regulated exocytosis. The protein machinery

regulating vesicle trafficking is conserved in organisms ranging

from yeast to human, and among them the SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) com-

plex has emerged as specialized machinery in mediating vesicle-

target membrane fusion [1]. Although there are many factors that

interact with and modify the SNARE complex, the trimeric core

complex of syntaxin, VAMP/synaptobrevin, and SNAP-25 are the

prototypical components of the SNARE complex and together play

a key role in membrane fusion process [2].

Since membrane-membrane fusion events are critical for all cell

types and are important for maintaining the orderly movement of

cargo proteins from one intracellular compartment to another, it is

not surprising that there are a wide variety of distinct SNARE

isoforms that reside on distinct intracellular compartments,

thereby ensuring appropriate homotypic and heterotypic mem-

brane fusion events. For example, there are a wide variety of

syntaxin and VAMP isoforms in eukaryotic cells that are expressed

on particular organelles in essentially all cell types. By contrast,

SNAP-25 is only expressed in neuronal/neuroendocrine cells and

the role of SNAP-25 in the SNARE complex in non-neuronal

tissues is taken-over by the related protein SNAP-23 [3]. SNAP-23

is ubiquitiously expressed and has been shown to play a role in

diverse protein trafficking events including GLUT4 transport in

adipocytes [4], mast cell degranulation [5–7], dense core granule

release in platelets [8], cholecystokinin-regulated exocytosis in

pancreatic acinar cells [9], and surface expression/recycling of

transferrin receptors [10], the glutamate transporter EAAC1 [11],

and NMDA receptors [12,13].

Genetic ablation of various syntaxin and VAMP isoforms does

not significantly impair embryonic development, revealing the

importance of genetic redundancy of SNARE function in

development. Surprisingly, deletion of SNAP-25 does not affect

embryo viability, although Snap25-null mice die at birth due to

neuromuscular abnormalities [14]. By contrast, the importance of

SNAP-23 in mouse development and embryonic viability remains

unknown. We now report that deletion of Snap23 results in pre-

implantation embryonic lethality, highlighting the importance of

this ubiquitous SNARE in mouse development.

Results and Discussion

Generation of SNAP-23-deficient mice
We generated Snap23-deficient mice using a conventional gene

replacement targeting method through homologous recombina-

tion [15]. A targeting vector was designed to delete Snap23 exon 2,

which is the first coding exon of the mouse Snap23 gene [16], by

Cre-mediated excision (Figure 1A) and PCR Primer sets were

designed to screen for wild-type and targeted Snap23 alleles

(Figure 1B). A neomycin-resistance gene under the control of the
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PGK promoter (PGK-Neo) was placed in front of exon 2 and

PGK-Neo, as well as Snap23 exon 2, were flanked by loxP

sequences. The linearized targeting vector was introduced into the

CJ7 ES cells and G418/FIAU-resistant clones were screened for

homologous recombination at the Snap23 locus. Southern blotting

of EcoRI-digested genomic ES cell DNA with a 59 probe revealed

a 3.5 kb fragment from the wild-type Snap23 gene as well as a

2.5 kb fragment that was the product of homologous recombina-

tion at the 59 end of exon 2 (Figure 2A). Similarly, when ClaI/

KpnI-digested DNA was hybridized with a 39 probe we observed a

9.4 kb wild-type fragment as well as a 6.0 kb fragment in targeted

ES cells (Figure 2B). Of 85 neomycin-resistant/ganciclovir-

Figure 1. Gene targeting strategy for the generation of Snap23fl/wt and SnapD23/wt mice. (A)Schematic representation of the genomic
structure of wild-type (wt) and targeted alleles of Snap23. Homologous recombination with the targeting construct inserts a neomycin-resistance
gene (PKG-NEO) and exon 2 (E2) flanked by three loxP sites represented as triangles. HSK-tk was used for negative selection. Exon numbers with
relative position, 59- and 39- flanking Southern blotting, and a partial restriction map are indicated. Restriction sites: C, ClaI; E, EcoRI; K, KpnI; S, SpeI.
Female Snap23Neo+fl/wt heterozygous mouse harboring the targeted allele (F1) was bred with male EIIa-Cre transgenic mice. Offspring harboring
mosaic alleles (F2) through partial and/or total excision of loxP-flanked sequences were generated. EIIa-Cre+ F2 mosaic male mice were further bred
with C57BL/6 female mice to separate the Snap23fl/wt, Snap23Neo+fl/wt, and Snap23D/wt alleles as shown (F3). (B) Location of oligonucleotide primers
used to discriminate mice harboring different Snap23 alleles following Cre-mediated excision. Genotyping for the Snap23wt and Snap23Neo+fl alleles
was performed by PCR Primer set 1 and yielded fragments of 266 bp and 400 bp from the Snap23wt and Snap23Neo+fl alleles, respectively. The Neo-
Snap23fl and Snap23D alleles were identified by PCR using PCR Primer set 2, which yields fragments of 266 bp, 400 bp, and 492 bp from the Neo-
Snap23wt, Snap23fl, and Snap23D alleles, respectively (also see Table 1).
doi:10.1371/journal.pone.0018444.g001

Snap23 Is Essential for Blastocyst Development
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sensitive ES cell clones analyzed by Southern blotting, seven clones

had undergone homologous recombination in both the short-arm

(59) and long arm (39) sequences of our targeting construct. This

Southern blotting result was confirmed using a PCR-based

genotyping assay (Figure 1B, Figure 2C, Table 1). Four of these

targeted ES cell clones were then used to generate chimeric

Snap23Neo+fl/wt founder mice.

To generate Snap23 exon 2 floxed mice as well as mice in which

Snap23 exon 2 was deleted, Snap23Neo+fl/wt mice were mated with

transgenic mice expressing Cre under the control of the EIIa

promoter. The adenovirus EIIa early promoter is known to be

transcriptionally activate in mouse oocytes and early embryos

prior to implantation in the uterus [17]. Of note, when male EIIa-

Cre transgenic mice are mated with female mice harboring

multiple loxP sites, partial Cre-mediated excision can occur among

different loxP sites, leading to the production of mice with a

mosaic genotype [18]. This mosaic (F2) genotype can be observed

by PCR analysis of genomic DNA (Figure 2D) and can be

segregated into the discrete recombinant alleles in the next (F3)

generation by mating with wild-type mice [18]. This breeding gave

rise to Snap23fl/wt and Snap23Neo+D/wt mice (Figure 1A, Figure 2D).

Genomic PCR from F3 mouse tail DNA identified a mouse

(number 182234) that contained only the Snap23wt and Snap23fl

alleles (Figure 2D), demonstrating that the mosaic alleles were

segregated individually in this mouse.

Brains from isolated from Snap23fl/wt mouse pups expressed only

half as much SNAP-23 protein as Snap23wt/wt spleen cells,

demonstrating that expression of SNAP-23 from the floxed allele

was defective (Figure 3A). Identical results were observed when

analyzing SNAP-23 expression in mast cells and spleen from

Snap23fl/wt mice. These data are consistent with the idea that the

loxP sites adjacent to the Snap23 exon 2 splice donor/acceptor sites

interfered with Snap23 expression, a situation observed also in

other mouse models ((15) and L.T., unpublished observations).

Unlike their male counterparts, female EIIa-Cre trasgenic mice

completely excise sequences between loxP sites [18,19], and

Figure 2. Generation of mice harboring the Snap23fl or Snap23D

allele. (A and B) Southern blot analysis of genomic DNA from targeted
Snap23Neo+fl/wt ES cell clones. (A) EcoRI-digested genomic DNA was
hybridized with a 59 probe as shown in Figure 1A. Southern blot
analysis of EcoRI-digested genomic DNA using the 59 probe revealed a
3.4 kb or 2.5 kb fragment in the Snap23wt or Snap23Neo+fl targeted
allele, respectively. (B) Southern blot analysis of ClaI/KpnI-digested
genomic DNA using a 39 probe revealed a 9.6 kb or 6 kb fragment from
the Snap23wt or Snap23Neo+fl targeted allele, respectively. (C) Genomic
PCR from Snap23Neo+fl/wt heterozygous mice using PCR Primer set 1.
The expected size of PCR products is 266 bp from the Snap23wt allele
and 400 bp for the Snap23Neo+fl allele. (D) Genotyping was performed
using PCR Primer set 2 to identify Snap23 mosaic mice. Three PCR
products of 266 bp, 400 bp, and 492 bp were obtained from mice with
ear tag numbers 173312 or 173313, indicating these mice harbor a
mixed mosaic genotype (F2) depicted in Figure 1A. Mice with ear tag
number 173314 or 173315 yielded a single PCR fragment of 266 bp,
indicating these possess either the Snap23wt or Snap23 Neo+D allele. The
mosaic EIIa-Cre+ male mouse 173312 was mated with a female C57BL/6
mouse and one of the pups (F3; ear tag number 182234) was found to
be EIIa-Cre- and possessed the Snap23fl allele. Genomic PCR from this
mouse revealed only two PCR fragments corresponding the Snap23wt

and Snap23fl allele, indicating that this was a Snap23 floxed exon 2
heterozygous mouse.
doi:10.1371/journal.pone.0018444.g002

Table 1. Oligonucleotide primers used in this study and
estimated size of PCR products.

Name of primers Sequences (59 to 3’)

genoE2 SS TGCCCATAGGTTGTCAGACT

genoNEO SS TCACCTTAATATGCGAAGTGG

genoE2 AS ATGTGCTAACCATGACCTTGA

genoE3 rev GAGAGACCTCAGATGGTGGAG

CreSS CCGGGCTGCCACGACCAA

CreAS GGCGCGGCAACACCATTTTT

SA-4400SpeI ACTAGTTGCTTCACCTCTTCAAAGTTTC

SA-6400SalI GTCGACTTTCAGCCTGTACATCCTGTGC

E2-6400SpeI ACTAGTGATCAGAAGCTCAAGGTCATGG

E2-7308KpnI GGTACCCTTCCAGAATTGCAGGTAACTG

E2-5probeSS TGCCCAGAACTACTGTAAAGC

E2-5probeAS TGCTGTTTAAAGCATCTCTGC

E2-3probeSS GGGTAGAGCAATGGGTGTATT

E2-3probeAS AGAATGCACGTCGTCTTGTAG

Name of primers Estimated size of PCR products

genoE2 SS
genoNEO SS
genoE2 AS

WT allele: 266 bp
NEO+ floxed allele: 400 bp

genoE2 SS
genoE2 AS
genoE3 rev

WT allele: 266 bp
NEO– floxed allele: 400 bp
NEO– exon2D allele: 492 bp

CreSS
CreAS

Cre+ allele: 444 bp

The oligonucleotide sequences used in this study are listed in the upper table.
The oligonucleotide primers were used to genotype the mice, to obtain
genomic fragments of Snap23, and to generate probes for Southern blot
analysis. The estimated sizes of PCR products obtained during genotyping the
mice are indicated in the lower table.
doi:10.1371/journal.pone.0018444.t001
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breeding these mice with male Snap23fl/wt mice resulted in the

generation of Snap23D/wt mice. As expected, expression of SNAP-

23 from the exon 2-deleted allele (Snap23D/wt) was also defective in

the brains of Snap23D/wt mouse pups and densitometry confirmed

that SNAP-23 expression was only half that observed in Snap23wt/wt

littermates (Figure 3B). Expression of other SNARE proteins,

including syntaxin 1a, syntaxin 3, syntaxin 13, SNAP-25, and

VAMP2 was not altered in Snap23D/wt heterozygous mice.

Deletion of Snap23 leads to early embryonic lethality
To generate homozygous Snap23-floxed mice, Snap23fl/wt mice

were mated with each other. Genotyping of tail DNA from nearly

100 live pups failed to reveal any homozygous Snap23fl/fl mice,

strongly suggesting that the Snap23fl allele was not expressed and

that deletion of Snap23 resulted in lethality. Instead of character-

izing Snap23fl/wt mice further, we set out to investigate the effects

of Snap23 deletion using exon 2-deleted Snap23D/wt mice. To

generate Snap23-deficient mice, Snap23D/wt mice were mated with

each other. As expected (based on our analysis of Snap23fl/wt mice),

Snap23D/D pups were never obtained from adult heterozygous

matings after more than 50 live births (data not shown).

Genotyping confirmed that approximately 2/3 of these offspring

were Snap23D/wt and 1/3 were Snap23wt/wt, demonstrating that

deletion of Snap23 leads to embryonic lethality.

To determine at what embryonic stage Snap23-deficient mice

were dying we obtained embryos isolated from the timed-pregnant

Snap23D/wt heterozygous matings. No Snap23D/D embryos were

recovered from 48 embryos obtained from embryonic day 16.5

(E16.5), E12.5, E11.5, E9.5, or E7.5, with 35 heterozygous and 13

wild-type embryos isolated (Table 2). Immunoblot analysis

confirmed that SNAP-23 protein expression from heterozygous

embryos was reduced by half as compared to wild-type embryos

(data not shown). These results suggest that Snap23-null mice are

dying at an early, pre-implantation developmental stage.

To determine if the Snap23 null mutation is lethal before uterine

implantation, blastocyst stage embryos were recovered by flushing

from the uterus of pregnant mice at day E3.5. We noted that 5

among a total of 27 blastocysts isolated using this procedure

appeared grossly abnormal and had not expanded properly,

suggesting that these blastocysts were dying, and unlike the normal

blastocysts, they failed to develop any further after 24 hrs of

culture (arrows in Figure 4A). Genomic DNA was isolated from

each blastocysts and genomic PCR was performed. Each of five

small, degenerating blastocysts showed a Snap23D/D genotype (e.g.

Figure 4B), whereas the morphologically normal embryos included

11 SNAP23D/wt heterozygotes and 11 SNAP23wt/wt wild-type

Figure 3. Expression of SNAP-23 protein is reduced by half in
Snap23fl/wt and Snap23D/wt mice. (A) Snap23fl/wt heterozygous mice
were mated and twelve two-week old pups from this mating were
genotyped and analyzed for SNAP-23 protein expression. Genotyping
of tail DNA was performed using PCR Primer set 2 from tail DNA. A
single small PCR fragment (266 bp) is present in Snap23wt/wt pups, and
double fragments (266 and 400 bp) is present in Snap23fl/wt pups. No
homozygous Snap23fl/fl pups were obtained when more than 50 pups
were analyzed from Snap23fl/wt heterozygous matings. For immunoblot
analysis, whole brain was solubilized in modified RIPA lysis buffer and
protein levels were analyzed by immunoblotting (WB) as indicated
antibodies. (B) Snap23D/wt heterozygous mice were mated and pups
from this mating were genotyped and their brains were analyzed for
expression of SNAP-23 and other SNARE proteins. Genotyping of tail
DNA was performed using PCR Primer set 2. A single small PCR
fragment (266 bp) is present in Snap23wt/wt pups, and double
fragments (266 and 492 bp) is present in Snap23D/wt pups. No
homozygous Snap23D/D pups were ever obtained from Snap23D/wt

heterozygous matings. Whole brains were solubilized and analyzed by
immunoblotting (WB) using the indicated antibodies.
doi:10.1371/journal.pone.0018444.g003

Table 2. Genotype analysis from timed-pregnant matings of Snap23D/wt heterozygote mice.

Age of embryos No. of dissected embryos No. of WT embryos (+/+) No. of Het embryos (+/2) No. of Homozygote embryos (2/2)

E16.5 7 4 3 0

E12.5 8 2 6 0

E11.5 8 2 6 0

E9.5 14 3 11 0

E7.5 11 2 9 0

E3.5 27 11 11 5

Embryo age, number of dissected embryos, and Snap23 genotype results are summarized as indicated.
doi:10.1371/journal.pone.0018444.t002
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embryos (Table 2). These results indicate that Snap23 null embryos

die prior to blastocyst implantation on the uterine wall.

SNAP-23 is a ubiquitously-expressed homolog of SNAP25 and

has been shown to regulate membrane to membrane fusion

process. Although we originally set-out to use Cre-mediated

excision to conditionally delete Snap23, immunoblot analysis

revealed that SNAP-23 protein expression in Snap23fl/wt mice

was defective. Furthermore, breeding of Snap23fl/wt mice failed to

generate homozygous Snap23fl/fl pups, a finding that is consistent

with the failure of the floxed allele to express and the requirement

for Snap23 expression for embryo viability. We therefore chose to

generate Snap23 knockout mice using a conventional homologous

recombination technique. Our data clearly demonstrated that

Snap23 homozygous knockout mice die prior to uterine implan-

tation. Several knockout mice lacking various components of the

SNARE machinery have been reported, and many of these did no

show any gross abnormalities despite the fact that this class of

proteins molecules is thought to be critical for essential biological

process such as membrane protein recycling and protein secretion.

The lack of a dramatic phenotype may be due to compensatory

mechanisms by co-expressed SNARE isoforms playing a similar

role (genetic redundancy) or in some cases because the roles of

these proteins are confined to regulated exocytosis rather than

constitutive protein trafficking events. For example, mice lacking

VAMP3 [20], Synaptotagmin 4 [21], or HPC-1/Syntaxin 1A [22]

are viable and appear to grow normally. In addition, SNAP-25,

VAMP2, and munc-18 null mice are born live but die immediately

after birth due to respiratory failure [14,23,24]. Synaptotagmin I

null mice die within 48 h of birth [25]. VAMP8-null mice develop

normally in our colony [26], however other groups have reported

that VAMP8-deficient mice exhibit growth retardation and some

perinatal lethality [27]. Compared to other known null-mutants of

SNARE components, the early lethality of SNAP-23 null mice

represents the essential role of SNAP-23 in SNARE-mediated

vesicle-membrane fusion. While it is not possible to definitively

attribute the early embryonic lethality observed here to defects in

secretion, it should be noted that the yeast homolog of Snap23/

Snap25 (SEC9) is essential for cell viability [28]. In addition, our

studies in neurons from Snap23 heterozygous mice showed that

they do indeed have defects in neurotransmitter receptor transport

[13]. It is also interesting that syntaxin 4 is one of the major SNAP-

23-binding proteins and syntaxin 4-deficient embryos also die

before E7.5 [29], suggesting that SNAP-23/syntaxin 4 complexes

are essential for a protein trafficking events in embryogenesis.

In conclusion, we generated Snap23 knockout mice and

demonstrated that Snap23 deletion is lethal. Specifically, we

showed that Snap23-null embryos die prior to implantation in

the uterus. These data indicate that SNAP-23 plays a unique and

essential role as a membrane fusion protein that is essential for cell

viability.

Materials and Methods

Animals and antibodies
The use and care of animals used in this study followed the

guidelines of the NIH Animal Research Advisory Committee.

C57BL/6 mice were obtained from NCI-Frederick (Frederick,

MD) and EIIa-Cre mice were obtained from The Jackson

Laboratories (Bar Harbor, ME). All protocols were approved by

the National Cancer Institute-Center for Cancer Research Animal

Care and Use Committee (protocol numbers EIB-076 and EIB-

094). Rabbit SNAP-23 antibody is described in a previous

publication [13]. Syntaxin 1a (HPC 1; Wako chemicals), syntaxin

3 (Alomone labs), syntaxin 13 (15G2, Abcam), VAMP-2 (Cl 69.1;

Synaptic Systems), a-tubulin (Sigma) antibodies were purchased

from commercial sources as indicated.

Generation of Snap23 targeted mice
The Neo(+) Snap23 exon 2 targeting allele was constructed from

a BAC clone derived from a 129/SvJ mouse genomic library [16]

by flanking exon 2 of the mouse Snap23 gene with loxP sites. The

targeting vector was constructed as follows: a 2 kb genomic DNA

fragment upstream of Snap23 exon 2 was obtained as a short arm

by PCR using primers SA-4400SpeI and SA-6400SalI via SpeI/

SalI restriction sites. All oligonucleotide primer sequences are

described in Table 1. A neomycin resistance cassette (Neo) driven

by the PGK promoter (in 39 to 59 direction) flanked by loxP

sequences was cloned together with a short arm into SpeI/XbaI-

digested pBluescript vector (pBS) (short arm-loxP-Neo-loxP). A

genomic fragment harboring 278 bp upstream and 516 bp

downstream of exon 2 was obtained by PCR using primers E2-

6400SpeI and E2-7308KpnI via SpeI/KpnI restriction sites,

which was further cloned into KpnI/XbaI-digested pBS, and

another loxP was added on the 39 end of exon 2 fragment (exon 2-

loxP). The short arm-loxP-Neo-loxP fragment was further inserted

into SpeI-digested exon 2-loxP in pBS (short arm-loxP-Neo-loxP-

exon 2-loxP). A 4.9 kb long arm genomic DNA fragment was

directly obtained from a BAC clone by EcoRI digestion. The

thymidine kinase (HSV-tk) gene was cloned outside of the long

Figure 4. Snap23D/D blastocysts die prior to uterine implanta-
tion. (A) To evaluate the timing of embryonic lethality, embryos
were collected from super-ovulated Snap23D/wt females mated with
Snap23D/wt male mice by uterine flushing at E3.5. About 1/4 of the
isolated blastocysts were morphologically abnormal and appeared to
be degenerating; unlike sibling normal blastocysts they failed to
develop any further during 24 hrs of culture (indicated by red arrows;
see also Table 2). (B) Representative example of genotyping analysis
revealing that abnormal blastocysts are homozygous for the Snap23
deleted allele (Snap23D/D). Genomic DNA was isolated from individual
blastocysts (shown in panel (A)) following 24 hr in culture, and
genotyping was conducted using primers genoE2 SS, genoE2 AS, and
genoE3 rev. PCR products for the Snap23wt allele (266 bp) and for the
Snap23D allele (492 bp) are indicated.
doi:10.1371/journal.pone.0018444.g004

Snap23 Is Essential for Blastocyst Development
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arm fragment into ClaI/SalI-digested pBS (long arm-HSV-tk) for

double selection. Finally, a SpeI linker was generated on the 39 end

of a short arm-loxP-Neo-loxP-exon 2-loxP fragment, which was

further cloned into a long arm-HSV-tk in pBS by SpeI digestion.

The nucleotide sequences of exon 2, loxP, PGK-Neo, and parts of

short arm and long arm were verified by DNA sequencing. The

targeting vector was linearized by NotI digestion and electropo-

rated into the CJ7 embryonic stem (ES) cells as previously

described [30]. The ES colonies were selected in the presence of

G418/gancyclovir and analyzed for homologous recombination

by Southern blot analysis using both 59 and 39 probes that were

outside of the targeting vector. ES clones harboring a Snap23

targeted allele were injected into blastocysts of the C57BL/6

mouse strain to generate germ-line chimeric offspring [31].

Offspring bearing the targeted Snap23 allele were backcrossed

more than four generations onto the C57BL/6 background before

use to remove potential ES cell mutations not linked to the

targeted allele.

DNA analysis
ES cells, tissues, or mouse tails were lysed in 500 ml of DNA lysis

buffer containing 40 mM Tris-HCl, pH 7.6, 200 mM NaCl,

20 mM EDTA, 0.5% sodium dodecyl sulfate (SDS), and 60 mg/ml

proteinase K (Sigma-Aldrich) at 56uC overnight. Genomic DNA

was extracted using phenol-chloroform followed by ethanol

precipitation. The purified DNA was digested with EcoRI or

ClaI/KpnI and analyzed by standard Southern blotting. All

restriction enzymes were purchased from New England Biolabs.

DNA templates for probe were amplified from a BAC DNA by

PCR using primers E2-5probeSS and E2-5probeAS for 59 probe,

E2-3probeSS and E2-3probeAS for 39 probe, and then purified

from agarose gels. For PCR analysis, genomic DNA was obtained

either by phenol-chloroform extraction or Extract-N-Amp Tissue

PCR Kits (Sigma-Aldrich) according to the manufacturer’s

instructions. For the isolation of genomic DNA from blastocysts,

QIAamp DNA Micro Kit (Qiagen) was used following the

manufacturer’s guidance. The sequence information of oligonu-

cleotide primers used for PCR and the expected size of products

are described in Table 1. PCR cycle consisted of 3 min at 94uC,

then 36 cycles of 40 s at 94uC, 40 s at 58uC, 40 s at 72uC, and

then 7 min at 72uC.

Western blotting
Mouse whole brain was homogenized with a glass dounce

homogenizer in modified RIPA buffer (50 mM Tris-HCl, pH 7.5,

150 mM NaCl, 2 mM EDTA, 1% NP40, 1% Triton X-100, 0.1%

SDS, 0.5% sodium deoxycholate) containing EDTA-free complete

protease inhibitor (Roche). The lysates were incubated for 30 min

on ice and centrifuged at 20,000 g for 20 min. The supernatants

were collected, resolved by SDS-PAGE, transferred to PVDF

membranes, and analyzed by immunoblotting with the relevant

antibodies as indicated. Bound antibodies were revealed using

Western Lightening Chemiluminescence Reagent Plus (Perkin

Elmer LifeSciences, Inc., Boston, MA).

Isolation of blastocyst stage embryos
Four week-old Snap23D/wt females were induced to superovulate

with sequential injections of FSH and HCG and bred with

Snap23D/wt males using standard protocols [32]. The plug was

examined the following day (noon considered as E0.5) and

blastocysts were recovered at E3.5 by flushing the uterus.

Collected blastocysts were maintained in culture for one day in

M16 medium to reduce contamination by maternal tissues, and

then lysed to purify genomic DNA for analysis.
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