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Abstract: Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative therapy
for a variety of hematologic diseases. However, this therapeutic platform is limited by an initial
period when patients are profoundly immunocompromised. There is gradual immune recovery over
time, that varies by transplant platform. Here, we review immune reconstitution after allogeneic
HCT with a specific focus on two alternative donor platforms that have dramatically improved access
to allogeneic HCT for patients who lack an HLA-matched related or unrelated donor: haploidentical
and umbilical cord blood HCT. Despite challenges, interventions are available to mitigate the risks
during the immunocompromised period including antimicrobial prophylaxis, modified immune
suppression strategies, graft manipulation, and emerging adoptive cell therapies. Such interventions
can improve the potential for long-term overall survival after allogeneic HCT.
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1. Introduction

Allogeneic hematopoietic cell transplantation (HCT) offers the only potential cure
for many high-risk hematologic malignancies. The therapeutic benefit of allogeneic HCT
is, in part, due to an alloreactive graft-versus-tumor (GVT) response whereby the donor
immune system recognizes the recipient tumor cells as foreign and eradicates them [1].
However, this same alloreactivity can also lead to toxicity such as graft-versus-host disease
(GVHD) where the donor immune system attacks the recipient, or graft rejection where
the recipient immune system attacks the donor cells [2,3]. Control of these bidirectional
immune responses requires modulation of the lymphodepleting conditioning regimen and
immune suppressive therapies (IST) which decrease the risks of graft rejection and GVHD,
but also increase risks of infection [4–7]. Antimicrobial prophylaxis and vaccination, thus,
also become critical elements of successful HCT [8].

In addition to IST, selection of a human leukocyte antigen (HLA) matched donor has
long been considered a critical consideration to mitigate the risks of toxic alloreactivity and
consequent transplant related mortality (TRM) [9,10]. Historically, HLA matched sibling
donors (MSD) have been the preferred donor option followed by HLA matched unrelated
donors (MUD). However, due to the Mendelian inheritance pattern of HLA haplotypes,
the likelihood of a patient’s each sibling being a full HLA match is 25% and the likelihood
of identifying a MUD varies from 10–80% depending on the ethnic and racial background
of the patient [11]. To improve access to HCT for patients lacking an HLA matched donor,
alternative donor platforms such as haploidentical (haplo) related donor HCT and umbilical
cord blood transplant (UCBT) have been developed [12]. Specifically, haplo HCT with use
of posttransplant cyclophosphamide (PTCy) has emerged as a favorable strategy that yields
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rates of GVHD, TRM, and overall survival (OS) that are nearly equivalent to matched donor
HCT [13,14]. Further, in a recent Blood and Marrow Transplant Clinical Trials Network
(BMT CTN) phase III trial, haplo HCT with PTCy was well tolerated and resulted in better
overall survival (OS) compared to UCBT [15]. Nonetheless, both approaches are considered
appropriate alternative donor HCT strategies and the choice of haplo versus UCBT is still
largely dependent on institutional expertise [13].

The feasibility of modern approaches to HCT, including expansion of the donor pool
to haplo and UCBT, requires unique manipulations to the immune systems of both donor
and recipient cells to allow for successful donor engraftment and prevention of GVHD.
However, these manipulations can result in profound effects on immunity that impact
rates of infection and relapse of the primary malignancy [13,15]. Here, we describe the
immune reconstitution after allogeneic HCT in general, special considerations for haplo
HCT and UCBT, as well as resultant impacts on clinical outcomes and considerations for
management, particularly in the context of hematologic malignancies.

2. Kinetics of Immune Reconstitution after Allogeneic HCT

In practice, allogeneic HCT consists of a conditioning regimen (chemotherapy and/or
total body irradiation (TBI)) to suppress recipient alloreactivity against the donor and
allow engraftment of the donor hematopoietic stem cells, followed by infusion of the
donor hematopoietic stem cells and subsequent initiation of IST. This procedure acutely
results in severe immune compromise followed by gradual immune reconstitution [16].
While immune reconstitution varies depending on the specific transplant platform, there
are uniform patterns that inform the likelihood of specific immunologic complications
over time.

2.1. Early Immune Reconstitution

The conditioning regimen given prior to transplant results in profound cytopenias
that nadir in the week following stem cell infusion. This results in depletion of both
innate and adaptive immunity. During this period, susceptibility is high to bacterial and
fungal infections so antibacterial and antifungal prophylaxis is standard [8]. In general,
the innate immune system begins to recover first. Monocyte engraftment begins in the
two weeks after transplant followed closely by neutrophil recovery [17]. Concurrently,
non-hematopoietic innate immunity, such as mucosal barriers, heal from injury caused
by the conditioning regimen [17]. At most centers, the resolution of neutropenia and
mucosal injury are key landmarks required for hospital discharge and discontinuation of
antibacterial and antifungal prophylaxis. In the weeks following neutrophil engraftment,
natural killer (NK) cells recover [18–23]. These cells are increasingly recognized as essential
to the GVT effect that prevents disease relapse [20–23].

2.2. Late Immune Reconstitution

Though the innate immune system quantitatively recovers in the first weeks after
HCT, these cells may not be functionally competent. Indeed, functional recovery of the
hematopoietic innate immune system typically occurs in the 4–12 months after trans-
plant [17,24,25]. The adaptive immune system, including the cellular immune response
and humoral immune response, requires functional T-lymphocytes and B-lymphocytes.
These cells begin recovering in the months after transplant but may require years to reach
full competence [26–28].

The recovery of the cellular immune response, of particular importance for immunity
against viral pathogens and graft-versus-tumor, occurs in two phases. First, immuno-
competent T-cells in the donor graft may undergo clonal expansion [16,29]. Second, naïve
T-cells from the donor may be expanded in the thymus of the recipient [16,29]. The humoral
immune response resulting in adequate antibody response, requires recovery of T-cells as
well as functional B-cells, which recover between 3 months–1 year after transplant [17,30].
It is during this phase of recovery that post-HCT vaccinations are typically initiated [8].
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2.3. Factors Influencing Immune Reconstitution

The expected immune reconstitution described is general and may vary consider-
ably between individual patients due to both modifiable and fixed aspects of HCT [17].
First, advanced age of either the donor or the recipient can result in slower immune
recovery due slower engraftment with aging marrow [31,32]. Further, T-cell immune
reconstitution requires a functional thymus and, thus, may be significantly limited in older
patients who can have thymic atrophy [29]. HLA matched donors have also been shown to
yield better immune reconstitution, possibly because HLA mismatched may lead to more
mixed lymphocyte reactions and host-versus-graft alloreactivity that can delay immune
reconstitution [25,33,34]. More intensive conditioning regimens can result in more rapid
engraftment, though may also slow early lymphocyte recovery [35]. Graft related factors
may also contribute to immunity, with peripheral blood stem cells grafts resulting in more
rapid engraftment than marrow grafts [17,36]. Grafts with higher stem cell dose or higher
T-cell content also may engraft more quickly, resulting in more rapid immune reconstitu-
tion [37–39]. Conversely, T-cell depletion of the graft, often used for GVHD prevention,
results in higher rates of graft rejection as well as slower immune reconstitution and in-
creased risk of infections [40,41]. Finally, the GVHD prophylactic regimen, its duration
of administration, and onset of acute or chronic GVHD are all associated with impaired
immune reconstitution [3,8,42].

2.4. Clinical Significance of Immune Reconstitution

The kinetics of immune reconstitution correlate temporally with expected transplant
related complications. In the period preceding donor cell engraftment, the marrow is
aplastic. The resultant profound neutropenia leads to a period of high risk for bacterial
and fungal infections, generally in the first 30 days after HCT [43,44]. Between days 30–100
after HCT, as cell mediated immunity slowly recovers, the highest risk infections shift
towards viral reactivation such as cytomegalovirus (CMV), human herpesvirus 6 (HHV–
6), or Epstein–Barr virus (EBV), in addition to pneumocystis pneumonia (PCP) [8,45,46].
During this period, acute GVHD, a T-cell mediated process, also emerges, occurring in
~20–50% of HCT patients and can result in skin rashes, gastrointestinal toxicity, hepatic
injury, infections, and mortality [4,5,47].

Beyond day 100, though infectious immunity steadily improves, chronic GVHD will
occur in up to 60% of HCT patients, though may be lower with modern approaches even
with a haplo, and cord blood transplant [3–5,15,47,48]. The occurrence of chronic GVHD is
a risk factor for subsequent infections, due to both inherent immune dysregulation as well
as increases in IST to control chronic GVHD [49].

In addition to transplant related toxicity, post-HCT immune reconstitution is necessary
to prevent relapse and cure the underlying hematologic malignancy through the immuno-
logic GVT effect. The GVT effect became clinically apparent in studies showing greater
HLA disparity resulted in reduced risks of relapse, while genetically similar identical twin
donors result in higher risks of relapse [1]. It is now understood that cytotoxic T-cells
are critical to the GVT effect, eliminating tumor cells through secretion of granzyme B as
well as apoptosis via FAS ligands [50]. The significance of T-cells to the GVT effect has
been demonstrated clinically as donor lymphocyte infusions are able to eradicate active
tumor, while T-cell depletion results in higher risks of relapse [40,51]. The GVT effect can
be triggered by HLA mismatch, as well as host minor histocompatibility antigens and
tumor related neoantigens [52]. Thus, the ability of the cytotoxic T-cells to distinguish
healthy host tissue from tumor cells is limited, and GVT and GVHD often overlap.

In recent years, there has been increasing focus on the role of NK cells as mediators
for the GVT effect [53]. NK cell function is dependent upon receptor/ligand interactions
resulting in activating signals or inhibitory signals [54–56]. The balance of activation and
inhibition leads to either cell killing or tolerance [55,56]. Interactions between the NK
cell killer immunoglobulin-like receptor (KIR) with self HLA class I molecules, which
are expressed uniformly on healthy host tissue, lead to inactivation [20,21,57,58]. In the
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setting of allogeneic HCT, certain combinations of donor activating KIR types and recipient
HLA subtypes promote NK cell activation, leading to a more potent GVT effect without an
increase in GVHD [53,54,59–64]. An ongoing prospective, multicenter trial is evaluating the
utility of incorporating donor KIR type in selection of allogeneic HCT donors for patients
with acute myeloid leukemia (NCT02450708). Further, the ability of tumor cells to down
regulate HLA class I creates a mechanism by which NK cells can differentiate between
tumor and healthy host tissue, thus leading to activation and tumor killing [65–67].

3. Haploidentical Donor Transplant

Because of the inheritance patterns of HLA haplotypes, parents and children will be
HLA haploidentical matches and siblings have a 50% likelihood of being haploidentical
matches. As a result, patients in need of transplant have a >90% likelihood of having a
suitable HLA haploidentical related donor [68]. However, the significant HLA mismatch
between the haplo donor and the recipient results in intense bidirectional alloreactivity
whereby the donor immune system attacks the recipient (GVHD) and the recipient immune
system attacks the donor cells (graft rejection) [69]. Early studies of haplo transplant, thus,
resulted in unacceptable toxicity that precluded the use of this strategy for many years [69].

3.1. Approaches to Haploidentical Transplant

The acute alloreactivity that occurs after haplo HCT is mediated primarily by donor
and recipient T-lymphocytes. Multiple regimens have been developed to target T-cell
function to mitigate toxicity. Three strategies have become the most utilized: (1) high-
dose PTCy; (2) ex vivo T-cell depletion (TCD) with “megadose” CD34+ cells; and (3) the
”GIAC” regimen (GCSF-stimulation of the donor; intensified immunosuppression through
post–transplantation CsA, mycophenolate mofetil (MMF), and short-course methotrexate;
antithymocyte globulin (ATG) added to conditioning to help prevent GVHD and aid
engraftment; and combination of PBSC and bone-marrow allografts) [14,70,71].

3.2. Immune Reconstituion after Haploidentical Transplant

Because of the higher risks of GVHD with HLA mismatched donors, the GVHD
prophylaxis regimens used for haplo donor HCT are more immune suppressive than those
used in matched donor HCT. Haplo HCT with PTCy has emerged as the haplo platform of
choice in the United States. Immune reconstitution with this regimen has been compared
retrospectively to matched donor and UCBT [72]. Compared to the MSD group, the haplo
with PTCy group had a higher risk of CMV viremia (58% versus 74%), fungal infection
(4% versus 11%), and infection related death (4% versus 11%). At day 100, median CD4+
lymphocyte count was 229/mm3 for the MSD group and 190/mm3 for the haplo group.
Despite these differences in immune recovery, TRM was similar between the groups [72].
Similarly, in our experience at the Moffitt Cancer Center, the recovery of total absolute
CD4+ T cell count after haplo and MUD HCT with PTCy was significantly lower compared
to MUD with calcineurin inhibitor (CNI)-based GVHD prophylaxis throughout 1 year of
HCT [73]. In contrast, the total CD8+ T cell recovery was similar in all groups. A recent
retrospective registry analysis by the Center for International Blood and Marrow Transplant
Research compared haplo HCT with PTCy to matched donor HCT with PTCy to matched
donor HCT with CNI for GVHD prophylaxis. Both PTCy groups had higher risks of CMV
viremia, suggesting PTCy is an independent risk factor for CMV viremia regardless of
donor type [74].

The TCD strategy results in the highest risks of infection with trials showing ~27% of
treated patients dying of infection, a rate that is higher than all–cause transplant related
mortality with many other platforms [70]. The most common infections reported were CMV
and aspergillus. However, subsequent studies with this platform have shown potential
for adoptive transfer of infection specific T-cells or regulatory T-cells to improve immune
reconstitution and decrease infections [75,76].
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Immune reconstitution of haplo HCT with the GIAC regimen has been prospectively
compared to matched donor transplants [77]. In that study, survival outcomes were similar
between the two groups, though CMV viremia was more prevalent in the haplo group: 50%
versus 13% (p = 0.007). Compared to the matched donor group, the haplo group was noted
to have decreased T-cell subsets and dendritic cells at day 90, with the most significant
decreases observed in the CD4+ T-cells. Notably, B-cell recovery and monocyte recovery
were similar between the two groups.

3.3. Graft-Versus-Tumor Effect after Haploidentical Transplant

Though HLA disparity is known to elicit a more potent GVT effect after transplant,
rates of relapse after modern haplo donor HCT are similar or even higher than matched
donor transplants in several reports [72,77,78]. The reasons for this are possibly related
to the other components of the transplant platform such as intensity of the immune
suppression associated with these regimens, as well as low intensity conditioning and/or
bone marrow graft source often used in conjunction with haplo HCT with PTCy [79–81].
Additionally, relapse after haplo HCT often occurs, at least in part, through a unique
mechanism through which the mismatched haplotype is eradicated from the tumor cells as
a form of antigen escape [82–84]. This phenomenon, called “loss of heterozygosity,” occurs
in up to 30% of relapses after haplo donor HCT but is rarely encountered in matched donor
HCT [83,85,86]. As such, loss of heterozygosity is indirect evidence that the GVT effect in
haplo donor HCT is driven by immune recognition of the HLA mismatch.

4. Umbilical Cord Blood Transplantation

No risk to the donor, rapid availability, less restrictive HLA-matching selection criteria,
and low risk of chronic GVHD are well-recognized advantages of UCBT [87–90]. Thus,
UCB as an alternative donor option has had large utilization in the past two decades
offering curative allogeneic HCT to racial and ethnic minorities with various hematolog-
ical malignancies. Conversely, the limitations of UCBT include delayed hematopoietic
engraftment and immune reconstitution, leading to higher risks of infections and TRM
after HCT [91–95]. The introduction of double UCBT and RIC further extended the access
and made this alternative donor HCT option available to many adults with hematological
malignancies [88,90,96–98]. However, slow immune reconstitution and higher frequency
of infections still remain major obstacles to the successful use of UCB source [92,94].

4.1. Quantitative Immune Reconstitution after UCBT

We previously compared the pace of immune reconstitution after UCB (n = 89) and
MSD peripheral blood (n = 68) allo HCT in patients receiving similar RIC (consisting
of fludarabine (Flu), Cy and TBI) and GVHD prophylaxis [92]. Despite lower absolute
numbers of total NK cells and individual NK cell subsets at day 28 after UCBT, their
absolute numbers were significantly higher after UCBT compared to MSD HCT as early as
day 60 after HCT. Similarly, despite lower absolute B cell count at day 28 the numbers of B
cells were significantly higher at day 100 after UCBT compared to MSD HCT. Conversely,
UCBT was associated with significantly slower recovery of CD8+ and CD4+ T cell subsets
as compared to MSD HCT. While the numbers of most CD4+ T cell subsets (central
memory, effector memory and regulatory) were lower after UCBT within only the first
100 days of HCT, the naïve CD4+ T cell count remained low throughout 6 months after
HCT. For the CD8+ T cells subsets, the central memory CD8+ T-cell count was lower
within the 100 days whereas the naïve and effector memory CD8+ T-cell counts remained
significantly lower throughout 6 months after UCBT compared to MSD. The use of ATG had
no significant impact on immune reconstitution in our analysis. We observed significantly
higher frequency of viral infections within first 180 days and bacterial infections within
first 60 days after UCBT compared to MSD HCT [92]. A similar pattern of more robust
recovery of NK cells and B cells but slower recovery of T-cell immune subsets is reported
after RIC UCBT as compared to MUD HCT [95].
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Other studies also reported this distinct pattern of immune cell count recovery after
either myeloablative or RIC UCBT [91–94,99].

4.2. Virus-Specific Immune Reconstitution after UCBT

Prior studies were largely focused on quantitative immune cell count recovery after
UCBT. We recently compared virus-specific immune reconstitution after UCBT and MSD
peripheral blood HCT in patients receiving the same RIC regimen with Flu, Cy, TBI and
no ATG [100]. Interferon-gamma (IFN-γ) enzyme-linked immune absorbent spot assay
(ELISpot), which was used to quantify the frequencies of IFN-γ-secreting peripheral blood
mononuclear cell (PBMC), identified higher frequencies of CMV-specific PBMCs after HCT
in CMV seropositive patients compared to CMV seronegative patients. However, the
frequencies of CMV-reactive PBMCs in CMV seropositive recipients were significantly
lower after UCBT compared to MSD HCT throughout the first 12 months after transplant.
These findings suggest that higher rates of CMV reactivation/infection after UCBT are
explained not only by delayed quantitative recovery of immune cells but also by slower
recovery of CMV-specific immunity after UCBT compared to MSD HCT. The reconstitution
of other virus-specific immunity (HHV6, EBV, BK and adenovirus) was not significantly
different between the two donor types in our analysis [100]. Another prior study reported
high rates of CMV, BK and adenovirus infections after myeloablative conditioning UCBT.
The authors reported significant delay (up to 12 months) in recovery of virus–reactive
PBMCs against CMV, EBV, BK, adenovirus, influenza and RSV antigens [94]. However, all
patients in that study also received ATG in addition to myeloablative conditioning.

While CMV is the most frequently reported viral reactivation/infection after UCBT
we also observed higher frequency of HHV6 reactivation/infection after UCBT with use of
sirolimus instead of cyclosporine in combination with MMF as GVHD prophylaxis (51%
vs. 20%; p < 0.01 by day +45) [98]. HHV6 reactivation is generally an earlier event after
UCBT (median onset of 26 days) and can be associated with primary graft failure after
RIC UCBT [98]. Introduction of antiviral prophylaxis with foscarnet from day +7 through
neutrophil engraftment after UCBT delayed the time to HHV6 reactivation and resulted in
higher neutrophil engraftment rates in our recent report [101].

5. Interventions to Mitigate Complications of Immune Deficiency after
Allogeneic HCT
5.1. Prevention of Bacterial Infection

The first month of allogeneic transplant lends to a high risk of bacterial infections due
to severe neutropenia and breakdown of mucosal barriers [8]. The primary pathways of
entrance for these infections are translocation of oral/intestinal flora due to mucosal injury,
or transmission of skin flora through indwelling catheters or skin breakdown [8]. Thus,
both Gram-positive and Gram-negative bacteria are implicated, though Gram-negative
bacteremia results in especially rapid clinical decline [102]. Because of this, antibacterial
prophylaxis should be considered for all patients undergoing allogenic HCT [8]. Flu-
oroquinolones are the preferred agents based on prospective data and meta–analyses
demonstrating improvements in infection related mortality and overall survival [103,104].
While ciprofloxacin is acceptable, levofloxacin is preferred in patients with poor dentition
or high risk of mucosal injury given effectiveness against oral strep viridans [8]. In patients
intolerant to fluoroquinolones, a recent retrospective study suggested similar efficacy with
cefpodoxime as an alternative agent [105]. Antibacterial prophylaxis should be contin-
ued until neutropenia resolves, generally 2–3 weeks after the stem cell infusion. Notably,
these general recommendations should be modified based on the local bacterial resistance
patterns [106]. During the period of neutropenia, most centers also monitor closely in
the inpatient setting. In the case of neutropenic fevers, broad spectrum antibiotics with
pseudomonal coverage (e.g., piperacillin–tazobactam or cefepime) must be initiated within
one hour of fever onset to decrease the risk of septic shock and mortality [107].
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Though the risk of severe bacterial infection decreases after engraftment, patients
with chronic GVHD are at high risk for encapsulated bacterial infections such as Neisseria
meningitides or Streptococcus pneumoniae [108]. Therefore, prophylaxis with penicillin should
be considered for patients on systemic glucocorticoid therapy for chronic GVHD.

5.2. Prevention of Fungal Infection

Fungal infections are common in the first month after HCT but the risk continues
beyond engraftment, particularly in patients who develop GVHD [109]. The role for anti-
fungal prophylaxis early after transplant is clear, with studies demonstrating significantly
improved overall survival [110]. Candida and invasive molds, such as aspergillus, are
most problematic, which would suggest prophylaxis against both is necessary. How-
ever, large, well conducted studies have demonstrated that prophylaxis against mold
and candida with posaconazole or voriconazole does not reduce risks of invasive fungal
infections nor improve overall survival compared to prophylaxis against candida with
fluconazole [111,112]. Thus, candida prophylaxis with fluconazole through neutrophil
engraftment is considered adequate for most allogeneic HCT patients. The echinocandins
are also effective against candida species, with a broader spectrum than fluconazole, and
may be substituted based on local resistance patters or side effect profiles [8,109]. However,
mold coverage with voriconazole or posaconazole is implemented for patients with risk fac-
tors such as prolonged neutropenia or presence of lung nodules prior to transplant [8]. For
patients who develop GVHD and require high doses of IST or prednisone (≥0.5 mg/kg),
anti-fungal prophylaxis should be reinitiated [108]. In a randomized controlled phase III
trial, posaconazole was superior to fluconazole in preventing invasive aspergillosis and
reducing the mortality related to fungal infections in patients with GVHD who require
systemic IST [113].

Pneumocystis jiroveci is a yeast-like fungus that causes pneumonia in patients with low
CD4+ T-lymphocytes as well as those on IST or prednisone doses above 20 mg/kg/day [8,109].
PCP prophylaxis with trimethropim-sulfa, dapsone, atovaquone, or pentamidine is recom-
mended for all allogeneic HCT patients for at least 6 months, and should be continued in
the setting of ongoing IST [8].

5.3. Prevention of Viral Infection

Both herpes simplex virus (HSV) and varicella zoster virus (VZV) may be reactivated
in immunocompromised patients after allogeneic HCT [8]. The antiviral acyclovir and
valacyclovir are both similarly effective in reducing the risk of these viruses and are
acceptable options for prophylaxis [114]. Continuing these drugs until the CD4+ T-cells are
above 200/mm3 and IST has been discontinued is recommended to avoid rebound [8,115].

CMV disease remains a major cause of morbidity and mortality among allogeneic HCT
patients [8]. After primary infection, the virus lies dormant in the myeloid cells. CD4+ and
CD8+ T cells control the infection in healthy hosts. However, after allogeneic transplant,
the period after myeloid recovery and preceding T-cell recovery (days 30–100) allows a
window for CMV to reactivate [8]. Prevention of CMV infection starts with allogeneic donor
selection. During donor selection, CMV serology should be tested in both the donor and
the recipient. CMV seropositive patients with a CMV seronegative donor are at particularly
high risk for CMV infection as the donor T-cells lack a CMV memory response to suppress
the virus already present in the recipient’s body. Therefore, choosing a CMV seropositive
donor reduces the risk of CMV reactivation and may improve overall survival [116].
Similarly, CMV negative patients benefit from a CMV negative donor to avoid transmission
of CMV virus from the donor to the immunologically naïve host [116]. After HCT, weekly
monitoring of CMV viral load by PCR should be checked and pre-emptive therapy with
ganciclovir or valganciclovir or foscarnet should be started in asymptomatic patients with
significant viremia in order to prevent CMV disease [8]. In high risk populations, including
HLA-mismatched or haplo donors, UCBT, or ex vivo TCD, initiation of CMV prophylaxis is
warranted. In a phase III trial, letermovir, compared to placebo, given for CMV prophylaxis
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in these high-risk groups resulted in significant reductions in CMV infection (37.5% versus
60.6%, p < 0.001) and all-cause mortality (10.2% versus 15.9%, p = 0.03) at 24 weeks post-
HCT [45]. A recent study of haplo donor or HLA-mismatched unrelated donor HCT with
PTCy similarly showed the risk of CMV reactivation was 22% with letermovir prophylaxis
versus 69% with no prophylaxis (p < 0.001). Notably, CMV vaccines are currently being
studied in phase III trials [117].

5.4. Immunizations after Allogeneic HCT

Following allogeneic HCT, humoral immunity is suppressed and antibody titers to
previous vaccines decline [118–120]. This demonstrates that re-vaccination is necessary
after transplant. Response to vaccines requires reconstitution of both T-cell and B-cell
immunity and, specifically, naïve T-cells that are capable of mounting a memory response
after exposure to a new antigen [16,17,29]. Thus, vaccination schedules commence approxi-
mately 3–12 months after transplant [17,30]. Specific practices may vary by institution both
in terms of schedule and the choice of vaccinations administered. A typical approach is
to begin the vaccination schedule with pneumococcal vaccine, followed by Haemophilus
influenzae, tetanus/diphtheria/pertussis (DTaP), and hepatitis B. To avoid risk of infec-
tion, live vaccines including measles/mumps/rubella (MMR) or some shingles vaccines
should not be given until patients are off of immune suppression and at least 2 years
have passed since HCT [8,118–120]. Inactivated influenza vaccine should be administered
yearly [8,109,121].

5.5. Interventions to Improve Immune Reconstitution

In addition to prophylaxis and vaccinations, strategies to improve immune reconstitu-
tion can potentially reduce the risks of infection and improve the GVT effect against relapse.

Modifications to GVHD prophylactic regimens can potentially improve the balance of
immune reconstitution with risks of GVHD. Historically, IST regimens were continued for
at least 90 days and tapered thereafter [4,5]. With the use of PTCy, clinical trials have shown
that, depending on the conditioning and donor choice, IST can be discontinued prior to
day 90 or even omitted completely without increasing risks of GVHD [122–124]. This has
the potential to boost early immune reconstitution and, additionally, creates an optimal
platform for adding post-HCT maintenance strategies to prevent relapse. For TCD grafts,
novel graft manipulation techniques allow for selective depletion of alpha-beta T-cells
and B-cells that cause GVHD while preserving transfer of the allogeneic gamma–delta
T-cells and NK cells that are required for GVT activity and infection control [125]. A recent
prospective trial of myeloablative haplo HCT with alpha-beta T-cell and B-cell depletion in
acute leukemia resulted in no severe GVHD and overall survival of 75%, comparable to
historic controls with matched donors [126].

Immune checkpoint inhibitors are drugs that activate the immune system to attack ma-
lignant cells [127]. The mechanism of action suggests potential utility in boosting the GVT
effect if given in the post-HCT setting. A phase I trial of the CTLA-4 antibody ipilimumab
for post-HCT relapse led to complete responses in 9% [128]. Responses correlated with
CD8+ T-cell infiltration into the tumor, supporting the immune mediated mechanism of
action. GVHD occurred in only 14%. The PD-1 inhibitor nivolumab has also been studied
in the post–transplant setting, though fatal immune-related toxicities have limited the
potential of this strategy [129]. Notably, patients treated with checkpoint inhibitors prior to
HCT may also experience post-HCT immune effects including higher rates of GVHD [130].
However, studies of haplo HCT with PTCy after prior checkpoint inhibitor suggest that
GVHD rates are acceptable and relapse rates may be lower than in patients who did not
receive checkpoint inhibitors [131,132]. More data is needed to confirm these findings, but
this suggests that haplo HCT with PTCy and checkpoint inhibition is a potential strategy
to optimize GVT.

Transfer of exogenous cells to boost immunity may help boost post-HCT immune
responses. Allogeneic donor lymphocyte infusions depleted of CD8+ T-cells have been
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shown to successfully treat relapse and reverse immune exhaustion with low rates of
GVHD [51]. In haplo HCT, a phase I study of ex vivo-expanded, donor-derived NK
cells infused with HCT resulted in no dose limiting toxicities and only 1 relapse among
13 patients treated [133]. The upcoming BMT CTN 1803 NK REALM phase II trial will
evaluate the effectiveness of haplo NK cell infusion in reducing the risk of relapse after
haplo HCT (NCT04395092). A number of studies have also explored exogenous cell transfer
to manage infectious complications of allogeneic HCT [134]. Ex vivo virus specific T-cells
can be generated from healthy donors with existing immunity to a specific viral pathogen
and then infused into infected HCT patients. Virus specific T-cells have mostly been studied
for treatment of CMV and EBV, with complete response rates as high as 75% [135–137].
However, virus specific T-cells are also in development for adenovirus, human herpes
virus 6, and BK virus [135,138].

6. Conclusions

Allogeneic HCT is the only curative therapy for many high-risk hematologic ma-
lignancies. Advances in GVHD prevention have broadened the donor pool to include
haplo related donors and UCBT. However, severe immune deficiency and subsequent
infection and relapse remain primary drivers of post-transplant morbidity and mortality.
The kinetics of immune reconstitution are useful for predicting the temporality of potential
complications and implementing appropriate management strategies. Novel approaches in
graft manipulation and adoptive cellular therapies are being studied to accelerate post-HCT
immune recovery and improve outcomes.
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