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Introduction
In bioinformatics, an enduring and fundamental question is 
how best to use an organism’s genome sequence as well as prior 
knowledge of the DNA sequence preferences of transcription 
factors (TFs) in order to determine which TFs are responsible 
for an observed pattern gene expression differences between 
sample groups, such as tissues at different stages of disease 
and cells cultured in the presence or absence of a chemical 
stimulus.1–3 The general approach of computationally analyz-
ing noncoding DNA sequences within 5′ (upstream) regions 
of differentially expressed gene sets to identify statistically 
overrepresented TF binding site (TFBS) sequence matches – 
known as TFBS enrichment analysis4–8 – has proved useful for 
identifying the gene regulatory mechanisms from transcrip-
tome data.9–14 Databases such as MatBase,15 TRANSFAC,16 
JASPAR,17 UniPROBE,18 Factorbook,19 and FootprintDB20 
are rapidly accumulating position-nucleotide frequency matri-
ces (PFMs) that represent the sequence preferences of individ-
ual TFs. This rapid accumulation is driven by high-throughput 
assays such as ChIP-seq and protein-binding microarrays and 
through the use of improved in silico structural models for 

predicting TF–DNA affinities. Although a ChIP-seq assay 
can be used to map the binding sites of a specific TF genome-
wide within a specific cell type or tissue,21 only a small per-
centage of known TFs have been successfully assayed using 
this technique. In vertebrates, there have been relatively few 
reports of applications of ChIP-seq outside of humans and 
model species such as mouse.22,23 Thus, the approach of com-
putationally analyzing a set of 5′ regulatory sequences to mea-
sure the enrichment of TFBS – leveraging databases of known 
TFBS sequence patterns – remains unmatched in terms of the 
number of TFBS sequence patterns that can be simultaneously 
analyzed. This discovery power is particularly important in 
vertebrates, for which there are ~1800 different TFs, of which 
hundreds can be expressed in any given cell type or tissue.24

Reflecting the importance of this problem, multiple 
computational approaches have been proposed for PFM-
guided detection of enrichment of TFBS within gene-vicinal 
sequences.7,25–27 For the purpose of specificity, I define 
gene-vicinal to mean within approximately 5 kbp (in either 
direction) of a transcription start site.28 The TFBS enrichment 
analysis method of Frith et al.7 involves the direct use of the 
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position-probability matrix (PPM, which is the row-normalized 
PFM) in order to compute a likelihood ratio of the PPM 
model to a nucleotide frequency-based background model, for 
a binding site-sized sequence window at a given position. The 
likelihood ratios are then averaged over all nucleotide positions 
within a single gene-vicinal sequence to obtain a single-gene 
score. For each possible subset of genes from the gene set, the 
product of gene-level scores is computed, and these subset-level 
scores are averaged.7 In another approach, Ho Sui et al.25 used 
a log-likelihood ratio approach with an empirically determined 
hard threshold in order to identify TFBS and then used the 
binomial distribution to test the enrichment of TFBS. Sinha 
and Tompa29 used a multi-TF approach in which the weighted 
sum of occurrences of a specific TF’s PPM was computed over 
binding site configurations for all TF PPMs to be analyzed. 
The prior on the expected number of binding sites is not treated 
probabilistically but is a fixed parameter value. Pavesi and 
Zambelli27 rescaled the positional log-likelihood score in order 
to map the score to a compact interval and then computed the 
maximum of this rescaled score at all positions within a gene-
vicinal sequence; this per-gene score is then averaged over 
all genes in the gene set. The diversity of methods for PFM-
guided TFBS enrichment analysis and the significant numbers 
of studies (over 600 combined, for Refs. 7 and 25) that have 
reported using these methods underscores the importance of 
this problem in the field of bioinformatics.

Despite its discovery power, TFBS enrichment analy-
sis using prior TF binding pattern information in the form 
of PFMs has a fundamental challenge that PFMs are highly 
variable in terms of their specificity for nucleotide sequences 
and in terms of the uncertainty of the composition of the cor-
responding PPMs.30,31 Within databases of TFBS sequence 
patterns, the numbers of representative binding sites from 
which individual vertebrate TF PFMs have been compiled can 
vary by four orders of magnitude, from half a dozen to tens of 
thousands of representative oligomer sequences.15–17 For cases 
of TFs with highly specific nucleotide affinity and/or very low 
sampling of representative binding site sequences, PFM counts 
of zero pose a problem in the standard PPM-based approach 
and necessitate the use of ad hoc pseudocounts to enable the 
scoring of nucleotide sequences that do not perfectly match 
the TFBS consensus sequence.32,33 Furthermore, because the 
precision of the PPM that is associated with a PFM depends 
directly on the number of representative binding site sequences 
used to compile the PFM,30 TFBS enrichment analysis using 
only the PPM (and not taking into account the uncertainty 
in the PPM’s structure) can be a source of both type I and 
type II errors. Finally, in order to assess the significance of a 
finding that the frequency of PPM sequence matches for a TF 
is statistically overrepresented for 5′ upstream sequences for a 
gene set versus for a background set of genes, it is necessary to 
quantify the magnitude of the frequency enrichment and not 
just statistical significance (eg, using a P value). In addition, it is 
useful to be able to estimate the uncertainty on the magnitude 

of the TFBS frequency enrichment. A Bayesian approach 
to TFBS frequency estimation, as described below, has the 
potential to address the challenge of highly variable accuracy 
(sharpness) of known TFBS motifs. Bayesian methods have 
long been used for de novo motif discovery34–37 and have also 
been proposed for TFBS recognition and demonstrated to 
have improved accuracy over traditional motif scanning.30 In 
the context of PFM-guided enrichment analysis, a Bayesian 
approach is appealing because it could account for uncertainty 
in the PPM and it could provide an estimate of the TFBS fre-
quency per base pair of noncoding DNA, while appropriately 
weighting high-quality and low-quality matches to the PPM. 
By using a Bayesian approach, an additional benefit is that an 
empirical prior distribution of TFBS frequencies (across many 
TFs) can be included in the model to improve the TFBS fre-
quency estimation in the case of a weak (ie, degenerate) PPM.

In this article, I describe a Bayesian approach to PFM-
guided TFBS enrichment analysis, which produces samples 
from the posterior distribution of the number of TFBS for a 
given PFM, within a given sequence. The method incorpo-
rates an empirical prior on the per base pair TFBS frequency 
that is informed by the analysis of human TFBS from the 
ENCODE project (as opposed to the geometric prior used in 
a previous study30). Finally, because the method is developed 
from an explicit joint probability model of all of the observ-
ables and model parameters, the method could be readily 
extended to incorporate other types of regulatory potential 
scores.38,39 I show empirical results from applying the new 
prior to estimate the number of TFBS for a synthetic set of 
promoter sequences in which representative TFBS sequences 
are introduced. The empirical results show that the new prior 
improves accuracy when compared to a previously proposed 
prior on the per-promoter number of TFBS.

Mathematical Preliminaries and Notation
For the purpose of detecting TFs that may control a given clus-
ter of coexpressed genes, it is simplest to consider a single TF at 
a time; I use “TFX” as a generic symbol for this TF. (Although 
this article is focused on single-TF enrichment analysis for 
simplicity, the pairwise TF enrichment analysis could in prin-
ciple be accommodated by extensions of the general approach 
described herein.) Consistent with a Bayesian approach,  
I start by framing the problem of PFM-based TFBS enrich-
ment analysis in terms of a set of random variables including 
observations, nuisance parameters, and a single parameter –  
the number of TFBSs within a given set of gene promoters –  
whose distribution (conditioned on the observations) will 
ultimately be sampled. To do so, I introduce a bit of math-
ematical notation needed to define these random variables. It 
is convenient to denote the set of natural DNA nucleotides 
by integers, D = {1,2,3,4}, corresponding to A, C, G, and T  
(so the complementary nucleotide for nucleotide d ∈ D is 5 − d). 
For simplicity, let the promoter sequences of a cluster of differ-
entially expressed genes be concatenated and represented as a 
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sequence s ∈ DL, where L is the total sequence length in base 
pair. Let the noncoding DNA sequence within the promoters 
of a set of randomly selected genes that are expressed (but not 
necessarily differentially expressed) within the same cell type 
or tissue, be represented by s″ ∈ DL″, where L″ is the length in 
base pair. Finally, let s′ ∈ DL′ be a large DNA sequence com-
prising noncoding, gene-vicinal sequences selected at random 
and in which any known TFBS (as mapped by high-throughput 
ChIP-seq studies) have been excluded (here again, L′ is the 
total length, in base pair). The background model sequence s′ will 
be used to obtain a model for nucleotide frequencies in non-
coding, nonbinding site DNA. The regulatory region sequences 
s and s″ will be analyzed for a relative enrichment of  TFBSs 
for a given TF, as described below.

The TFX is assumed to have a set of representative bind-
ing site sequences (numbering c; depending on the type of 
assay used to compile the representative binding site sequences,  
c could range from 6 to 100,000, as shown in Fig. 1) obtained 
from the literature and/or from high-throughput protein–
DNA binding measurements. The representative binding 
site sequences are assumed to have been multiply aligned;  
I denote by w the length (in base pair) of the core region 
of overlapping representative binding sites in the mul-
tiple alignment. The counts of nucleotides of each type at 
each position within a PFM will be denoted by a matrix 
c ∈ ℂw×4, where ℂ = {0, 1, 2, …, c}. I note that c and w are 
specific to the transcription factor TFX, and this depen-
dence could be denoted by c(TFX) and w(TFX); however, 
for the simplicity of notation, I use the more compact c and w.  
The height of the TF matrix, w, can vary significantly from  
TF to TF; across all 4528 matrices in the TRANSFAC 2015 
Professional database, w varies from 5 to 30, with a median  

of 12. The index set for sequence positions within a binding 
site for TFX will be denoted by G = (1, …, w). The factor TFX 
is assumed to have an overall frequency per base pair, repre-
sented by λ, of binding sites in a given sequence of noncod-
ing, gene-vicinal DNA; I represent our uncertainty about λ by 
treating it as a random variable Λ on (0, λmax], where a fixed 
value λmax ∈ (0,1) is chosen as an upper limit. An absolute 
physical upper limit on λmax would 1/w, given the require-
ment that binding sites for TFX not overlap. However, TFBSs 
in mammals are in general sparsely distributed, even within 
gene-vicinal regions42; thus, the value λmax = 0.001 bp−1 is 
used here (and as seen in the “Modeling P(β|λ)p(λ)” sec-
tion, of all the TFs in the ENCODE human ChIP-seq 
dataset,43 none has a binding site frequency per base pair in 
gene-vicinal sequence that exceeds 0.001 bp−1). Because the 
actual locations of the TFX binding sites within a given non-
coding, gene-vicinal sequence of length L are not known,  
I denote the binding site locations by a {−1,0,1}L-valued random 
variable B. Specifically, for the outcome B = β ∈ {–1,0,1}L, at 
each location l ∈ {1, …, L},

βl =

1

5

if there is a plus-orientation TFBS whose 

 end is at′   location 

if there is no TFBS whose 

 end is at locati

l

0

5′ oon  

if there is a minus-orientation TFBS whose 

 end 

l

−1

5′ iis at location ,l

















 

(1)

where in the above, +(plus)-orientation means that the PPM 
pattern derived from c matches the sequence on the forward 
strand, and −(minus)-orientation means that the PPM pattern 
matches the sequence on the reverse strand. The use of a dis-
crete parameter to represent the presence/absence of a TFBS at 
a given nucleotide position (rather than a continuous param-
eter) makes the space of TFBS configurations more tractable 
to explore,30,31 without sacrificing the ability to differentially 
weight a poor-affinity binding site from a high-affinity bind-
ing site in the analysis. The total number of binding sites in a 
given binding site configuration β is obtained by the L1 norm, 
β ≡ ||β||1. For simplicity of notation, only binding site configu-
rations β for which the entire binding site is contained within 
the range of sequence positions Lr and for which no two binding 
sites are overlapping by any number of nucleotides (even if the 
two binding sites have opposite orientations) will be allowed. 
Thus, the range of B is not the entirety of {−1,0,1}L, but a subset 
B ⊂ {−1,0,1}L defined by the above constraints. In the Bayesian 
approach to TFBS enrichment analysis that described below, 
B = ||B||1 is the integer-valued random variable whose distribu-
tion (conditioned on the observed regulatory region sequences 
and on the PFM for representative binding sites) is sought.

Importantly, the probability distribution on the number of 
binding sites will depend on the length of the DNA sequence 
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Figure 1. the distribution of values of c for a collection of 4,528 
vertebrate transcription factors from the transfac Professional 
2013.4 and JasPar 5.0 databases. the sharp peak in the distribution 
at c = 100 is due to the inclusion of motif matrix information for which 
the original sequence alignments are not available (such as from high-
throughput in vitro protein–dna binding screens,40 for which a default 
value of c = 100 was selected based on consistency with the number of 
significant digits for the values reported in the motif matrices). The sharp 
peak at c = 998 is due to the 2,076 structure-derived motifs that were 
originally obtained using the 3dtf tool41 and were then incorporated 
into the transfac database). the long tail of c values above 103 
represents motif matrices compiled from high-throughput tf location 
assays such as chiP-array and chiP-seq.
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being analyzed (longer combined regulatory sequences will, in 
general, contain more binding sites of a given type), and thus, 
the probability distribution for ||B||1 (the number of binding 
sites) conditioned on the DNA sequence s cannot be directly 
compared to the probability distribution for B|s″ unless 
L = L″. Thus, in practice, one would compare samples of B/Lr|s 
with samples of B/L″|s″, with Λ treated as a nuisance variable.  
A key benefit of a Bayesian approach is that it will not require 
a specific value for the parameter λ; all possible values (consis-
tent with the imposed constraint λmax) are considered.

A Bayesian approach to analyzing whether binding sites for 
TFX are enriched within sequences s′ versus s″ can now be suc-
cinctly described as comparing samples from the distribution of

 
B Lr/ , ,| ′c s s  (2)

with samples from the distribution of

 
B L/ , , ,″ | ″ ′c s s  (3)

with Λ marginalized, under an explicit probability model. 
Thus, the technical problem to be solved here is how to accu-
rately sample from the conditional distribution

 B | ′c r s, , ,  (4)

where r is an arbitrary observed set of (concatenated) promoter 
sequences (and in practice, one set of samples would be gener-
ated for the case r = s and one set of samples would be generated 
for the case r = s″). I denote the length of the sequence r by Lr 
(which will have the value L or L″ depending on whether we 
are modeling the case r = s or the case r = s″), and the sequence 
of unique positions within the combined gene-vicinal DNA 
regions by Lr = (1, …, Lr). Similarly, I define the sequence 
of positions within s′ by  = (1, …, L′). Now, we can more 
precisely state our goal as modeling the posterior distribution  
B|r, s′, c. In order to be able to do this, it is convenient to define 
a matrix-valued random variable Φ and a vector-valued random 
variable Ψ. The w × 4 matrix random variable Φ represents the 
PPM that is associated with the PFM c, and it is a random vari-
able because the true probability model will always be uncertain 
if the number of representative binding site sequences (ie, the 
number c) is finite. In keeping with a PPM model, for each sam-
ple φ from the random variable Φ, each row of φ (which I denote 
by φg where g ∈ G) has unit L1 norm. This means that each row 
Φg of Φ is a random variable whose range is the unit three-sim-
plex ℍ3. A central assumption that makes a Bayesian analysis 
of TFBS enrichment tractable is that the Φg are all indepen-
dent random variables. The ℍ3-valued random variable Ψ rep-
resents the nucleotide frequencies on s′, and its distribution is  
generally very sharply peaked since the sequence s′ from which 
the background model is obtained is usually hundreds to 
thousands of kilobase pair in length.

In the application of PFM-guided TFBS enrichment 
analysis, the observations r, c, and s′ are known by definition; 
however, it is helpful in a Bayesian approach to formally define 
a generative model in which we can compute the probability of 
these observations, conditioned on Λ, B, Φ, and Ψ. Such a gen-
erative model can be more concisely defined in terms of random 
variables, and thus, I refer to a DL′-valued random variable R for 
which we have the observed sequence r, and a DL′-valued ran-
dom variable S′ for which we have observed s′, and a {1, …, c}w×4- 
valued random variable C for which we have observed c. The 
random variables in this model are summarized in Table 1.

In order to be able to model the conditional probabil-
ity of the sequence r given a PFM φ, the specified locations 
of TFBS β, and the background nucleotide frequency model 
ψ, it is necessary to define a function U P: ,−1 0,1{ } →Lr

r(L ) 
that maps a configuration β of binding sites to the set of 
nucleotide positions within Lr that the binding sites occupy. 
Thus, U(β) is the footprint of the binding sites whose 5′ loca-
tions are specified by β. Let us define the set of all pairs of 
binding site footprint positions and binding site configura-
tions by U ⊂ Lr × B:

 
U

B
= U( ) .β β

β
× { }

∈
∪  (5)

Given a configuration of binding sites β, any position  
l ∈ U(β) within one of the binding sites will correspond to a 
specific binding site orientation (1 or −1), and this correspon-
dence will be denoted by a mapping J: U → {−1,1},

 
( , )l

l
lβ �

J

1

1

if is in a forward-orientation binding site
if − iis in a reverse-orientation binding site.






 (6)

Table 1. random variables in the full probability model for tfBs 
enrichment analysis.

vARIABLE SAMPLE/
oBSERvATIoN

RANGE MEANING

Λ λ (0, λmax] frequency (per bp)  
of binding sites  
within r

B β {−1,0,1}Lr Presence/absence  
(and orientation)  
of tfBs

Φ φ (H3)w the true PPm  
of the tf

Ψ ψ H3 nucleotide frequencies  
on non-tfBs dna

R r DLr gene-vicinal,  
noncoding sequence

S′ s′ DL′ Background noncoding  
sequence

C c {1, …, c}w × 4 the Pfm for  
representative binding  
sites
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In the case of a reverse-orientation binding site, the 
PPM φ will correspond to the reverse complement of the 
nucleotide sequence within the binding site, in which case it is 
convenient to define a conditional complementation function  
C: D × {−1,1} → D by

 
C( , ) ( ),d j jd j= + −5

2
1  (7)

which is the identity on d when j = 1 and which complements 
d when j = −1. Similarly, any configuration β and any position 
l within a binding site will correspond to a specific row of the 
PFM for the TF, depending on the orientation of the binding 
site; I denote this correspondence by a mapping G: U → G,

 

( , )l β �
G

the index of the row of corresponding 

to position 

c

ll ∈ U( ).β
 

(8)

Finally, in order to be able to model the joint probability of 
r and s, it will be necessary to count nucleotides of each type 
(ie, A, C, G, and T) outside of TFBS as well as at different 
positions within the binding sites of TFX. Outside of TFBS, 
I represent the nucleotide counts by the 4-vector f whose ele-
ments are defined by

 
f l r d l s dd l l= ∈ = + ∈ =| { | } | | ′ | |′L Lr \ ( ) { } ,U β  (9)

for all d ∈ D. I represent the position-nucleotide counts for the 
sequence within all TFBS by a w × 4 matrix σ  whose elements are

 
σ gd ll l g r l d= ∈ = ∧ ={ }U G C J( ) ( , ) ( , ( , ) ,β β β| )

 
(10)

for all g ∈ G and d ∈ D. Because of the physical constraint that 
binding sites for TFX cannot overlap, it follows that

 
σ βgd

d
=

∈
∑ ,

D  
(11)

for all g ∈ G. In the next section, I introduce the statistical 
approach by defining a joint probability model.

bayesian Approach to tFbs enrichment Analysis
Having defined random variables to represent all of the 
observed information (R, C, S′) and the latent variables  
(Φ, Ψ, Λ), and the model parameter B, the first step in a 
Bayesian approach44 is to define a simplified model for the 
joint probability distribution. I choose the model

 

p P P p

P p P

( , , , , , , ) ( , , ) ( ) ( )

( ) ( ) (

r s c r s

c

′ | ′ |

| |

Λ β φ ψ β ψ ψ

β

=

λ) (p λ)),φ φ

ψφ

 (12)

where the condensed notation P(λ) means P(Λ = λ) and so 
forth for the other random variables, P denotes a probability 

distribution, and p denotes a probability density. Eq. 12 can be 
derived from first principles based on the following indepen-
dence assumptions:

 R S C⊥ ′ |, , , ,Λ φ ψ β  (13)

 S B C′ |⊥ Φ, , ,Λ ψ  (14)

 C B⊥ Λ, ,Ψ | λ  (15)

 B ⊥ Φ Ψ, | λ  (16)

 ⊥ ,ΛΦ Ψ  (17)

 Ψ ⊥ Λ  (18)

The independence structure of Eq. 12 can be summarized in 
graphical model notation,45 as shown in Figure 2. To make 
the joint probability model explicit, each of the conditional 
probabilities in Eq. 12 will be specified below.

Modeling P(r|φ,ψ,β)P(s′|ψ)p(ψ). For PFM-guided  
computational recognition of TFBS, a fundamental assump-
tion is that the probability model for the counts of nucleotides 
outside of TFBS is independent of the probability model for 
the counts of nucleotides within TFBS.32,46 This means that 
the conditional probability of r can be expressed as the prod-
uct of conditional probabilities for the subsequences of r cor-
responding to U(β) (the TFBS) and corresponding to Lr\U(β)
(outside the TFBS). Conditioned on ψ, the nucleotide prob-
abilities at positions outside of TFBS, which are denoted by 
the random variables {Rl}l∈Lr\U(β) and the random variables  
{Sl}l∈L′, are assumed to satisfy

 
Rl | ∼iid Categ( , )Dψ ψ  (19)

for any l ∈ Lr\U(β), and

 
Sl | ∼ψ ψiid Categ( , ),D  (20)

for any l ∈ L′ (where iid denotes independent and identically 
distributed). Conditioned on φ and β, the nucleotide sequence 

B

S' R C

ψ ΦΛ

Figure 2. graphical model diagram of the independence assumptions 
shown in Eqs. 13–18. Each arrow denotes a relationship between a 
parent variable and a child variable. collectively, the variables and 
arrows indicate conditional independence as follows: each variable X is 
independent of other variables, jointly conditioned on all parents of X.
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probabilities at locations within the footprint U(β) of the 
binding sites specified by β, the nucleotide probabilities are 
denoted by random variables {Rl}l∈U(β) that are independent 
and distributed as follows:

 
R l g ll g| ∼φ β β, , ( , ) , ( , ) )G J= =β φ1 Categ( ,D  (21)

 
5 1− = = −R l g ll g| ∼φ, , ( , ) , ( , ) ).G J β φCateg( ,Dβ β  (22)

for any l ∈ Lr\U(β). Because the length of s′ is assumed to be 
quite substantial, the distribution of Ψ|s′ will be quite sharply 
peaked, and thus, any weak prior on ψ will have little effect. 
Thus, it is reasonable to assume a uniform prior p(ψ) = 3!. 
Given the uniform prior assumption for Ψ and the definition 
in Eqs. 9 and 10 and the assumptions in Eqs. 19–22, the con-
ditional probability of R, S′ has a compact form,

 
P P p d
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that will be compatible with collapsing of φ and ψ (as shown 
in the “Obtaining the distribution of B|r, s′, c” section).

Modeling P(c|φ) p(φ). To account for uncertainty in the 
PFM c due to sampling from a finite (and in many cases, very 
limited) number of representative binding site sequences, the 
PFM is represented by a random variable C. A core assump-
tion in the field of PFM-guided TFBS recognition is that 
rows of C, denoted by Cg (where g ∈ G), are independent 
and multinomial distributed with a fixed number of tri-
als.47,48 Because in some cases, some representative binding 
site sequences will be outside the core portion of the multiple 
alignment from which the PFM is tabulated, the row sums 
of c may in some cases be less than the count c of representa-
tive binding site sequences. Thus, to accommodate such cases,  
I denote by cg the sum of the elements of row g of c. In terms 
of the row-specific counts cg (for g ∈ G), the conditional dis-
tribution of Cg can be expressed as

 
C Cg g g g g gc c|| || ∼1 = =, Φ φ φMult( , ),g  (24)

for which the formula for P(c|φ) immediately follows

 
P

c
c

g

d gd
gd

c

dg

gd( )
!

!
( ) .c | ′

′

′φ =










∈ ∈∈ ∏ ∏∏

D DG
φ  (25)

The most common approach for selecting the prior probabil-
ity p(φ) for the PPM is to choose a uniform prior, in which 
case p(φ) is just the constant (3!)w. Although other authors have 
pointed out the possibility of using an empirical prior on φ,30 it 
is nontrivial to collapse Φ by analytic integration over all φ, in 
the case of a nonuniform p(φ), so here I assume a uniform p(φ).

Modeling P(β|λ)p(λ). At a given base pair location with 
no binding sites nearby (and with no sequence information),  
I model the probability that there is a binding site – in a spe-
cific orientation – as λ/2. In the absence of sequence infor-
mation, intuition would suggest treating the occurrence or 
absence of a binding site for TFX at each position in DNA 
as independent and identically distributed Bernoulli trials. 
However, because of the physical constraint that two bind-
ing sites are not allowed to overlap, each binding site (ie, each 
nonzero entry of β) affects the probability of a binding site at 
nearby positions. Specifically, each binding site prevents the 
possibility of an overlapping binding site (in either orienta-
tion) at w − 1 bp positions, and for an additional 2(w − 1) 
flanking positions, a binding site is only possible in one orien-
tation. Thus, the probability model consistent with the physi-
cal constraints would be
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where N1 is function that is implicitly defined by the law of 
total probability for P(β|λ). In the limit where L wr  , and 
solving for N1 using the law of total probability, we have the 
approximate result,
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In the case w = 1, the above can be seen to reduce to 
λβ(1 − λ)Lr−β/2β, which is the expected joint probability of 
outcome sequence β for Lr independent trials of the categori-
cal distribution with outcomes (−1,0,1) with probabilities 
(λ/2,1 − λ,λ/2), in which β trials have a nonzero outcome.

The prior distribution p(λ) reflects the range and relative 
probability of different Λ values for TFX, before the sequence r 
has been taken into account. The prior p(λ) is important because 
for real-world applications, it can exert a significant effect on the 
distribution of Λ|r, c. For mammals, the prior p(λ) can be for-
mulated empirically using binding site frequencies (per base pair 
of noncoding, gene-vicinal DNA sequence) for 620 human TF 
ChIP-seq experiments (comprising 119 distinct TFs) obtained 
from the ENCODE project.43 For each ChIP-seq experiment, 
binding sites within regions of noncoding DNA within −1500 
to +500 bp transcription start sites of VEGA transcripts (from 
Ensembl Release 75, GRCh37 assembly coordinates) were 
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mapped, using ChIP-seq peak data that were peak-called using 
the SPP program49 and for which the data files were downloaded 
from the ENCODE data access page at the European Bioinfor-
matics Institute from the June 2012 release (http://ftp.ebi.ac.uk/
pub/databases/ensembl/encode/integration_datajan2011/
byDataType/peaks/june2012/spp/optimal/) in narrowPeak 
format. The counts of binding sites within these noncoding 
regions were fit to a Poisson model parameterized by a bind-
ing site frequency λ per base pair of DNA; for each ChIP-seq  
experiment, a λ estimate was obtained using maximum likeli-
hood. The resulting histogram of λ estimates is well-described 
by a beta distribution, as shown in Figure 3, with parameters as 
given in Table 2. Thus, it is convenient to adopt a prior density.
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where B is the incomplete beta function, and the shape 
hyperparameters are as given in Table 2 (recall that the 
range of Λ is (0,λmax]). Combining Eqs. 27 and 28, and in 
the limit where λ  L wr / ,  the product P(β|λ)p(λ) can 
be approximated
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where with our choice of λmax, the second-order term can be 
neglected, resulting in a beta distribution-like dependence on λ,
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for λ ∈ (0,λmax]. From this equation, and integrating λ over 
the range from [0,λmax], we see that the probability model  
Eq. 26 corresponds to a prior
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In contrast to Eq. 31, Lähdesmäki and Shmulevich50 used a 
geometric prior on β, P(β) = 1/2β+1, implying
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up to a normalization constant q. A comparison of the two 
priors (Fig. 4) suggests that the incomplete beta function prior 
(Eq. 31) may be more conservative than the geometric prior –  
a hypothesis that I investigate by analyzing simulated pro-
moter sequence data in the next section.

obtaining the distribution of B|r, s′, c
The second step in a Bayesian approach44 is to condition  
on the observed data – in this case, r, s′, and c – and then obtain 
the conditional distribution of the parameter(s) of interest, in 
this case B. In order to be able to do so, starting from the joint 
probability model (Eq. 12), the nuisance parameters φ, ψ, and 
λ must be either estimated or marginalized. A key advantage 
of the Bayesian approach is that we can take into account the 
probability distribution of Φ|c, in the process of eliminating Φ 
by marginalization. The parameter ψ can be similarly margin-
alized, although the uncertainty in the background nucleotide 

Table 2. Parameter estimate for the beta distribution model for the 
prior p(λ) on the binding site frequency per base pair, for human 
transcription factors.

α ν (×104)

least-squares estimate 1.37 3.62

95% confidence interval ±0.15 ±0.53
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Figure 3. distribution of frequencies of tfBs (per base pair of 
noncoding, gene-vicinal dna sequence) for human transcription factors, 
based on the analysis of 620 chiP-seq datasets from the EncodE 
project.43
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Figure 4. Plot of the change in log P(β) with the addition of a single 
binding site, as a function of β, for the incomplete beta function-based 
prior (Eq. 31) and the previously proposed geometric prior (Eq. 32). the 
∆ log P values between the two priors are closer for β = 0 but become 
greater with increasing β, indicating that the empirical prior in Eq. 31 is 
not simply equivalent to a rescaling of the geometric prior.
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frequency is generally very small for real-world applications in 
which L′ is large. We marginalize φ and ψ by integration,

 pw( , , , , ) ( , , , , , , ).r s r s c′ ′λ β λ= ∫∫d d3 3φ ψ β φ ψp c  (33)

Given Eqs. 12, 23, and 25, the dependence of the integrand 
in Eq. 33 on φ and ψ has the same algebraic form as the 
probability density function for independent Dirichlet ran-
dom variables {Ψ, Φ1, …, Φw},as a consequence of the fact 
that the Dirichlet distribution is the conjugate prior for the 
multinomial distribution.44 Thus, the two integrals in Eq. 33 
can be evaluated analytically.30 The desired joint conditional 
probability of Λ, B follows by the definition of conditional 
probability,
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After performing the integrals in Eq. 33, using Eqs. 30 and 
34, and then log-transforming, we have
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where N2(λmax, Lr, w, α, ν, c) is function that will not need to 
be evaluated. The parameter λ can then be marginalized by 
integration, yielding
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where B is the incomplete beta function. As we will see 
below, in order to obtain samples of B|r, s′, c, it will not be 
necessary to explicitly evaluate P(r, s′, c). Now that we have 
an explicit formula for log[P(β|r, s′, c)] up to additive terms 
that do not depend on β, it is possible to generate β samples 
from this distribution using Markov Chain Monte Carlo 
(MCMC) sampling.

McMc approach. For sampling from B|r, s′, c, the 
Metropolis–Hastings algorithm,51 in which a probabilistic 
proposal generator g(β, β′) for a transition from β → β′ can 
be defined so as to optimize the acceptance rate for moves, is 

convenient. For the problem of TFBS enrichment detection, 
following the general approach used by Lähdesmäki et al 
for TFBS recognition, I use a two-stage proposal genera-
tor in which a base pair position l ∈ Lr is selected at ran-
dom, and then, depending on the current state of β, binding 
site removal or addition (in the latter case, with a randomly 
selected value j ∈ {−1,1}) is proposed (in the case of binding 
site addition, j = −1 or j = 1 is chosen with equal probabil-
ity). For this approach, it will be useful to have a simpli-
fied expression for the log probability ratio for Bl = j versus 
Bl = 0, conditioned on r, s′, βLr\{l}, c; it is convenient to define 
some additional notation in order to make this conditional 
probability ratio explicit. Without loss of generality, let 
us assume that the current state for the hypothetical bind-
ing site configuration β ∈ B, a location l ∈ Lr such that 
βl = 0, and an orientation j ∈ {−1,1} such that the configu-
ration β with βl = j would not violate the TFBS physical 
constraints. In order to simplify notation, I define a function 
H: DLr × L × {−1,1} × G → D by

 
H C( , , , ) ( , ),( )r l j g r jl j g= + −1  (37)

whose value represents the nucleotide at position g within 
the binding site for TFX that has orientation j and whose 5′ 
most nucleotide is at location l ∈ Lr. I also define a function  
I: DLr × Lr × {−1,1} × D → {0, 1, …, g} by

 
I ( , , , ) ,( )r l j d g d rl j g= ∈ ={ }+ −G | 1  (38)

whose value is the count of nucleotides of base d within a 
binding site for TFX in orientation j whose 5′ most nucleotide 
is at location l.

Applying Eq. 35 to two different binding site configura-
tions that differ by one binding site being present/absent at a 
specific location l ∈ Lr, and using the definitions of H and I,  
we obtain a closed-form expression for the log ratio of the con-
ditional probability of there being a binding site at location l 
(in orientation j), to the conditional probability that there is 
not a binding site at l
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where the notation (x)[n] denotes the falling factorial and σ is 
computed for β. Given Eq. 39, sampling from the distribution 
of B|r, s′, c can be accomplished using the Metropolis–Hastings 
algorithm with the following proposal distribution:
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where Sl is the Shannon entropy of the probabilities P(βl = j|r, 
s′, βLr\{l}|, c) (for j ∈ {−1,0,1}) with βLr\{l} = 0, and where the 
weight exponent q is tuned to achieve the desired average 
acceptance rate.52 The reason for using a proposal distribu-
tion that weights each position by the Shannon entropy is 
that at most positions l ∈ Lr, the entropy of the three condi-
tional probabilities P j

l r l( , )\{ }β = | ′,
|

r, s cβL  (for j ∈ {−1,0,1} 
and fixed l) is very small, and thus, from the standpoint of 
optimizing the acceptance rate, it is convenient to weight the 
generation of proposed moves toward moves with more even 
odds of move acceptance. Results from empirical testing with 
sequence lengths Lr = 2 × 104 suggest that a value q = 0.85 gives 
an acceptance rate of about 0.12, with increasing values of 
q increasing the acceptance rate. In this study, the Markov 
chain is initialized by iterating over l = 0 to l = Lr, for each l, 
setting βl to be the most probable configuration given Eq. 39,  
conditioned on βLr\{l} = 0. Once the Markov chain has con-
verged, at most positions l ∈ Lr, the entropy of the three condi-
tional probabilities P j

l r l( , )\{ }β = | ′,
|

r, s cβL  (for j ∈ {−1,0,1}  
and fixed l) is very small, and thus, from the standpoint of 
optimizing the acceptance rate, it is convenient to weight the 
generation of proposed moves toward moves with more even 
odds of move acceptance.

empirical results
Based on a direct comparison (Fig. 4) of the incomplete beta 
function prior (Eq. 31) and the previously proposed geomet-
ric prior (Eq. 32), it seems reasonable to suppose that, within 
the context of a Bayesian approach for PFM-based TFBS fre-
quency estimation (as described in the “Obtaining the distri-
bution of B|r, s′, c” section) the incomplete beta function prior 
and the geometric prior might have different effects on the 
conditional distribution of the number of TFBS, ie, the sam-
ples of B|c, r, s′. To test this hypothesis, I generated a synthetic 
dataset based on a simulated background sequence s′ (with 
L′ = 100,000) and 120 gene promoter sequences (each with 
Lr = 20,000), with uniform probabilities for each nucleotide. 
Into each simulated base sequence r, and for each of a fixed 
set of 100 TF PFMs selected at random from TRANSFAC 
Professional 2015, t ∈ {1, …, 10} TFBS were inserted into 
the r sequence (using representative binding site sequences 
from which the PFMs were computed, resulting in a modified 
sequence rt). Ten samples from the stationary distribution of B 
(the number of TFBS) were then generated using the MCMC 

approach described in the “MCMC approach” section (with 
5000 burn-in steps, 100 steps per sample, and q = 0.85), for 
both the geometric prior and the incomplete beta function-
based prior (with ν = 10,000 and α = 1.0). For each of the 
two priors and for each combination of sequence r, PFM c, 
and number of ground-truth binding sites t, the 10 B|c, rt, s′ 
samples were averaged, producing one geometric prior sample 
and one incomplete beta function prior sample for each of the 
120,000 combinations of c, r, and t. The distributions of B|c, 
rt, s′, organized by t and by prior, as shown in Figure 5, reveal 
several interesting patterns. First, across the fixed set of 100 
randomly selected TFs, the MCMC method incorporating 
the incomplete beta function prior appears to yield samples 
that are more accurate than the MCMC method incorporat-
ing the geometric prior. In terms of mean-squared error, the 
MCMC method with the incomplete beta function-based 
prior is 19.6, whereas the mean-squared error with the geo-
metric prior is 107.7. Second, the samples generated using the 
MCMC method with the geometric prior appear to be sub-
stantially higher-variance than the samples generated using 
the MCMC method with the incomplete beta function-based 
prior (quantitatively, the t-averaged standard deviation of the 
TFBS count samples obtained using the incomplete beta func-
tion prior was 4.05 versus 8.75 for the geometric prior.

discussion
This study demonstrates the utility of incorporating an 
empirical prior on the TFBS frequency per base pair within 
the context of a Bayesian method for PFM-based TFBS 
enrichment analysis, but there are several aspects in which 
the work raises interesting questions that could be explored 
in future studies. First, in this work, a two-parameter  
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Figure 5. comparing the accuracies of two mcmc implementations of 
the Bayesian method for estimating the number of binding sites of a tf, 
based on the geometric prior (Eq. 32) and the incomplete beta function-
based prior (Eq. 31). for each combination of t (number of ground-truth 
sites) and type of prior, the bar denotes the median, the box denotes the 
interquartile range, and the whiskers are offset 1.5 interquartile range 
above or below the 75th and 25th percentiles.
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parametric function has been fit to empirical data on the 
density distribution of frequencies of human TFBS per 
base pair of noncoding, gene-vicinal sequence. Thus, the 
results shown here do not reveal to what extent the esti-
mated parameters for the distribution would generalize to 
TFBS frequencies in other species. At least for the mouse 
genome, available evidence from the modENCODE project 
suggests that overall, TF binding within promoter regions 
is highly conserved between human and mouse.53 More-
over, for two TFs whose TFBS were assayed in five mam-
malian species by ChIP-seq, the numbers of genome-wide 
binding sites did not vary more than 2× between species.22 
Thus, it seems reasonable to expect that the Λ prior distri-
bution (across TFs) would be similar, for gene-vicinal non-
coding sequence. Nevertheless, in future work, it would be 
informative to estimate the hyperpriors α and ν for human, 
mouse, fruit fly, and worm to enable a cross-species com-
parison. Second, it would be useful to characterize how the 
choice of q parameter affects the empirical performance of 
the MCMC approach used here, ie, the acceptance ratio, 
the number of steps required for burn-in, and the number 
of steps required between samples; it may be possible to 
significantly improve the speed of the proposed MCMC 
method through tuning q and the sampling parameters. 
Third, a key aspect to be explored is the extent to which the 
accuracy improvement with the incomplete beta function-
dependent prior is associated with high-count versus low-
count PFMs. Intuitively, it seems reasonable to suppose 
that for most TFs, an increase in the accuracy of the prior 
would be expected to have more of an effect on the poste-
rior distribution of β when the PFM count is low, since a 
higher count PFM would be expected to have a much big-
ger likelihood ratio that would, in turn, be more likely to 
dominate over the prior on the number of TFBS.

conclusions
This study presents a Bayesian approach to the bioinformat-
ics problem of PFM-guided TFBS enrichment analysis. The 
method incorporates an empirical prior on the frequency dis-
tribution λ of binding sites for TFs that is based on genome 
location data from the ENCODE project. In addition, 
the method incorporates a probabilistic model for TFBS 
occurrence conditioned on the parameter λ that takes into 
account the finite width of the TFBS, in contrast to a previ-
ous approach in which the TFBS probability was assumed 
to have a geometric dependence with a fixed factor of 1/2.30 
The sampling equation for adding/removing a binding site 
(Eq. 39) could be easily extended to include other sources of 
information, such as a regulatory potential score derived from 
phylogenetic sequence conservation or from epigenetic mea-
surements. The R software code implementing the MCMC 
method described in the “MCMC approach” section and the 
promoter analyses shown in Figure 5 is available at http://
github.com/ramseylab/tfbsincbeta.
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