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Abstract Intelligence and education are predictive of better physical and mental health,

socioeconomic position (SEP), and longevity. However, these associations are insufficient to prove

that intelligence and/or education cause these outcomes. Intelligence and education are

phenotypically and genetically correlated, which makes it difficult to elucidate causal relationships.

We used univariate and multivariable Mendelian randomization to estimate the total and direct

effects of intelligence and educational attainment on mental and physical health, measures of

socioeconomic position, and longevity. Both intelligence and education had beneficial total effects.

Higher intelligence had positive direct effects on income and alcohol consumption, and negative

direct effects on moderate and vigorous physical activity. Higher educational attainment had

positive direct effects on income, alcohol consumption, and vigorous physical activity, and negative

direct effects on smoking, BMI and sedentary behaviour. If the Mendelian randomization

assumptions hold, these findings suggest that both intelligence and education affect health.

DOI: https://doi.org/10.7554/eLife.43990.001

Introduction
Intelligence and educational attainment are associated with many socioeconomic and health out-

comes (Cutler and Lleras-Muney, 2006; Clark and Royer, 2013; Deary and Johnson, 2010;

Deary, 2012; Hill et al., 2016a). However, the causal relationships between intelligence, education,

and health outcomes are unclear, in part, because intelligence and education are strongly correlated.

On average, children who score more highly in intelligence tests tend to remain in school for longer,

(Deary et al., 2007) and people who remained in school for longer tend to have higher intelligence

later in life (Ritchie and Tucker-Drob, 2018). Intelligence and educational attainment are partially

heritable, and strongly genetically correlated (rg=0.70) (Lee et al., 2018; Hill et al., 2019; Hill et al.,

2016b; Hill et al., 2018). A review of the effects of educational attainment on socio-economic and

health outcomes in later life found some evidence that increases in education led to lower mortality,

especially for older cohorts (Galama et al., 2018). However, there was little consistent evidence of

effects on other outcomes such as obesity (Galama et al., 2018). A systematic review of 28 studies

provided evidence using quasi-experiential designs that each year of education causes measured IQ

to increase by on average 1 to 5 points (Ritchie and Tucker-Drob, 2018). Large prospective studies

have found that intelligence test scores taken at age 11 strongly associate with educational attain-

ment later in life, a link that is, in part, explained by shared genetic effects (Deary et al., 2007;

Calvin et al., 2012). However, there are no quasi-experimental studies of the effects of intelligence
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on education because intelligence is less subject to perturbation by natural experiments such as pol-

icy reforms. In order to design successful interventions aimed at the amelioration of health condi-

tions, it is necessary to determine the extent to which intelligence, education, or both, are causal

factors for health outcomes. If the health differences are mainly due to differences in intelligence

that are independent from education, then changes to the length of schooling are unlikely to affect

population health. If, however, educational attainment has a causal effect on health and socioeco-

nomic outcomes later in life, and these effects are independent of intelligence, the health of the

population may be able to be raised by implementing a policy change aimed at increasing the dura-

tion of education (Deary and Johnson, 2010).

Mendelian randomization is an approach that can provide evidence about the relative causal

effects of intelligence and education on social and health outcomes under specific assumptions

(Davey Smith and Ebrahim, 2003; Davies et al., 2018a). Mendelian randomization generally uses

single nucleotide polymorphisms (SNPs) that associate with traits of interest, in this case intelligence

and educational attainment, as proxy variables for a trait. At each SNP, offspring inherit at random

one of their mother’s two possible alleles and one of their father’s two possible alleles. With the

exception of somatic mutation, SNPs are invariant post-conception, so it is not possible for the envi-

ronment or developing disease to affect inherited DNA. Thus, SNPs are not affected by reverse cau-

sation, which can distort causal interpretations of observational epidemiological associations.

Segregation of alleles at germ cell formation (Mendel’s first law) and the independent assortment of

alleles with respect to the rest of the genome excepting proximal DNA segments (Mendel’s second

law), and the lack of environmentally influenced effects on survival from conception through to live

birth and study entry, leads to genetic variants being largely unrelated to factors that would con-

found conventional observational studies (Davey Smith, 2011).

Instrumental variable interpretations of Mendelian randomization analysis depend on three

assumptions, (1) the genetic variants associate with the risk factors of interest, (2) the genetic var-

iants-outcome associations are not confounded by potentially unmeasured factors, and (3) the

genetic variants only affect the outcomes via their effect on the exposures of interest (in this case

eLife digest Highly educated people tend to be healthier and have higher incomes than those

with less schooling. This might be because education helps people adopt a healthier lifestyle, as well

as qualifying them for better-paid jobs. But, on average, highly educated people also score more

highly on cognitive tests. This may explain why they tend to adopt healthier behaviours, such as

being less likely to smoke. Because education and intelligence are so closely related, it is difficult to

tease apart their roles in people’s health.

Davies et al. have now turned to genetics to explore this question, focusing on genetic variation

associated with intelligence and education levels. Analysing genetic and lifestyle data from almost

140,000 healthy middle-aged volunteers from the UK Biobank study suggested that together,

intelligence and education influence many life outcomes, but also that they have independent

effects. For instance, there is evidence that more intelligent people tend to earn more, irrespective

of their education. However, more educated people also tend to earn more, even after accounting

for their intelligence. They also tend to have lower BMIs, be less likely to smoke, and engage in less

sedentary behaviour and more frequent vigorous exercise in midlife. For each of these outcomes,

the effects of education are all in addition to the effects of intelligence.

Education and intelligence thus affect life outcomes together and independently. Overall, the

results of Davies et al. suggest that extending education, for example by increasing school-leaving

age, could make the population as a whole healthier. However, the individuals in the current study

grew up when smoking was far more common than it is today. Some of the observed effects on

health may thus be due to differences in smoking rates between groups with different levels of

education. If so, increasing education may not have as much impact today as it did in the past. It is

also possible that these findings reflect the effects of the family environment, for example how

parents influence their offspring. Larger studies are needed to investigate this hypothesis.

DOI: https://doi.org/10.7554/eLife.43990.002
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intelligence or education) (Davies et al., 2018a). One approach would be to estimate the effects of

intelligence and education separately using SNPs identified in GWAS for intelligence or education

(Hill et al., 2019; Okbay et al., 2016). However, this could be misleading, as SNPs that affect intelli-

gence are likely to also affect education and vice versa. Thus, the SNPs associated with intelligence

and education are pleiotropic – and most affect both traits. However, it is unclear whether any

effects of the SNPs on the health and socioeconomic outcomes later in life via education and intelli-

gence are vertically or horizontally pleiotropic (Davey Smith and Hemani, 2014).

Consider a Mendelian randomization study with one exposure - education. Vertically pleiotropic

effects would occur if the SNPs being used as proxies for education affect the outcomes first via

their effects on intelligence, which then has a downstream effect on educational attainment

(Figure 1a). Horizontally pleiotropic effects could occur if a SNP being used as a proxy for education

directly affected an outcome via intelligence without being mediated via education (Figure 1b). In a

Mendelian randomization analysis using education as a single exposure, this horizontal pleiotropy

would violate the third Mendelian randomization assumption. Alternatively, the SNPs being used as

proxies for education could affect intelligence, and consequently educational attainment, but all of

the effects of the SNPs on the outcome could be mediated via intelligence (Figure 1c). Pleiotropy

would have similar consequences for a Mendelian randomization study with intelligence as a single

exposure. One method which can provide evidence about which of these scenarios is most likely is

multivariable Mendelian randomization (Sanderson et al., 2018; Burgess et al., 2015). This

approach simultaneously estimates the effects of two or more risk factors using a potentially overlap-

ping set of SNPs. Multivariable Mendelian randomization estimates the direct effect of each risk fac-

tor – i.e. the direct effect of intelligence on outcomes that is not mediated via the effect of

intelligence on education, and the direct effect of education that is not mediated via the effect of

education on intelligence (Figure 2). It is important to note that multivariable Mendelian randomiza-

tion does not overcome bias due to horizontally pleiotropic effects via other mechanisms, for exam-

ple, effects via character or personality.

Here, we used a large sample from the UK Biobank and SNPs associated with intelligence and

education to estimate the direct effects of intelligence and education on a range of health and socio-

economic outcomes. Our primary analysis uses two-sample multivariable Mendelian randomization

of the effects of intelligence and education on a range of socioeconomic and health outcomes. This

approach makes most efficient use of available data. We present single sample Mendelian randomi-

zation analysis using polygenic risk scores in the UK Biobank as sensitivity analyses.

Results
The characteristics of 138,670 participants of UK Biobank who met our quality control and inclusion

criteria for our primary two-sample multivariable analysis are described in Table 1. We take esti-

mates of the SNP-intelligence and SNP-education associations from published GWAS of intelligence

and education (Hill et al. and Okbay et al.) and estimates of the SNP- outcome associations using

participants of the UK Biobank who were not included in either GWAS. The intelligence and educa-

tion GWAS used overlapping samples, but do not overlap with the sample used to estimate the

SNP-outcome associations. See Supplementary file 1 - Figure 1 for a flow chart of participants’

inclusion and exclusion into the analytic samples. The sample was 45.5% male and on average were

57.3 years old when they visited the assessment centre. The prevalence of the clinical outcomes in

this sample ranged from 1.5% for stroke to 34.6% for a broad measure of depression. Of the partici-

pants in this sample, 2.0% died by the end of linked data follow-up. A total of 45.2% of the sample

had ever smoked, and 9.2% were current smokers.

Bidirectional Mendelian randomization of intelligence and education
We investigated the direction of causation between intelligence and education using bidirectional

two-sample Mendelian randomization. We restricted analysis to SNPs that were available in the

Hill et al. (2019) intelligence genome-wide association study (GWAS), the discovery sample of

Okbay et al. (2016) educational attainment GWAS, and the UK Biobank Haplotype Reference Con-

sortium panel (HRC). We selected all SNPs that were associated with intelligence at p<5 � 10�08. Of

these SNPs, we then selected the lead SNPs within each 10,000 kb genomic region by selecting the

SNP with the lowest p-value. We then repeated this process to select all SNPs that associated with
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Figure 1. Possible explanations for associations of SNPs and intelligence, education and outcomes later in life. (A) Vertical pleiotropy: SNPs associated

with intelligence and educational attainment could be vertically pleiotropic. This could occur if all of the effect of the SNPs on the outcomes is

mediated via their effects on intelligence, the effect of intelligence on educational attainment, and the effect of educational attainment on the

outcome. Confounders omitted from this figure for clarity. (B) Horizontal pleiotropy: The SNPs could be associated with the outcome via intelligence

and educational attainment because of horizontal pleiotropy. This would occur if the SNPs had effects on the outcome via intelligence or education

that were not mediated via the other trait. (C) Confounding pleiotropy: The SNPs could be associated with the outcomes, intelligence and educational

attainment because of the effect of the SNPs on intelligence, and hence education, but that education had no direct effect on the outcome (i.e. the

effects of the SNPs were entirely mediated via intelligence. This would occur if the SNPs had effects on the outcome via intelligence or education that

were not mediated via the other trait (or vice versa). Multivariable Mendelian randomization does not overcome bias due to other pleiotropic effects by

pathways other than intelligence or education.

DOI: https://doi.org/10.7554/eLife.43990.003
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education at p<5 � 10�08, and selected lead SNPs within each region. This resulted in 270 SNPs

that were associated with either intelligence or education, or both. Some of these SNPs represented

the same signal, so we clumped a combined list of SNPs by selecting the SNP with the lowest

p-value for education. This resulted in 219 SNPs, of which 144 were associated with intelligence, but

not education at p<5 � 10�08, 38 were associated with education, but not intelligence at

p<5 � 10�08, and 37 were associated with both intelligence and education at p<5 � 10�08. All 219

SNPs associated with either trait were included in the multivariable Mendelian randomization analy-

sis for both intelligence and education (for a flow chart of selection of SNPs see Supplementary file

1 - Figure 2).

We estimated the effects of intelligence on education and vice versa using non-overlapping data

from the UK Biobank. We used two-sample summary data Mendelian randomization methods includ-

ing the inverse variance weighted (IVW), MR-Egger, weighted median and modal estimators, see

methods for details (Bowden et al., 2016a; Bowden et al., 2016a; Hartwig et al., 2017). The

inverse variance weighted (IVW) estimates implied that a one standard deviation (SD) increase in

intelligence increased years of education by 0.52 SD (95% CI: 0.48 to 0.56, p-value=2.2 � 10�145).

The IVW estimates imply that a one SD increase in education increased intelligence by 0.77 SD (95%

CI: 0.68 to 0.86, p-value=3.0 � 10�62). There was more evidence of heterogeneity in the estimated

effects of education across the SNPs (I2 = 0.60, 95% CI: 0.48 to 0.69) than in the estimated effects of

intelligence (I2 = 0.48, 95% CI: 0.38 to 0.56). The heterogeneity statistic indicates the variability of

the estimated effects between SNPs; a value of zero indicates no heterogeneity and one indicates

high heterogeneity. One explanation for this heterogeneity across SNPs is if the SNPs have horizon-

tally pleiotropic effects. The effects of each of the SNPs on intelligence and education, along with

the IVW, MR-Egger, weighted median and weighted mode estimates are presented in Figure 3 and

Supplementary file 1 - Table 1 and 2. The estimated effect of intelligence was consistent and

robust across four different estimators (IVW, MR-Egger, weighted median and weighted mode). The

estimated effect of education was robust across IVW, weighted median and weighted mode, but the

MR-Egger estimate was attenuated by over half, one explanation for this is if the education SNPs

have unbalanced horizontally pleiotropic effects on intelligence or the INSiDE assumption is violated.

There was little statistical evidence that the estimated effects of intelligence on education were

biased by horizontal pleiotropy (MR-Egger intercept = 0.001, 95% CI: �0.005 to 0.003,

Figure 2. Multivariable Mendelian randomization estimates the direct effect of intelligence and education on the outcomes. The direct effect (red

arrow) excludes any effect of either intelligence (or education) that is mediated via education (intelligence) on the outcome. It requires genetic variation

that explains a sufficient proportion of the variation in intelligence and education conditional on the other trait (Davey Smith and Hemani, 2014). It

uses a set of SNPs that associate with intelligence and/or education at p<5�10�08.

DOI: https://doi.org/10.7554/eLife.43990.004
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p-value=0.68). However, these tests for pleiotropy are likely to have low power. There was modest

evidence that the estimated effects of education on intelligence were affected by horizontal pleiot-

ropy (MR-Egger intercept = 0.009, 95% CI: 0.001 to 0.016, p-value=0.03).

Univariable Mendelian randomization
We estimated the total effect of intelligence and education on each of the social and health out-

comes using two-sample summary data Mendelian randomization (Supplementary file 1 - Figure 3).

This approach estimates the total effect of a one SD change in intelligence or education including

any effects mediated through the other (or any other, for example character) trait. The estimates of

the total effects for each outcome for intelligence and education were generally in a consistent

direction. The inverse-variance weighted estimates imply that a one standard deviation increase in

Table 1. Characteristics of 138,670 participants of the UK Biobank used to estimate the association of the SNPs and the outcomes.

The sample is more educated and healthier than the UK population. The sample was restricted to participants included in the two-

sample analysis used for our primary results.

Covariates Mean/percent Standard deviation/ count

Male 138,670 45.5% 63,111

Year of birth 138,670 1951 8.08

Age at assessment centre visit 138,670 57.3 8.08

Exposures

Intelligence* 137,396 6.20 2.10

Educational attainment 137,354 14.55 5.16

Outcomes

Hypertension 134,751 24.9% 33,494

Diabetes 137,883 4.3% 5988

Stroke 138,417 1.5% 2090

Heart attack 138,417 2.4% 3260

Depression 137,733 34.6% 47,624

Cancer 138,078 13.4% 18,482

Mortality 138,670 2.0% 2783

Ever smoker 138,044 45.2% 62,365

Smoker 138,044 9.3% 12,831

Income over £18 k 117,750 76.9% 90,537

Income over £31 k 117,750 51.0% 60,077

Income over £52 k 117,750 24.9% 29,358

Income over £100 k 117,750 5.0% 5871

Grip strength (kg)* 138,432 7.8% 11.04

Height (cm)* 138,374 168.74 9.27

BMI (kg/m2)* 138,241 27.36 4.72

Diastolic blood pressure (mmHg)* 132,955 82.31 10.16

Systolic blood pressure (mmHg)* 132,954 138.24 18.64

Alcohol consumption (one low, five high)* 138,550 3.15 1.48

Hours of television viewing per day* 133,714 2.88 1.62

Vigorous physical activity (days/week)* 131,529 1.82 1.95

Moderate physical activity (days/week)* 131,561 3.60 2.33

Notes: * Intelligence used in the single sample analysis reported in Supplementary Table 4. Both intelligence and educational attainment were normalised

mean zero, standard deviation one for these analyses.

DOI: https://doi.org/10.7554/eLife.43990.005
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Figure 3. The bidirectional effects of SD differences in years of education and intelligence in UK Biobank. The

error bars indicate 95% confidence intervals around the estimated phenotype-SNP associations. Two sample

multivariable Mendelian randomization using results from Hill et al. (2019), Okbay et al. (2016) and UK Biobank

data. These results suggest that intelligence increases length of schooling and that higher education leads to

higher intelligence. Pleiotropy robust methods, such as MR-Egger suggested little bias in the IVW estimates of the

effect of intelligence on education, but that the IVW results may substantially overestimate the effect of education

Figure 3 continued on next page
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intelligence reduced risk of: high blood pressure by 4.0 percentage point (pp) (95% CI: 0.02 to 0.06,

p-value=1.2�10�05); diabetes by 0.8pp (95% CI: 0.1 to 1.6, p-value=0.04); having had a heart attack

by 1.2pp (95% CI: 0.7 to 1.7, p-value=5.5 � 10�07); of reporting having seen a GP for nerves, anxi-

ety, tension or depression by 0.5pp (95% CI: 0.3 to 0.5, p-value=8.1�10�08). The results suggested

that a one standard deviation increase in intelligence was unlikely to have a large effect on risk of

mortality or cancer (risk difference = �0.001, 95% CI: �0.006 to 0.003, p-value=0.57, and = �0.01,

95% CI: �0.02 to 0.003, p-value=0.12). A one standard deviation reduced risk of being an ever or

current smoker by 4.9pp (95% CI: 2.8 to 6.9, p-value=4.5 � 10�06) and 3.5pp (95% CI: 2.4 to 4.7,

p-value=1.2�10�09). Intelligence also had substantial total effects on household income, increasing

the probability of reporting a household income higher than £18,000, £31,000, £52,000 and

£100,000 by 11.4pp (95% CI: 9.8 to 12.9, p-value<1.4�10�45), 13.4pp (95% CI: 11.5 to 15.3, p-val-

ue=2.1�10�44), 11.9pp (95% CI: 10.3 to 13.6, p-value=3.4�10�47), and 4.1pp (95% CI: 3.3 to 4.9,

p-value=7.7�10�24) respectively. Higher intelligence generally had beneficial total effects on all of

the continuous outcomes. A one standard deviation increase in intelligence was estimated to

increase: grip strength by 0.32 kg (95% CI: 0.03 to 0.67, p-value=0.07); height by 1.44 cm (95% CI:

0.95 to 1.94, p-value=1.4�10�08); alcohol consumption by 0.29 (95%CI: 0.23 to 0.35); days of vigor-

ous physical activity per week by 0.17 (95%CI: 0.10 to 0.24, p-value=6.7�10�06); and moderate

physical activity by 0.32 (95%CI: 0.23 to 0.40, p-value=1.1�10�13) and reduce: BMI by 0.91 kg/m2

(95% CI: 0.65 to 1.18, p-value=7.7�10�12); and systolic and diastolic blood pressure by 1.09 (95%CI:

0.65 to 1.54, p-value=1.5 � 10�06) and 1.86 (95%CI: 1.12 to 2.61, p-value=9.1�10�07) mmHg

respectively; and hours watching television per day by 0.49 (95%CI: 0.42 to 0.57,

p-value=4.3�10�20).

The effects of a one SD increase in education were very similar in direction and magnitude to

those of intelligence. An exception was that there was little evidence that education affected fre-

quency of vigorous physical activity (mean difference = 0.00 95% CI: �0.15 to 0.15, p-value=0.997).

Multivariable Mendelian randomization
Next, we estimated the direct effect of each exposure using multivariable Mendelian randomization

(Sanderson et al., 2018). The direct effect of intelligence (or, mutatis mutandis, education) is the

effect of intelligence that is not mediated via education (or intelligence). Multivariable Mendelian

randomization estimates the effects of two exposures using the two sets of (overlapping) SNPs as

instruments. We restricted the analysis to SNPs in linkage equilibrium which were identified in the

intelligence and/or education GWAS at p<5 � 10�08 clumped on r2 = 0.01 within 10,000 kb using

the 1000 genomes reference panel (Hemani et al., 2018). Some SNPs that were selected from the

intelligence and education GWAS were closely positioned in the genome and were correlated. For

these pairs of SNPs, we selected the SNP that most strongly associated with education in the

GWAS. Sensitivity analysis which clumped SNPs using their association in the intelligence GWAS is

presented in the supplementary materials; however, the results were virtually identical. The instru-

ments strongly predicted both education and intelligence in the single sample analysis (the minimum

Sanderson-Windmeijer multivariable F-statistic was 21.6) (Sanderson et al., 2018; Sanderson and

Windmeijer, 2015). Sanderson-Windmeijer F-statistics tests the strength of the SNP-exposure condi-

tional on the other exposure (intelligence or education). Because the effects of the SNPs on intelli-

gence and education are similar (but not identical), the Sanderson-Windmeijer multivariable

F-statistics are smaller than standard univariable F-statistics. The estimates of the direct effects pre-

sented in Figure 4 are less precise than the estimates of the total effects. It is not possible to test

the strength of the instruments to jointly predict both of the exposures for the two-sample analysis.

However, the Sanderson-Windmeijer tests of the strength of the instruments in the single sample

analysis is likely to provide a lower bound of their strength.

Figure 3 continued

on intelligence. Estimates adjusted for month of birth, year of birth, sex, interaction of sex and year of birth and

the first 40 principal components. For panel A, Q-stat = 368.7 (p<0.0001), I2gx=34.7%. For panel B, Q = 183.3

(p<0.0001), I2gx=12.5%.

DOI: https://doi.org/10.7554/eLife.43990.006
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The direct effects of intelligence
In the two-sample analysis the estimates of the direct effects of intelligence were attenuated com-

pared to the total effects. As seen (Figure 4 and Supplementary file 1 - Figure 3), a one SD

increase in intelligence score increased the probability of a household income above £18,000 and

Hypertension

Diabetes

Stroke

Heart attack

Depression

Cancer

Died

Ever smoked

Currently smoke

Income over £18k

Income over £31k

Income over £52k

.                            Income over £100k

Morbidity

Mortality

Health behaviours

Income

-10 0 10 20 30

Risk difference*100

Gripstrength (kg)

Height (cm)

BMI (kg/m2)

Diastolic (mmHg)

Systolic (mmHg)

Alcohol consumption (0 low to 5 high)

Hours watching television per day

Vigorous physical activity (days/week)

Moderate physical activity (days/week)

Indicator of aging

Anthropometry

Blood pressure

Health behaviours

-3 -2 -1 0 1 2 3
Mean difference
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Figure 4. The direct effects of SD changes in years of education and intelligence on later outcomes in UK Biobank. The error bars indicate 95%

confidence intervals around the estimated effects. Estimated using two sample multivariable Mendelian randomization. Higher intelligence had direct

effects on higher household income and alcohol consumption and less moderate and vigorous physical activity. Higher education had direct effects on

decreased smoking, BMI, and sedentary behaviour and increased household income and rates of vigorous physical activity. These are estimates of the

direct effects of intelligence (education) that are not mediated via education (intelligence).
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£52,000 by 5.2pp (95% CI: 1.5 to 8.9, p-value=0.007) and 4.7pp (95% CI: 0.8 to 8.6, p-value=0.02)

respectively. A SD increase in intelligence score increased alcohol consumption by 0.19 (95%CI: 0.06

to 0.32, p-value=0.005 on a five-unit Likert scale). A SD increase in intelligence score decreased rates

of vigorous and moderate physical activity by 0.34 (95%CI: 19.6 to 49.1, p-value=8.2 � 10�06) and

0.31 (95%CI: 0.12 to 0.50, p-value=1.9 � 10�03) days per week.

The direct effects of education
The direct effects of education that were attenuated compared to the total effects. A one SD

increase in education increased the probability of having higher income across the entire income dis-

tribution. The direct effects of education on household income on the risk difference scale were

between 2.0 and 6.6 times as large as the direct effects of intelligence. A SD increase in education

resulted in a 1.00 kg/m2 (95% CI: 0.06 to 1.93, p-value=0.04) decrease in BMI, which was larger than

the direct effects of intelligence. The direct effects of education on alcohol consumption were similar

to intelligence: an increase of 0.21 (95%CI: 0.01 to 0.41, p-value=0.04). Each SD increase in educa-

tion reduced television consumption by 46.7 min per day (95% CI: 33.6 to 59.8,

p-value=1.8 � 10�11) and increased vigorous physical activity by 0.31 days per week (95% CI: 0.09

to 0.54, p-value=0.007).

Sensitivity analysis
Individual-level allele score approach
We conducted a sensitivity analysis using individual-level data from the UK Biobank in the sample of

93,135 participants who took the verbal-numeric reasoning test who were not in the interim release.

We identified 16 independent SNPs that were associated with intelligence in the Sniekers et al.

(2017) GWAS, which used only the interim release of the UK Biobank. We selected SNPs associated

with education using the discovery sample of Okbay et al. (2016), which did not use UK Biobank.

This approach ensured that we had no sample overlap. We used fewer SNPs for intelligence, and

the effects of these SNPs were less precisely estimated; therefore, the SNPs explained less of the

variance in intelligence and education than in the primary two-sample analysis (Supplementary file

1 - Table 4). As a result, the standard errors for the effects of intelligence and education were

between 1.87 and 5.09 times as large as for the two-sample analysis. The effects were similar in mag-

nitude to the two-sample analysis. There was little evidence of substantial direct effects of intelli-

gence on any outcome except negative effects on moderate and vigorous physical activity. In

addition to the effects detected in the two-sample analysis, we found evidence of direct effects of

education on risk of stroke, ever and current smoking, height and moderate physical activity. Haus-

man-Durbin-Wu tests suggested substantial evidence of heterogeneity between the instrumental

variable and the ordinary least squares estimates (Hausman, 1978).

We repeated the individual level analysis with 486 independent SNPs associated with educational

attainment by Lee et al. and the Sniekers et al. intelligence score. Sniekers et al. used 55,000 sam-

ples from the UK Biobank. Therefore, these samples overlap, so may be affected by weak instrument

bias. We constructed unweighted scores which will reduce the risk of weak instrument bias which

can potentially affect weighted allele score analyses with overlapping samples (Burgess et al.,

2016). The results are in Supplementary file 1 - Table 5. The results were between 50.0% and

70.9% more precise than the single sample results using the Sniekers et al. score. They had larger

values of the Sanderson-Windmeijer F-statistics. Overall, these results were consistent in direction

with the primary analysis.

We investigated whether the genetic variants associate with age at baseline. Without adjustment

a one standard deviation increases in the Sniekers et al. and Okbay et al. scores were associated

with 0.05 (95%CI: 0.0012 to 0.098, p-value=0.044) and 0.058 (95%CI: 0.020 to 0.096 p-value=0.003)

increases in age in years at baseline. After adjustment for sex and the principal components these

differences fell to 0.041 (95%CI: �0.007 to 0.089, p-value=0.095) and. 0580 (95%CI: �0.0195 to

0.096 p-value=0.003) respectively. We found little evidence that the results were affected by includ-

ing a broader set of covariates (Supplementary file 1 - Figure 5). Finally, we used bias component

plots to investigate the relative bias in the multivariable adjusted and instrumental variable analysis

(Davies et al., 2017). This approach compares the omitted variable bias that occurs if a specific

measured covariate is omitted from the multivariable adjusted and instrumental variable regression.
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We found some evidence that the scores, particularly the education score, associated with longitude

and latitude of place of birth and distance from London (Supplementary file 1 - Figure 6 and 7).

We investigated whether the single sample results were due to dynastic effects or assortative mating

using a sample of siblings and including a family fixed effect. There was little evidence that these

results differed from the bivariate two-sample Mendelian randomization (Supplementary file 1 -

Table 7). However, the sample of siblings was relatively small, and these results may be due to lack

of power. Overall this suggests that while the there is some evidence that the scores associate with

covariates, there is little evidence from these sensitivity analyses that these violations of the Mende-

lian randomization assumptions affects our results.

Discussion
Education and intelligence are strongly phenotypically and genetically correlated and are associated

with many outcomes across the life course. However, the direction of causation underlying these

relationships is not clear, and nor is the direction of association between intelligence and education.

In this study, we used univariate and multivariable Mendelian randomization to estimate the total

and direct effects of both years of education and intelligence on health and social outcomes. We

used SNPs associated with intelligence or education, or both, at p<5 � 10�08 to estimate the total

and direct effects on a range of outcomes. The estimated total effects of intelligence indicate the

overall effects including effects of intelligence mediated via education. The estimated total effects of

education indicate the overall effects of education including the effects mediated via intelligence.

Whereas the direct effects of intelligence are those that are not mediated via education, and the

direct effects of education are those that are not mediated via intelligence. Multivariable Mendelian

randomization does not overcome bias due to other pleiotropic effects by pathways other than intel-

ligence or education. Both intelligence and educational attainment had beneficial total effects on

most outcomes (the exception being alcohol consumption). Intelligence had positive direct effects

on income and alcohol consumption, and negative direct effects on moderate and vigorous physical

activity. Education had positive direct effects on household income, BMI, alcohol consumption, and

rates of vigorous physical activity, and negative direct effects on sedentary behaviour. These esti-

mates suggest that both intelligence and education affect a range of socioeconomic and health-

related outcomes. Many of the direct effects for both traits were substantially attenuated compared

to the total effects. For example, the direct effects of intelligence on income were 54% to 89%

smaller than the total effect. The direct effects of education were 27% to 38% smaller than the total

effects.

Previous studies have demonstrated that both intelligence and education positively associate

with health and longevity (Hill et al., 2019; Batty et al., 2007; Gottfredson and Deary, 2004;

Plomin and Deary, 2015; Davey Smith et al., 1998). A systematic review of cohort studies found

people who had a one standard deviation higher childhood intelligence had 24% (95%CI: 23% to

25%) lower mortality across between 17 and 69 years of follow-up (Calvin et al., 2011). In contrast,

using molecular genetic data we found little evidence of a large effect of intelligence on mortality.

This inconsistency may be because this sample of the UK Biobank was only followed-up for an aver-

age of 7.8 years, limiting our power to detect an effect on a relatively rare outcome (<2%), or

because of selection bias. A large literature has investigated the associations of education and mor-

tality and morbidity. For example, Galama et al., 2018 reviewed studies which had used RCTs and

natural experiments to estimate the effect of education on mortality, obesity and smoking

(Galama et al., 2018). They found that estimates of the effect of educational attainment were heter-

ogenous. Our results suggest that education has a larger direct effect on ever or current smoking.

We found some evidence of a direct effect of education, but not intelligence, on BMI. The difference

between our study and the studies reviewed in Galama et al. may be that we used a continuous

rather than binary measure of adiposity. However, we still found evidence that education affected

rates of overweight (67% prevalence) and obesity (24% prevalence) using the individual participant

data analysis reported in Supplementary file 1 - Figure 4. Gathmann et al. (2015) reviewed the

effect of 18 school reforms across Europe on mortality (Gathmann et al., 2015). They estimated that

an additional year of schooling reduced male mortality over 20 and 30 years by 1.7% (95%CI: 0.2%

to 3.2%) and 3.9% (95%CI: 1.8% to 6.0%). They report weak evidence that the effects on female

mortality were smaller (0.9%, 95% CI: �1.2 to 2.9% and 1.8%, 95% CI: �0.1 to 3.6% reductions at 20
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and 30 years respectively, p-value for difference by gender = 0.27 and 0.07). Hamad et al. (2018)

systematically reviewed the literature using quasi-experimental methods to estimate the effects of

education. They included 89 studies, and found that education had small beneficial effects on mor-

tality, smoking and obesity (Hamad et al., 2018). Our results using genetic data for mortality were

imprecise as the number of deaths to date has been relatively low. Over time as the number of

deaths increase there will be more precision to investigate this hypothesis in the UK Biobank.

Researchers using univariable Mendelian randomization have found that education generally

reduces risk of a range of outcomes (Tillmann et al., 2017). Larson et al. used two-sample Mende-

lian randomization and found that higher educational attainment reduced the risk of Alzheimer’s dis-

ease. (Larsson et al., 2017) Potential explanations for these apparent protective effects of

education on later health outcomes are: that they were due to (1) vertically pleiotropic effects of

SNPs via intelligence and subsequently education (Figure 1a), (2) horizontally pleiotropic effects of

the SNPs via intelligence (Figure 1b), and (3) confounding pleiotropic effects of the SNPs where the

SNPs affect intelligence and education, but only intelligence affects the outcomes (Figure 1c). The

total effects of intelligence and education on income had a similar direction. There was evidence of

a total effect of education, but little evidence of a total effect of intelligence on many measures of

morbidity and mortality and BMI (Supplementary file 1 - Table 3). The direct effects of education

and intelligence, estimated by multivariable Mendelian randomization, were smaller than the total

effects. The direct effects of intelligence were generally smaller than the direct effects of education

(Figure 4). One explanation for this is that the SNPs have vertically pleiotropic effects via intelligence

and education on the outcomes. The non-zero direct effects of education suggest that the effects of

education estimated by univariable Mendelian randomization are unlikely to entirely be due to hori-

zontally pleiotropic (direct) effects on the outcomes via intelligence. In another study, we used multi-

variable Mendelian randomization to estimate the direct effects of intelligence and educational

attainment on Alzheimer’s disease. The relationships between intelligence and education and Alz-

heimer’s disease was largely due to an effect of intelligence (Anderson et al., 2018).

As with all analytic methods, inferences using multivariable Mendelian randomization depend on

assumptions. Specifically: (1) the SNPs associate with intelligence even after conditioning on educa-

tion and vice versa, (2) there are no confounders of the SNP-outcome associations, and (3) intelli-

gence and/or education mediate all of the effects of the SNPs on the outcome (i.e. no horizontal

pleiotropy mediated via factors other than intelligence or education). The first assumption is stron-

ger than required for univariable Mendelian randomization (Sanderson et al., 2018). In the single

sample setting, this can be tested using the Sanderson-Windmeijer test (Sanderson and Wind-

meijer, 2015). The SNPs exceed the critical values for this test for each exposure

(Supplementary file 1 - Table 4) and the results are unlikely to suffer from weak instrument bias. It

is not possible to prove the second assumption (independence) holds, because some confounders

may be unmeasured or remain unknown.

This study investigated one of the most likely horizontally pleiotropic mechanisms in a univariable

Mendelian randomization analysis of the effect of education on outcomes later in life: intelligence.

SNPs which associate with intelligence in GWAS also strongly associate with education

(Okbay et al., 2016). Indeed it would be surprising if there were SNPs that associated with intelli-

gence that did not influence education. However, are these associations due to horizontal or vertical

pleiotropy? Vertical pleiotropy would imply that the SNPs’ effects on the outcomes are via an effect

on intelligence and subsequently education. Horizontal pleiotropy would mean that the SNPs have

direct effects on the outcomes via intelligence which are not mediated via an effect on education

(Figure 2). Multivariable Mendelian randomization estimates of the direct effects of intelligence and

education on the outcomes. Thus, they allow for any horizontal or vertical pleiotropic effects via

intelligence or education. The estimated direct effects of intelligence on smoking, household

income, BMI, alcohol consumption and sedentary behaviour were substantially attenuated compared

to the total effects (Supplementary file 1 - Figure 3). This attenuation suggests that a substantial

fraction of the total effects of intelligence on the outcomes were mediated via education.

What are the policy implications of these results? Economists and policymakers have been inter-

ested in the consequences of education for outcomes later in life. The length of education has

increased in many countries around the world. If education affects later health and social outcomes,

then this may result in improvements in public health. Our results suggest that education is likely to

affect health, although these effects are smaller than indicated by a naı̈ve Mendelian randomization
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analysis that assumes the SNPs have no horizontally pleiotropic effects via intelligence. Each addi-

tional year of education (0.19 SD in UK Biobank) would result in a 2.0pp, 3.1pp, 2.4pp, 1.0pp

increase in probability of having household income above £18 k, £31 k, £52 k and £100 k respec-

tively, a 0.04 units increase in alcohol consumption (on a 1 to 5 Likert scale), 8.87 fewer minutes of

sedentary behaviour per day, and 0.06 more days vigorous activity per week.

Limitations
A potential source of bias in Mendelian randomization studies is sample overlap. If the same sample

is used to detect the SNPs used as instruments as is used in Mendelian randomization the results

can be biased towards the observed exposure-outcome association (Burgess et al., 2016). We mini-

mised the possibility of this bias by restricting our main results to two entirely non-overlapping sam-

ples (see methods and supplementary materials). We used a restricted set of SNPs for intelligence

detected without using UK Biobank data as a sensitivity analysis using individual-level data. The

results from both approaches were consistent. Pleiotropy could explain our results if the SNPs we

used as instruments directly affect the outcome through mechanisms other than intelligence and

education, e.g. personality. However, a systematic review of studies investigating the effects of non-

cognitive skills on academic and health outcomes later in childhood found evidence of modest

effects on academic outcomes, and very few estimates of their associations with health outcomes

later in life (Smithers et al., 2018). Furthermore, the published estimates were consistent with sub-

stantial small study and publication bias.

The measure of intelligence in UK Biobank is relatively crude: a 13 item verbal-numeric reasoning

test. In a multivariable adjusted phenotypic analysis, this would cause measurement error on the

exposure and attenuation of the coefficient on intelligence. However, Mendelian randomization is

implemented here as a form of instrumental variable analysis, and therefore is less likely to be

affected by measurement error on the exposures than conventional analyses (Sargan, 1958). Both

intelligence and educational attainment had similar values of the Sanderson-Windmeijer F-statistic.

The intelligence GWAS we used to identify SNPs associated with intelligence was conducted in

older adults. Intelligence is relatively stable across the life-course. For example, Deary et al. (2004)

found that scores on the Moray House Test (a mental ability test) taken at age 11 and around age 77

were correlated (r = 0.66) (Deary et al., 2004). On average, SNPs associated with intelligence in

adults had similar effects on intelligence in children (rg = 0.71) (Hill et al., 2016b). As a result our

estimates of the effects of intelligence will partially reflect the effects of adult intelligence on the out-

comes. Non-genetic quasi-experimental evidence suggests that length of schooling affects adult

intelligence (Ritchie and Tucker-Drob, 2018). If adult intelligence affects the outcomes, then the

estimated direct effect of education would be attenuated by any direct effects of education on the

outcomes mediated via adult intelligence. Thus, our estimates of the direct effects of intelligence

may be overestimates because they also include effects of adult intelligence. The effects of child-

hood intelligence could be estimated using SNPs identified in a GWAS of intelligence in children.

However, currently available GWAS of childhood intelligence are considerably smaller than those

available for adult intelligence.

Mendelian randomization studies using samples of unrelated individuals can be biased by bias

due to population stratification and difference in ancestry across variants and selection and participa-

tion bias (Haworth et al., 2019; Taylor et al., 2018). We investigated this by adjusting for additional

covariates, and bias component plots (Davies et al., 2017). These analyses suggested that while the

genetic scores for intelligence and education associate with some measures of early life experience

and place of birth, the bias induced in our estimates may be limited.

Another potential explanation for these results is dynastic effects which occur if parents’ intelli-

gence or education directly affects their offspring’s outcomes. SNPs associated with education in

GWAS also associate with parental education. Non-inherited parental alleles at these loci also associ-

ate with offspring’s outcomes via their expression in parental phenotypes (Kong et al., 2018). Fur-

thermore, substantial fractions of the GREML-SNP estimates of the heritability of education may be

due to indirect effects of parents (Young et al., 2018). Thus, our estimates of the effect of intelli-

gence and education are likely to attribute these parental effects to the offspring’s characteristics.

Similarly, parents do not mate randomly and assort on educational attainment. The associations of

non-inherited alleles of SNPs known to associate with education provide evidence about the size of

these effects. The association of offspring outcomes and the non-transmitted polygenic score for
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education was 31% and 29% of the size of the association of the transmitted scores from fathers and

mothers respectively. Similarly, the size of the association of the non-transmitted education poly-

genic score with a broad measure of health outcomes was 37% and 42% of the transmitted score for

fathers and mothers respectively. These results suggest that some of the effects we report could be

due to assortative mating, dynastic (genetic nurture) effects, which can cause bias in Mendelian ran-

domization studies (Hartwig et al., 2018). We investigated this using the siblings in UK Biobank, but

our results were underpowered. Future studies should investigate this further using within-family

studies with larger samples (Lawlor et al., 2017; DiPrete et al., 2018; Warrington et al., 2018;

Brumpton et al., 2019).

The effects we report may be specific to the time-period that the UK Biobank participants have

lived through. For example, we find evidence of effects on smoking rates, particularly in single sam-

ple analysis. However, smoking rates have declined since the 1960s, 1970s, and 1980s, when the UK

Biobank participants left school. Changes to education policies today, such as recent changes in the

United Kingdom to mandate education, or part-time training and apprenticeships up to the age of

18, may not have the same impact as we report (UK Government, 2018). The UK Biobank is more

educated than the general population, which could cause selection bias. However, we have previ-

ously shown that reweighting the sample to account for the under sampling of less educated people

did little to affect the Mendelian randomization results (Davies et al., 2018b).

We have only investigated the effect of intelligence and education on a limited number of out-

comes reported in UK Biobank. There are differences in morbidity and mortality by intelligence and

education for a wide range of disease outcomes, and the conclusions we report here, that the direct

effects of education are bigger than intelligence may not hold for other outcomes. Future studies

should apply multivariable Mendelian randomization to summary data on outcomes to investigate

this hypothesis as efficiently as possible (Inoue and Solon, 2010; Angrist and Krueger, 1995;

Pierce and Burgess, 2013). Multivariable Mendelian randomization is a flexible approach for esti-

mating and evaluating possible pleiotropic pathways. Future studies could exploit these methods to

elucidate the mechanisms that mediate the effects of intelligence and education on outcomes later

in life.

In summary, we found evidence from genetic association studies that both intelligence and edu-

cation might affect health and social outcomes later in life. The direct effects for education are larger

than for intelligence, suggesting that much of the effect of intelligence on outcomes later in life may

be mediated via the effect of intelligence on education.

Materials and methods

Sample selection and sample overlap
The UK Biobank is a cohort study that recruited 503,317 people aged between 38 and 73 years old

between 2006 and 2010 in 21 study centres across the UK. See Supplementary file 1 - Figure 1 for

an illustration of the inclusions and exclusion of samples into the study. UK Biobank received ethical

approval from the Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382).

Mendelian randomization estimates can be affected by weak instrument bias if overlapping sam-

ples are used to select SNPs associated with the exposures (intelligence and education) and the out-

comes (Burgess et al., 2016). To minimise risk of this bias we estimated the SNP-outcome

associations using a sample that excluded any participants who were included in the GWAS used to

select the SNPs. The bivariate analysis estimated the SNP-outcome associations using participants

that were not included in the intelligence GWAS reported by Hill et al. (2019) or the education

GWAS reported by Okbay et al. (2016). This excludes participants who took the verbal-numeric rea-

soning test or were in the UK Biobank interim release. Therefore, we used the remaining 124,661

participants to estimate the association between the SNPs and the outcomes of interest in the two-

sample analysis.

For the single sample analysis (more details below), we constructed weighted allele scores for

intelligence and education using the Sniekers GWAS which only included the UK Biobank interim

release and the Okbay discovery sample (Sniekers et al., 2017). These GWAS are smaller than Hill

GWAS, so detected fewer SNPs associated with intelligence at p-value<5 � 10�08. This fact means

that the analyses using these SNPs are less precise than the two-sample analysis used in the primary
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analysis. We used 77,882 participants who took the verbal-numeric reasoning test but were not

included in the interim release. However, because the single sample analysis was restricted to indi-

viduals with the verbal-numeric reasoning scores, we can test whether the intelligence and education

genetic scores sufficiently associate with intelligence and education. We used the Sanderson-Wind-

meijer F-test to test whether the polygenic scores explained sufficient variation in intelligence (edu-

cation) conditional on education (intelligence).

UK biobank sample selection
Over 9.2 million people were invited to take part. Of these, just over half a million people attended

a study clinic and consented to take part in the study. These individuals provided blood samples and

were genotyped. Full details of the genotyping are provided elsewhere (Fry et al., 2017). Of these,

we excluded individuals who were related or were not white British ethnicity as indicated by genetic

ancestry. This definition is relatively conservative, but it helps minimise the risk of bias due to popu-

lation stratification. We further restricted the sample to individuals born in England to ensure that

they experienced a similar education system. The two-sample analysis estimates the associations of

the outcomes and the SNPs identified in Hill et al. and Okbay et al. using participants who did not

take the verbal-numeric reasoning test. The single sample analysis estimates the effects of intelli-

gence and education using allele scores defined using by the Okbay et al. and Sniekers et al. SNPs

using participants who took the verbal-numeric reasoning test but were not in the UK Biobank

interim release. Therefore, there is no overlap between the samples used to estimate the SNP-expo-

sure associations and SNP-outcome associations.

Phenotype definition
We used a broad measure of depression that the participant had seen a GP for nerves, anxiety, ten-

sion, or depression (ID:2090) at either the initial assessment centre visit or any repeat assessment

centre visit, or a HES record indicating depression as a primary or secondary reason for admission

(ID: 41202, 41204 and ICD-10 = F32, F33, F34, F38, F39) (Howard et al., 2018). The only partici-

pants who had measures of arterial stiffness were those who took the verbal-numeric reasoning test,

therefore we excluded this outcome. More details of the phenotype definitions are provided else-

where (Davies et al., 2018c).

We defined educational attainment using the same algorithm as the educational attainment

GWAS (Okbay et al., 2016). Educational attainment was coded using the answer to touch-screen

questions about qualifications. We assigned participants to their highest level of education reported

at either assessment centre visit. Those with degrees were assigned to 20 years of education; NVQs,

HND or HNC qualification were assigned to 19 years of education; other professional qualifications

were assigned to 15 years; A-levels or AS levels were assigned to 13 years; GSCEs, O-levels or CSEs

were assigned 10 years of education; and none of the above were assigned to 7 years. Previous

studies have found that using self-reported age had little impact on estimates of the effect of educa-

tion (Sanderson et al., 2019). We dropped individuals who stated prefer not to say or did not have

a value for this question from the analysis. This measure of educational attainment was standardised

to mean zero and variance one.

We defined intelligence using the ‘verbal-numeric reasoning’ score from the test taken at the

baseline assessment centre visits. We replaced missing values of this test for the initial assessment

centre visit with values taken at first repeat assessment visit (N = 15,404). The participants answered

13 logic questions within two minutes. We standardised this variable to mean zero and variance one.

Covariates
All analyses included 40 principal components of genetic variation, sex, age, year and month of

birth, and an interaction of month and year of birth and sex.

Genotype quality control and selection
Full details of our genotype quality control pipeline are described elsewhere (Mitchell et al., 2017).

In brief, we excluded participants who had mismatching sex, those with non XX or XY sex chromo-

somes, extreme heterozygosity or missingness. We limited the analysis to 11,554,957 SNPs on the

HRC panel, of which we further limited to the 7,303,122 SNPs which were available in both the Hill
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and Okbay GWAS. We selected independent SNPs (r2 <0.01 within 10,000 kb) that were associated

with either intelligence or education at p<5 � 10�08. Where there was more than one SNP in a

region that associated with the trait at p<5 � 10�08 we selected the SNP with the lowest p-value.

We then took the combined list of SNPs associated with either intelligence or education and

repeated this process of clumping and selecting the SNP with the lowest p-value in the Okbay

GWAS to create a list of SNPs for both traits that were in linkage equilibrium. See

Supplementary file 1 - Figure 2 for flowchart.

Bidirectional effects of intelligence and education
We used bi-directional Mendelian randomization to investigate the direction of causation between

intelligence and education. We estimated the effect of intelligence on education using the 181 lead

SNPs from Hill et al. and data on educational attainment from participants of the UK Biobank who

did not take the verbal-numeric reasoning test and were not in the interim release (Hill et al., 2019).

These individuals were not included in the Hill et al. GWAS. We estimated the effects of education

on intelligence using the 75 SNPs reported in the Okbay et al. (2016) discovery sample and samples

with intelligence measures from UK Biobank. These samples do not overlap. We estimated the

effects using two-sample summary data Mendelian randomization. The primary analysis used inverse

variance weighted estimators. As sensitivity analyses, we used MR-Egger, weighted median, and

weighted mode estimators to investigate whether pleiotropy biased the IVW estimates

(Bowden et al., 2016a; Hartwig et al., 2017; Bowden et al., 2016b). We adjusted all the summary

estimates for month and year of birth, sex, interactions of month and year of birth and sex and 40

principal components of genetic variation. We report estimates of the instrument strength and het-

erogeneity of the instrument-exposure association and the estimated effect of each of the exposures

on the social and health outcomes across different SNPs.

Univariable analysis
We estimated the total effect of intelligence and education on each of the health and social out-

comes using univariable Mendelian randomization. We used 181 SNPs from Hill et al. (2018) and 75

SNPs from the discovery sample of Okbay et al. (2016) as instruments for intelligence and educa-

tion respectively. Our primary analysis used IVW estimators which assume no directional pleiotropy.

These estimates ignore possible pleiotropic or mediated effects via the other exposure: education

and intelligence. We estimated the effect of each of the phenotypes using methods that were robust

to other forms of pleiotropy using MR-Egger, weighted median and weighted mode estimators

(Bowden et al., 2016a; Hartwig et al., 2017; Bowden et al., 2016b). These can obtain consistent

estimates of the causal effect if the pleiotropic effects are independent of the effects on the expo-

sure, or if the majority or most frequent variants are not pleiotropic.

Multivariable Mendelian randomization analysis
We used multivariable Mendelian randomization to estimate the direct effects of intelligence and

education on each of the health and social outcomes. This method has been described in detail else-

where (Sanderson et al., 2018). In brief, this method is based on standard instrumental variable

methods which allow for multiple exposures. Each exposure must be sufficiently explained by the set

of instruments have an instrument that explains a sufficient proportion of the variation in the expo-

sure, conditional on the other exposure. In the single sample, the SNPs can be correlated with each

other (i.e. in linkage disequilibrium) and in the single or two sample case can also correlate with

more than one exposure. The strength of association of the proposed instruments and the exposure

can be tested using Sanderson-Windmeijer tests (Sanderson and Windmeijer, 2015). As described

elsewhere it is possible to use these methods with summary data from two separate samples to esti-

mate the SNP-exposure and SNP-outcome associations. The two-sample approach allows us to effi-

ciently combine information from multiple studies, not all of which have measured intelligence,

education and the outcomes (Pierce and Burgess, 2013). Hence we can integrate more data and

have more precise estimates. We estimated the multivariable effects of intelligence and education

using linear regression weighted for by one over the standard error of the SNP-outcome association.
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Sensitivity analyses
We conducted a series of sensitivity analyses to investigate how sensitive our results were to the

methods we used.

Individual level allele score approach
We investigated the sensitivity of our results by applying an individual allele score approach using

individual participant data in the UK Biobank. We constructed two allele scores for intelligence using

16 SNPs from Sniekers et al. (that only used UK Biobank interim release data), and 75 SNPs from

Okbay et al. (that did not use UK Biobank) and estimated the effect of intelligence and education

using the Stata command ivreg2. The standard errors allow for clustering by month of birth. This

method estimates the association of the allele scores and education in UK Biobank. Therefore, this

method does not assume that the SNPs have the same effects on intelligence and education in dif-

ferent samples.

Alternative clumping methods
In the primary analysis, we clumped the data by selecting and clumping SNPs using the lowest

p-value reported in Okbay et al. This may mean that the instruments for education are stronger than

the instruments for intelligence. We investigated this by selecting and clumping using the p-values

from Hill et al.

Larger education GWAS containing UKBB
Lee et al. (2018) published a large GWAS of educational attainment using data from up to 1.1 mil-

lion individuals. In principle, this could provide more power and precision for our analysis. However,

this GWAS used the entire sample from the UK Biobank, and so largely overlaps with the sample we

used to estimate the SNP-outcome association. As a result, estimates using the Lee et al. GWAS are

likely to suffer from weak instrument bias. We used 181 SNPs from Hill et al. and 486 SNPs from Lee

et al. to estimate the multivariable Mendelian randomization using the summary methods described

above. As expected, the results using the Lee et al. SNPs were more precise and attenuated towards

the observational estimates.

Investigating bias
We used covariate balance plots to investigate whether the bias from excluding a limited set of

covariates would result in more bias in the multivariable adjusted or instrumental variable analysis

(Davies et al., 2017). These tests compare the size of the associations of the exposure and the

instrument with the covariates. We cannot directly compare the exposure-covariate to instrument-

covariate association because a given size of association will result in a much larger bias in the instru-

mental variable estimator. Therefore, covariate balance tests account for the strength of the instru-

ment in effect by estimating the ratio of the instrument-covariate and instrument-exposure

associations (e.g. via a Wald estimator). This analysis results in two estimates called bias terms, an

estimate of the bias if the covariate was excluded from a linear regression analysis and the equiva-

lent bias term for if the covariate was omitted from the instrumental variable analysis. We calculate

confidence intervals around both bias terms to indicate uncertainty. We plot the two associations on

a forest plot allowing easy comparison of the bias terms. We assessed bias across a limited set of

covariates that indicate early life environment, including measures of geography, birth weight, hav-

ing been breast fed, had a mother who smoked in pregnancy, comparative body size and height

age 10, whether parents where alive, and number of siblings. We investigated whether including

these additional variables as covariates in the individual level single sample analysis affected the

results. Finally, we investigated whether the results were due to the family environment by including

a family fixed effect in the sample of siblings from the UK Biobank.

Data and code availability
The cleaned analysis dataset will be uploaded to the UK Biobank archive. Please contact access@uk-

biobank.ac.uk for further information. The analytic scripts used to clean the data and produce the

results are available on GitHub (Davies, 2019; copy archived at https://github.com/elifesciences-

publications/ukbiobank-intell-vs-ea).
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