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Abstract

Rationale Depression is characterized by an excessive attri-
bution of value to negative feedback. This imbalance in feed-
back sensitivity can be measured using the probabilistic
reversal-learning (PRL) task. This task was initially designed
for clinical research, but introduction of its rodent version
provides a new and much needed translational paradigm to
evaluate potential novel antidepressants.

Objectives In the present study, we aimed at evaluating the
effects of a compound showing clear antidepressant proper-
ties—ketamine (KET)—on the sensitivity of rats to positive
and negative feedback in the PRL paradigm.

Methods We trained healthy rats in an operant version of the
PRL task. For successful completion of the task, subjects had
to learn to ignore infrequent and misleading feedback, arising
from the probabilistic (80:20) nature of the discrimination.
Subsequently, we evaluated the effect of KET (5, 10, and
20 mg/kg) on feedback sensitivity 1, 24, and 48 h after
administration.

Results We report that acute administration of the highest
dose of KET (20 mg/kg) rapidly and persistently decreases
the proportion of lose—shift responses made by rats after re-
ceiving negative feedback.

Conclusion Present results suggest that KET decreases nega-
tive feedback sensitivity and that changes in this basic
neurocognitive function might be one of the factors responsi-
ble for its antidepressant action.

P4 Rafal Rygula
rygula@gmail.com

Institute of Pharmacology, Polish Academy of Sciences, Department
of Behavioral Neuroscience and Drug Development, Affective
Cognitive Neuroscience Laboratory, 12 Smetna Street,

31-343 Krakow, Poland

Keywords Rat - Feedback sensitivity - Probabilistic reversal
learning - Ketamine - Animal model

Introduction

In everyday life, we constantly experience events that we as-
sociate with a specific emotional value. These acquired
cognitive-affective associations help us predict the emotional
outcome of future events and as such, direct our behavior.
Depressive patients show an aberrant pattern of cognitive—
affective directed behaviors, i.e., positive events often remain
undervalued when making future responses, whereas there is
an excessive sensitivity to negative events (Eshel and Roiser
2010). This leads to a state in which pleasurable stimuli are no
longer rewarding, and in which there is a particular focus on
past negative events, as well as on potential negative out-
comes of future behavior.

This negative bias in feedback sensitivity can be measured
using a probabilistic reversal-learning (PRL) paradigm (Cools
etal. 2002). It is different from normal reversal learning in that
subjects should ignore misleading negative and positive feed-
back to maximize reward and minimize punishment. Using
this task, it has been demonstrated that depressed patients
show increased value attribution towards negative events
(Taylor Tavares et al. 2008), and that other disorders are also
associated with impaired PRL performance, including schizo-
phrenia and Parkinson’s disease (Peterson et al. 2009; Waltz
and Gold 2007). In 2010, an innovative PRL procedure for
testing feedback sensitivity in rodents was described for the
first time (Bari et al. 2010). With current classical depression-
related behavioral paradigms (e.g., tail-suspension test and
forced swim test) lacking face and ecological validity, and
the growing need for bridging the gap between preclinical
and clinical studies being recognized in projects such as
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National Institute of Mental Health Research Domain Criteria
(RDoC) initiative (Morris and Cuthbert 2012), this novel op-
erant task is a very compelling tool for preclinical tests of the
impact of drugs on cognitive—affective systems; dysfunction
of which is observed in depression (Dzirasa and Covington
2012; Pryce and Seifritz 2011).

In the recent years, the area of antidepressant research has
shifted from the stereotypical monoaminergic agents to novel
targets, including the glutamatergic system (O’Leary et al.
2015; Serafini et al. 2013; Skolnick et al. 1996; Skolnick
et al. 2009). One particularly promising strategy to alleviate
depressive-like symptoms is by targeting glutamatergic N-
methyl-D-aspartate receptor (NMDAR) signaling. The un-
competitive NMDAR antagonist ketamine (KET), which is
mostly known as an anesthetic, has shown rapid antidepres-
sant effects in humans (aan het Rot et al. 2010; Zarate et al.
2006) and animals (Garcia et al. 2008; Yilmaz et al. 2002).

KET provides a major advantage over the widely pre-
scribed monoaminergic antidepressants, such as selective se-
rotonin reuptake inhibitors (SSRIs), because it shows acute
antidepressant effects, as assessed by self-report question-
naires (for example: Beck Depression Inventory or
Montgomery—Asberg Depression Rating Scale), whereas
SSRIs require chronic treatment of 2 to 3 weeks before
reaching full effect. However, investigation of the effects of
monoaminergic antidepressants on affective processing of in-
formation showed that even when administered acutely, these
compounds modulate cognitive—affective functions in de-
pressed patients (Harmer et al. 2009), healthy volunteers
(Harmer et al. 2003), and experimental animals (Bari et al.
2010; Ineichen et al. 2012). This observation has led to a
hypothesis stating that the delay in antidepressant action of
monoaminegric drugs reflects the time necessary to adjust
ones cognitive schemes to newly experienced reality (Roiser
et al. 2012). Consequently, according to this theory, KET
should not only balance affective processing of information
but also facilitate relearning, i.e., cognitive functions, and hu-
man studies provide some evidence for the latter (Murrough
et al. 2015). Nonetheless, to our knowledge, there have been
no studies conducted to assess KET’s impact on affective
neuropsychological functions.

Therefore, in this study, we have evaluated the effects of
KET on feedback sensitivity. Due to its antidepressant profile,
we hypothesized that KET would decrease negative feedback
sensitivity (NFS).

Materials and methods
Subjects and housing

We used 32 male Sprague Dawley rats (Charles River,
Germany), weighing between 175 and 200 g upon
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arrival. We housed the rats in groups (4 animals/cage)
in a temperature (21 £ 1 °C) and humidity (40-50%)
controlled room. The rats were kept under a 12/12-h
light/dark (L/D) cycle (lights on at 07:00 h). The ani-
mals were mildly food restricted to approximately 85%
of their free-feeding weights, which was achieved by
providing 15-20 g of food per rat per day (standard
laboratory chow, Labofeed, Kcynia, Poland). Food was
restricted beginning at 1 week prior to training. Water
was freely available, with the exception of during the
test sessions. All the behavioral procedures were per-
formed during the light phase of the L/D cycle.

Apparatus

The behavioral tests were performed in eight computer-
controlled operant conditioning boxes (Med Associates, St
Albans, Vermont, USA); each box was equipped with a light,
a speaker, a liquid dispenser (set to deliver 0.1 ml of 20%
sucrose solution), and two retractable levers. The levers were
located on opposite sides of the feeder. All of the behavioral
protocols, including the data acquisition and recordings, were
programmed in Med State notation code (Med Associates).

Initial instrumental training

The animals were trained to perform the probabilistic reversal-
learning task in four stages. In the first stage, the animals were
trained to recognize and collect the reward. To this end, every
10 s, rats were presented with the reward (0.1 ml 20% sucrose
solution) for 5 s. These training sessions lasted 30 min.

In the second stage, one of the levers (left/right
counterbalanced between stages/animals) was constantly ex-
tended and every press on this lever was rewarded with 5-s
presentation of the reward (fixed ratio schedule of reinforce-
ment 1:1). The animals were trained to a criterion of 60
presses in 30 min.

After learning the lever-reward association, during stage 3,
the rats were familiarized with intertrial intervals (ITIs). In this
stage, the lever (left/right counterbalanced between stages/an-
imals) was retracted after collection of the reward and house
light was switched off for 3 s (ITI) before the next trial com-
menced. No response within 10 s from lever presentation was
marked as an omission and a criterion of less than 20% omis-
sions had to be met before progressing to the fourth stage of
the training.

The last, fourth stage of the training consisted of random
presentations of either left or right levers; each of which had to
be pressed at least 30 times in 30 min. To avoid side bias
during the PRL task, animals had to respond with similar
frequency on both levers. This was achieved by training the
rats to a criterion of less than 7.5% omissions on each lever
(i.e., less than 15% total omissions but equally distributed
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between the levers) for 3 consecutive training days. After
attaining this criterion the animals were ready to be tested in
the PRL procedure.

Training for the PRL task

The PRL procedure used in our study was a modified version
of the procedures described by Bari et al. (2010) and Dalton
et al. (2014) (see Fig. 1 for a schematic overview of the task).
A PRL training session consisted of 200 trials. Each trial
lasted for a maximum of 20 s. The start of a trial was signaled
by the house light, which remained on until the end of a trial.
Two seconds after the trial had started, both levers were pre-
sented and one of them was randomly assigned as the
“correct” lever, which delivered reward on 80% of the times
it was pressed. A press on the other—“incorrect”—lever
would result in a rewarding outcome with a probability of only
20%. No response in 10 s triggered the ITI and was counted as
an omission.

The same ITI directly followed a punishing outcome, i.c.,
no reward on 20% of the correct and 80% of the incorrect
lever presses. After every 8 consecutive correct lever presses
(regardless of the outcome), a criterion for a reversal of the
outcome probabilities was reached. Previously correct lever
now became incorrect and vice versa. This pattern was follow-
ed until the end of a session.

Fig.1 Schematic overview of the
PRL task

Choose “incorrect” lever Choose “correct” lever
h Both levers extend ﬂ

Both levers retract

The number of reversals completed was the main measure
of interest for the evaluation of the PRL training process.

This training phase was repeated daily until individual an-
imals achieved sufficient performance levels. The criteria to
be met were a minimum of 2 reversals completed during 3
consecutive training sessions, with a difference of no more
than 1 reversal completed between 2 consecutive days.
Baseline performance for all behavioral measures was calcu-
lated as the mean from these 3 criterion sessions.

PRL testing and behavioral measures of interest

The procedures in the PRL testing phase were identical to the
PRL training phase. For the PRL testing, rats were divided
into four treatment groups (see the drug treatment section) that
were matched based on the performance of individual animals
during the baseline criterion sessions.

We recorded several measures of rats’ performance in the
PRL task. Firstly, the animals’ decisions were tracked on a
trial-by-trial basis in order to monitor their sensitivity to pos-
itive and negative feedback. Rewarded outcomes followed by
a decision to stay with the lever, which delivered them (win—
stay), were counted separately for the correct and incorrect
levers and expressed as a ratio of all rewarded outcomes on
that lever. This win—stay ratio was used as a measure of sen-
sitivity to either true (correct lever) or misleading (incorrect
lever) positive feedback. By the same token, lose—shift ratio
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was calculated by dividing non-rewarded (i.e., punishing) out-
comes after which the animal decided to change the lever, by
the total number of punished trials on that lever. This lose—
shift ratio represents sensitivity to either true (incorrect lever)
or misleading (correct lever) negative feedback.

The ratio of presses on the correct lever to all responses was
also analyzed as a measure of the discriminative abilities of the
animals. The number of reversals completed during the test
was used to assess cognitive flexibility, which relies on the
ability to both suppress previously rewarded action and to
overcome learned non-reward (Nilsson et al. 2015).

Drug treatment

Acute doses of ketamine (5, 10, and 20 mg/kg; Biowet,
Pulawy, Poland) were administered to rats intraperitoneally
60 min before testing. Furthermore, 24 h and 48 h after the
KET administration, the animals were tested again to evaluate
a potential long-term effect.

KET (100 mg/ml) was freshly diluted to 5, 10, and 20 mg/
ml in saline. Injections were given at a volume of 1 ml/kg. The
animals in the control group received the same volume of
physiological saline (SAL; 0.9% NaCl).

Statistical analysis

Raw data recorded by the Med PC software was parsed by
means of a custom written R program and analyzed using
SPSS (version 21.0, SPSS Inc., Chicago, IL, USA).
Differences between experimental groups during 3 baseline
sessions were compared using either one-way ANOVAs or
the Kruskal-Wallis test, when the data were not normally
distributed (as assessed by Shapiro—Wilk normality test).
The effects of KET treatment on each measure of interest were
compared using two-way repeated measure ANOVAs with a
within-subjects factor of test (3 levels: 1, 24, and 48 h after)
and a between-subjects factor of treatment (4 levels: saline and
5, 10, and 20 mg/kg). Post hoc pairwise comparisons were
performed using Sidak’s correction for multiple comparisons.
For all analyses, the significance level was set to o = 0.05.
Homogeneity of variance was confirmed using Levene’s test
and the sphericity was also verified using Mauchly’s test. The
data are presented as the mean = SEM.

Results

In total, we trained 32 rats, of which 30 fulfilled the criteria to
proceed to the testing phase. After establishing the baseline,
rats were divided into four groups, which did not differ in their
performance levels in any of the measures of interest (lose—
shift after misleading negative feedback: H = 4185, NS; lose—
shift after true negative feedback: F (5, »5) = 1703, NS; win—
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stay after misleading positive feedback: F (5, »5) = 0.3846, NS;
win-stay after true positive feedback: F (3, »5) = 0.2485, NS;
Reversals completed: F (5, »5) = 0.4041, NS; correct lever
press ratio: F (5, 5) = 0.9209, NS). This resulted in the fol-
lowing group-sizes: n = 7 (saline control), n = 8 (5 mg/kg
KET), n = 7 (10 mg/kg KET), and n = 8 (20 mg/kg KET).
One animal from the highest dose group was discarded from
analysis, due to a high level of omissions in the 1 h post-
injection test; therefore, the final group size for 20 mg/kg
KETwasn="7.

Rats injected with the highest (20 mg/kg) dose of KET
displayed significantly (p = 0.025) lower proportion of lose—
shift behaviors following misleading negative feedback com-
pared to the control group (statistically significant main effect
of treatment (F (3 25, = 4877, p = 0.008, Fig. 2a), regardless of
the time (1, 24, or 48) after injection (non-significant treatment
x test interaction (F' (¢ s0) = 1065, NS).

Similar effects were observed following true negative feed-
back. Rats injected with the highest (20 mg/kg) dose of KET
displayed a strong trend (p = 0.061) towards a lower propor-
tion of lose—shift behaviors following true negative feedback
compared to the control group (statistically significant main
effect of treatment (/' 3 25, =3898, p = 0.021, Fig. 2b), regard-
less of the time (1, 24, or 48 h) after injection (non-significant
treatment X test interaction (/" 6 50y = 1955, NS).

We did not observe statistically significant effects of lower
doses of KET on lose—shift behaviors neither following mis-
leading nor true negative feedback (Figs. 2a, b, respectively).

None of the three tested doses of KET affected positive
feedback sensitivity of experimental animals (Figs. 3a, b).
Analysis of win—stay behaviors revealed no statistically sig-
nificant main effects of treatment neither following misleading
(F 325 = 0.249, NS, Fig. 3a) nor true positive feedback (F
3,25 = 0626, NS, Flg 3b)

None of the three tested doses of KET affected cognitive
flexibility of experimental animals. Repeated measures two-
way ANOVA revealed no statistically significant differences
between experimental groups in the numbers of reversals
completed (non-significant main effect of treatment: F
325 = 0.088, NS, Fig. 4a) neither 1 nor 24 or 48 h after
KET injection (non-significant treatment x test interaction: £’
6,50) = 06676, NS, Flg 4a)

KET also did not affect the proportion of correct lever
presses (non-significant main effect of treatment: F
G.2s) = 1537, NS, Fig. 4b) regardless of the time (1, 24, or
48 h) after injection (non-significant treatment x test interac-
tion (F (¢,50)= 1667, NS, Fig. 4b).

Additionally, KET had no statistically significant effects on
motivation of the experimental animals to perform the test, as
measured by the mean latency to respond to either correct or
incorrect lever (non-significant main effect of treatment for the
correct lever: I (3 55) = 1710, NS; non-significant main effect
of treatment for the incorrect lever: F' (3 55y = 0.6770, NS) in
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Fig.2 Effects of KET on negative feedback sensitivity. Effects of 3 doses
of KET (5, 10, and 20 mg/kg i.p.) on the proportion of lose—shift
responses following a misleading and b true negative feedback in rats
tested 1, 24, and 48 h after drug administration. Asterisk indicates
significant main effect of treatment (F 3,5y = 4877, p = 0.008) and
significant (p = 0.025) differences between groups treated with 20 mg/
kg KET and physiological saline that were observed regardless of the time
of testing (non-significant treatment x test interaction (F' ( s0) = 1065,
NS)). Data are presented as mean + SEM

any of the tested time points (1, 24, or 48 h) (non-significant
treatment x test interaction for the correct lever: F
6.50) = 1219, NS; non-significant treatment x test interaction
for the incorrect lever: F (5 50, = 1520, NS).

Moreover, KET did not have a statistically significant sed-
ative effect on tested rats, as there were no differences between
the experimental groups in the number of omitted trials (non-
significant main effect of treatment: F 3 55, = 1668, NS) nei-
ther 1 nor 24 or 48 h after drug administration (non-significant
treatment X test interaction: (F (6 50y = 0.8604, NS).

Lastly, a close inspection of the feedback sensitivity data of
control animals during the experimental sessions showed that
the pattern of both lose—shift and win—stay responses follow-
ing true and misleading feedback was similar to the one ob-
served in other rat studies, that utilized the instrumental PRL
paradigm (e.g. Dalton et al. 2016). Specifically, the proportion
of lose—shift responses following true feedback was always
higher than after misleading feedback (lose—shift after true
negative feedback: 0.71 £ 0.04, 0.78 £+ 0.05, 0.67 + 0.04 vs
lose—shift after misleading negative feedback: 0.67 + 0.06,
0.72 £ 0.05, 0.58 = 0.07 1, 24, and 48 h, respectively).
Similarly, the proportion of win—stay responses following true

>

Sensitivity to misleading

E positive feedback
® 8
23 1.0
[o 3N 4)
2o
82 o8
>0
a8 06
c?
ST 04
cQ
c .2
SE 02
s g
o 00 .
o % 1 h after 24 hafter 48 h after
B Sensitivity to true
positive feedback
B x
o Q 1.0
c ®
o
23
g Q@ 0.84 H rH . -
> 0
T .=
al =2 0.6
£38
<o 04 ] Saline
= D
6 E
£2 o, [ 5mg/kg
-g S - 3 10 mg/kg
o
g3 00 B 20 mg/kg
o

Thafter  24hafter 48 h after

Fig. 3 Effects of KET on positive feedback sensitivity. Effects of 3 doses
of KET (5, 10, and 20 mg/kg i.p.) on the proportion of win—stay responses
following a misleading and b true positive feedback in rats tested 1, 24,
and 48 h after drug administration. Data are presented as mean + SEM

feedback was higher than after misleading positive feedback
(win—stay after true positive feedback: 0.79 + 0.03,
0.78 £0.02, 0.76 + 0.04 vs win—stay after misleading positive
feedback: 0.66 +0.08, 0.64 +0.08,0.71 £0.03 1,24, and 48 h,
respectively).

Discussion

The aim of the present study was to investigate the effects of a
non-monoaminergic antidepressant ketamine on feedback
sensitivity in rats. We have demonstrated, for the first time,
that acute KET treatment significantly diminishes negative
feedback sensitivity (NFS) in rats—a cognitive-affective func-
tion altered both in depressed individuals (Murphy et al. 2003;
Taylor Tavares et al. 2008) and their close relatives (Luking
et al. 2016). Similar results were previously obtained with the
acute use of an SSRI antidepressant (escitalopram) both in
healthy rats (Bari et al. 2010) and mice (Ineichen et al.
2012). The present study further supports the predictive valid-
ity of the rodent PRL task, by showing that the test is sensitive
to pharmacological manipulation of NFS regardless of the
neurotransmitter system targetted by the drug. In the next par-
agraphs, we discuss the possible neural mechanisms involved
in the observed behavioral changes induced by KET.

@ Springer
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Fig. 4 Effects of KET on cognitive flexibility and the discriminative
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flexibility, and b proportion of correct lever presses, which was used to
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The reduction of sensitivity to non-reward observed in our
study suggests that KET triggered changes in a neural mech-
anism of non-reward detection. A recent non-reward attractor
theory of depression proposed by Rolls (2016) posits that
neurons of the lateral orbitofrontal cortex (IOFC) engage in
sustained activation after detecting non-reward. The activity
of these neurons is either more easily triggered or much stron-
ger in depressed individuals and thus directly leads to
overestimating insignificant setbacks (Rolls 2016). Indeed,
the work of Quirk et al. (2009) suggests that the neurons in
question are the GABA-containing interneurons of 10FC,
which are selectively blocked by KET. This observation is in
line with one of the possible mechanisms of KET’s rapid
antidepressant properties, which is the disinhibition of pyra-
midal neurons in the PFC (Abdallah et al. 2016). Since IOFC
has recently been validated as a region responsible for feed-
back sensitivity in rats (Dalton et al. 2016), it is plausible that
KET-induced reduction of NFS observed in the present exper-
iment was mediated by a glutamate surge in the non-reward-
detection network, which would be sufficient to destabilize its
function (Rolls 2016).

Roll’s theory of neural basis of depression further states
that the symptoms of anhedonia could be explained by the
inhibitory action of IOFC network on reward-detection neu-
rons of the medial OFC (mOFC) (Rolls 2016). Therefore, one
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would expect an effect of KET on positive feedback sensitiv-
ity in the present study. Although the mOFC is responsible for
feedback sensitivity in rats (Dalton et al. 2016), we did not
observe any changes in animals’ reactions to either true or
misleading positive feedback after KET. One reason for this
might be that rats are highly motivated to obtain reward, due
to its high palatability. Animals decide to stay with the recent-
ly rewarded option at above chance levels (65-80% of the
time), regardless of the current overall reinforcing value of
the lever (correct vs incorrect). Because rats exhibit a natural
propensity to explore alternative food resources and will never
show close to 100% win—stay ratios (which humans do), there
might be a “ceiling effect” of reward in the task. However,
KET could still be able to reverse stress-induced anhedonia/
decrease in positive feedback sensitivity in rats—a possibility
worth pursuing in the future studies.

Furthermore, Belujon and Grace (2014) postulated that the
antidepressant effects of KET could be caused by the dopami-
nergic system. The data obtained in the abovementioned study
shows that in healthy rats, KET causes both increased firing
rates and bursting activity of the VTA neurons, as well as
activates D1 receptors in the nucleus accumbens shell.
Nucleus accumbens shell selectively mediates positive feed-
back sensitivity (Dalton et al. 2014), which was not affected
by KET in our experiment, possibly due to the
abovementioned limitations. According to the dopamine pre-
diction error hypothesis, the absence of an expected reward
results in a phasic depression of firing of dopamine-releasing
neurons of the VTA (Glimcher 2011; Schultz et al. 1997).
Thus, KET could have attenuated the salience of unexpected
negative feedback by increasing the firing rates of the VTA
(Belujon and Grace 2014) and—subsequently—occluding the
phasic “dips”, which signal non-reward.

This additional mechanism could converge with the primary
glutamate-driven action of KET during the initial testing ses-
sion, while the compound was still “on board.” The long-
lasting antidepressant effects of KET (although controversial,
see Popik et al. (2008)) are thought to arise via homeostatic
plasticity changes in the PFC, mediated by activation of
synaptogenic intra- and extracellular signaling, including
mTORC1 and BDNF pathways (Jernigan et al. 2011; Yang
etal. 2013). The release of BDNF is essential for antidepressant
effects of KET and remodeling of the PFC networks is com-
promised in rodent models of depression (Bjorkholm and
Monteggia 2016). Therefore, involvement of BDNF in the
long-term KET-induced NFS reduction could be tested in the
future, for instance by blocking BDNF function in the 10FC.
Moreover, additional tests of the possible long-lasting effects of
acute monoaminergic antidepressant application on NFS in ro-
dents should be performed, since we do not know if KET shares
its profile of action with other antidepressants in this regard.
Such experiments would definitely shed some more light on the
predictive and face validities of the PRL task.
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Recent reports have demonstrated that apart from affecting
glutamatergic neurotransmission via NMDARs, KET also po-
tentiates serotonin release in the PFC by amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor (AMPAR) stimu-
lation in the raphe nucleus (Nishitani et al. 2014). In their
seminal study, Bari et al. (2010) showed that acute treatment
with a high dose of a potent SSRI-citalopram 30 min before a
PRL session decreases NFS, while a low dose of the drug has
an opposing effect (Bari et al. 2010). Thus, one could hypoth-
esize that serotonergic neurotransmission participated in the
results reported herein, especially due to the fact that a high
dose of KET administered 60 min before the test had a similar
effect to that of a high dose of citalopram (i.e., a decrease in
proportion of lose—shift responses following misleading feed-
back to about 0.40 after acute treatment with both drugs).
However, based on the data of Nishitani et al. (2014), the
involvement of the abovementioned 5-HT mechanism in
KET’s action in the present study could be questioned by the
fact that the 5-HT upregulation in the PFC covers the span of
50 min from KET administration (Nishitani et al. 2014), and
testing in our study took place after this time had elapsed.
Future studies are necessary to elucidate this issue.

The outstanding question is why changes in neurotransmis-
sion of brain networks involved in non-reward detection would
affect only sensitivity to misleading negative feedback. Our
data suggests that the active dose of KET did actually blunt
non-reward detection in general. The fact that the drop in true
NFS was not low enough to reach significance shows that rats
were still able to learn from prevalent negative feedback.
Furthermore, neither the discriminative abilities of the animals
nor the ability to change behavior after reversals was affected
by KET. The latter result replicates previous findings
(Gastambide et al. 2013; Kos et al. 2011; Nikiforuk et al.
2010), which showed no effect of KET on reversal learning.
It is interesting to note that the same treatment in the
abovementioned studies had a debilitating effect on set-
shifting—another function contributing to cognitive flexibility.

The results of the present study support the predictive va-
lidity of the rat PRL task. We have shown that a compound
capable of ameliorating symptoms of depression selectively
downregulates sensitivity to negative outcomes in rodents.
This is a promising result since pathologically elevated nega-
tive feedback sensitivity is a hallmark of depression.
Moreover, the results of the present experiment are compara-
ble with the only known PRL antidepressant study conducted
on rats, with the use of an SSRI drug—citalopram (Bari et al.,
2010). Therefore, changes in a basic neurocognitive function
of feedback sensitivity could participate in KET’s psycholog-
ical antidepressant effects; however, its rapid action in humans
is possibly driven by the impact of the drug on some other
mechanism.

In conclusion, the pleiotropic effects of KET administration
modulate complex neuropsychological processes, which can

be measured in the PRL task. The key difference between the
PRL and other cognitive tasks is that PRL includes an affec-
tive and probabilistic decision-making component. This im-
plies that the operant PRL paradigm can grasp the interplay of
affect and cognition, which is dysfunctional in psychiatric
disorders.

The promise of tapping into subtle cognitive processes and
their pharmacological manipulation in animals can only be
met by utilizing advanced behavioral paradigms such as the
PRL task. Future studies should assess the translational con-
struct validity of the task by testing various rodent depression
models, which will hopefully lead to the development of a
new addition to a battery of tests aimed at antidepressant
screening.
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