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Abstract: Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-
dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic
issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is
up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Sev-
eral molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been
proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction,
Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and
necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have
been widely studied both in cell, animal, and human models which proves that flavonoids alleviate
cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective
activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against
doxorubicin, both in in vitro and in vivo models.

Keywords: doxorubicin; cardiotoxicity; cardioprotective; flavonoid

1. Introduction

Doxorubicin is a part of the anthracycline group of chemotherapy, one of the most
widely used and efficacious methods for treating hematological malignancies, solid tumors,
and lymphoma [1]. The essential mechanism of doxorubicin involves generating oxidator
and inhibiting topoisomerase II in cancer cells, although, on the other hand, it is toxic to
several organs, including the heart [2]. Therefore, a severe dose-dependent cardiotoxicity
hampers its therapeutic value. Based on the administration duration of doxorubicin, its
cardiotoxicity is divided into acute and chronic toxicity, with acute toxicity occurring
during the early administration of doxorubicin (within 2–3 days), in approximately 11%
of incidences. Clinical manifestations of acute toxicity are hypotension, tachycardia and
various arrhythmias, pericarditis, or myocarditis, but these are reversible with appropriate
treatment [3,4]. Chronic toxicity occurs after 30 days of the administration of doxorubicin,
but the percentage of toxicity is lesser than acute toxicity—about 1.7%. This can lead to left
ventricular dysfunction that irreversibly evolves toward congestive heart failure [5].

Cardiotoxicity due to doxorubicin depends on the dose administration: normally a
dose below 400 mg/m2 is less toxic. If the dose exceeds more than 400 mg/m2, it will
increase the likelihood of toxicity occurrence [6]. In addition, medical history and age
also influence the risk of cardiotoxicity. A history of diabetic or cardiovascular disease
such as hypertension, hyperlipidemia, or atherosclerosis develops these complications [7].
Moreover, age >65 and >4 years old are the most vulnerable [8]. Tobacco use, poor nutrition,
or being physically inactive also have a part in developing the risk of cardiotoxicity [9].

Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotox-
icity have been proposed, including oxidative stress [10], topoisomerase II inhibition [11],
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mitochondrial dysfunction [12], Ca2+ homeostasis dysregulation [13], intracellular iron
accumulation [14], ensuing cell death (apoptosis and necrosis) [15], autophagy [16], and
myofibrillar disarray and loss [17].

Nowadays, preventive strategies have been delivered to reduce and prevent car-
diotoxicity development. These are limited doxorubicin dose [18], liposomal formulation
doxorubicin [19], and the co-administration of dexrazoxane with one of the cardioprotective
FDA-approved drugs for preventing doxorubicin-induced cardiotoxicity. Up-to-date mech-
anisms of dexrazoxane are iron chelator, diminishing oxidative stress, and directly compet-
ing with topoisomerase II in the nucleus [20]. The early detection of cardiac biomarkers
will be beneficial for patients. Cardiac biomarkers use for analysis such as cardiac troponin
T (cTnT), brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP), and c-reactive
protein (CRP) which are known increase in cardiotoxic patients [21].

Natural products have traditionally been used by humans for food consumption,
nutrition, and preventive measures and treatments for several diseases [22]. Flavonoid
derived-plants mainly explored and investigated for cardioprotective measures against
doxorubicin-induced cardiotoxicity [23]. Flavonoids are divided into the following classes:
flavones, flavonols, flavanones, flavanonols, flavanols or catechins, anthocyanins, and
chalcones. Each subclass of flavonids has been widely tested on in vitro and in vivo models
of cardiotoxicity-induced doxorubicin [24]. Flavonoid has pharmacological effects such as
antioxidant, anti-inflammatory, anti-apoptosis, anti-calcium overload, and iron scavenging
properties [25]. The flavonoid divided into subclasses quercetin, rutin, apigenin, and
luteolin have been researched the most in in vivo and in vitro models against doxorubicin.
Particularly, the mechanism of protective activity is clear and well known; subsequently,
increases in the expression of nrf-2, SOD, GSH, and HO-1 inhibit the expression of pro-
apoptosis protein cytochrome c, Bax, caspase 3, caspase 7, caspase 9, and inhibit the
expression of pro-inflammatory protein TNF, IL-1, IL-6, and Nf-kB [26–30]. Therefore,
this comprehensive review provides a summary of the cardioprotective mechanism of
flavonoids against cardiotoxicity induced by doxorubicin.

2. Doxorubicin Mechanism of Toxicity
2.1. Doxorubicin Generates Reactive Oxygen Species (ROS)

Doxorubicin is a well-known potent generator of ROS both in cytosolic and mitochon-
dria [31]. The metabolite of doxorubicin is doxorubicin-semiquinone, which rapidly oxidizes
oxygen (O2) converted into superoxide anion radical (O2

−). Unfortunately, this O2
− is highly

reactive with NO, which can produce peroxynitrite (ONOO−). The accumulation of ROS is
normally cleared by endogenous antioxidants such as SOD, or exogenous antioxidants such
as flavonoids that produce H2O2; however, the existence of iron (Fe2+) can directly convert
H2O2 into hydroxyl radical (OH), which is a known Fenton reaction [32–35]. Moreover, in
the case of high cumulative doses of doxorubicin, ROS production is also extremely high,
which might cause the degradation of lipids in the membrane, decrease the ATP, induce the
opening of MPTP, and sensitize the ryanodine receptor that induces the excessive release of
calcium into the cytosol. All these ROS effects lead to the apoptosis of cardiomyocytes [36–38].
The supplementation of antioxidants will beneficially reduce the ROS overproduction of dox-
orubicin. Most of the reviewed research confirmed that flavonoids reduce the production of
ROS, both in in vivo and in vitro models, but the mechanism remains unclear and needs to be
elucidated [39]

2.2. Mitochondria Injury

Mitochondria is the source of energy for cardiomyocytes, uniquely, with mitochondria
levels 60% higher in cardiomyocytes than in the rest of the body’s cells [40]. Hence, the volume
of cardiomyocytes consists of 30–40% mitochondria [41]. As mentioned earlier, ROS production
in the mitochondria is assumed to be the cause of mitochondria injury [42–44]. Doxorubicin
has a strong binding affinity to cardiolipin in the inner membrane of mitochondria, that may
directly cause the disturbance of the electron transport chain (ETC), which cause increased
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the ROS dan RNS [45–47]. Hence, the pro-oxidant causes opening pore mitochondria resulted
release of cytochrome c that initiates apoptosis by activating caspase 3. Furthermore, this
mechanism also causes mitochondria swelling, which leads to necrosis and rupture of the
outer membrane of mitochondria. Both apoptosis and necrosis primarily cause the death of
cardiomyocytes mostly mediated by ROS [48–50].

2.3. Topoisomerase 2β (TOP2β)

The main mechanism of doxorubicin as an anticancer agent is the binding to topoi-
somerase in the nucleus of cancer cells [51–53]. Topoisomerase has two isoforms which
include 2α (TOP2α), and 2β (TOP2β) topoisomerase. In the tumor cell, doxorubicin binds
into TOP2α, resulting in DNA degradation and cell death. Unfortunately, the toxicity of
doxorubicin also binds to TOP2β, which is dominantly expressed in the adult cardiomy-
ocytes [51]. These complex doxorubicin-DNA-TOP2β cause double-strand DNA breakage,
which causes apoptosis [54–56]. Interestingly, doxorubicin seems more susceptible to
binding to TOP2β in cancer patients. The accumulation of doxorubicin in cancer patients
increases the doxorubicin-induced cardiotoxicity. Primarily, the maintenance of doxoru-
bicin dosage in patients is the most important measure in preventing cardiotoxicity. In
relation to the nucleus stress due to doxorubicin, the translocation of erythroid-2-related
factor (Nrf2) to the nucleus will be provided by the Keap1-Nrf2 complex, which produces
OH-1 as a protector [57–59]. Meanwhile, the stress condition activates c-Jun N-terminal
kinases (JNKs) and p38-MAPKs by cellular oxidative stress, that also correlate with cardiac
pathophysiology and apoptotic cell death [60–62].

2.4. Calcium Homeostasis Dysregulation

Regulating the level of Ca2+ levels in the cell are essential for maintaining calcium home-
ostasis. However, doxorubicin increases the level of intracellular Ca2+ [63,64], and it downregu-
lates the expression level of SERCA2a, leading to a decrease in Ca2+ uptake [65–67]. SERCA2a
plays a vital role in restoring the excessive amount of Ca2+ in the cytosol, the uncontrolled
level of Ca2+ in cells causes the impairment of contractile cardiac muscles [68]. Furthermore,
doxorubicin also inhibits the Na+/Ca2+ exchanger [69], and the increase in doxorubicin levels
also causes an increase in the expression of the ryanodine receptor channels, which leads to
the massive release of Ca2+ [70,71]. Interestingly, SERCA is inhibited by the ROS-mediated
S-oxidation of the conserved Cys 674 along with increasing RyR2 [72]. The mitochondria
absorb a large portion of the released calcium, and the receptor is known to be sensitive to
oxidation due to presence of many thiols [73]. Overloading the mitochondria with calcium can
result in mitochondrial malfunction and the induction of a cascade of pro-apoptotic events [74].
Furthermore, doxorubicin causes Ca2+-dependent Ca2+/calmodulin-dependent protein kinase
II (CaMKII) activation as the result of promoting apoptosis [75].

2.5. Cardiac Biomarkers Injury

Early detection of cardiac injury is beneficial to the patient in preventing the incidence
of cardiotoxicity by doxorubicin. Many cardiac biomarkers have been used to predict a
cardiotoxic event, one of which includes AST as the first biomarker to assess the cardiac
injury. However, the limitation of this is that the release of AST occurs not only in the
cardiac cell, but also in liver injury [76–78]. Moreover, LDH has been used as a biomarker
for cardiac enzymes in the past; usually, the increase in the level of LDH is detected after
24–72 h of cardiac injuries [79]. Meanwhile, in terms of acute myocardial injury, CK-MB
is more sensitive compared to LDH, and it is becoming an essential cardiac biomarker of
injury [80]. CK-MB levels are higher in cardiac muscle rather than in skeletal muscle, which
is primarily made up of CK-MM [81]. Presently, AST, LDH, and CK-MB are no longer
recommended as early detectors of cardiac injury, but Troponin is used as an early detector
(gold standard) instead [82]. Furthermore, Troponin is divided into three isoforms, namely
the troponin T complex of the actin filament, the troponin c complex of Ca binding, and
the troponin I complex of the myosin head [83–85]. BNP is an essential marker in heart
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failure, which is produced by the left ventricle when there is a myocardial stretch. The early
detection of BNP is vital to prevent and assess future treatment [86–88]. The chronic cardiac
toxicity of doxorubicin causes heart failure and particularly reduces fraction ejection. BNP
affects increases in vasodilation, diuresis, and natriuresis. As a result, the American Heart
Association recommends BNP and NT-proBNP as a biomarkers of heart failure [89,90].
C-reactive proteins (CRP), which are recognized as inflammatory markers, are potentially
used to predict the adverse incidence of cardiac injury [91]. In many studies, both in vivo
and vitro models of flavonoid-attenuated doxorubicin-cardiotoxicity have used AST, LDH,
CK-MB, Troponin, BNP, and CRP as markers to predict the potency of flavonoids (quercetin,
rutin luteolin, and apigenin) and emphasize the injury caused by doxorubicin. It has been
acknowledged that these biomarkers are continuously used for the analysis of cardiac
toxicity, but a more relevant study is needed to conclude on the biomarker that should be
used to predict toxicity. Figure 1 shows the mechanism of doxorubicin increasing ROS,
mitochondrial dysfunction, ER stress, DNA break, apoptosis, and cardiac markers.

1 

 

 

 

 

Figure 1. Doxorubicin mechanism of cardiotoxicity is doxorubicin converted into doxorubicin-
semiquinone by transferring an electron from NADPH, while it changes into NADP+ continuously.
However, an electron is transferred from O2 to doxorubicin-semiquinone, thereby creating O2

−

(superoxide radical) neutralized by SOD into H2O2 which can be converted into H2O + O2. In cardiac
toxicity events, the SOD and CAT leaves are down; hence, H2O2 is converted into OH− and *OOH
(hydroperoxyl radical) by the Fenton reaction. The superoxide radical is highly active, such that
it directly damages the cell membrane, specifically the mitochondria membrane, which causes the
increase in lipid peroxidation, and the membrane permeability of mitochondria also causes ATP loss.
On the other hand, the superoxide radical also triggers the stimulation of protein P38 and JNK which
activates protein p53 and increases caspase 3 activity. Furthermore, cytochrome c was released and
activated the Bax (pro-apoptosis protein) which stimulates the activation of caspase 3 activity which
increases apoptosis events. The Dox mechanism of action binding into topoisomerase 2β breaks the
DNA that causes apoptosis of the cell. Additionally, ROS directly damages the reticulum sarcoplasm
that causes the elevation of Ca2+ into the cytosol and increases the contractile, thereby causing
contractile impairment. The accumulation of apoptosis in cardiac cells and contractile impairment
leads to cardiomyopathy and the release of cardiac biomarkers such as Troponin T, CK-MB, LDH,
BNP, NT-pro-BNP, ANP, and CRP.
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3. Flavonoid

Flavonoids are an essential group of a natural compounds, generally discovered in
many plants [92]. Particularly, their pharmacological activities have been tested inten-
sively in animal models, cell models, and human trials [93–95]. Some of them found the
inhibition of Nf-KB [96], scavenging radicals [97], antiplatelets [98], anti-thrombotic [99],
angiotensin-converting enzyme inhibitors [100], anti-carcinogenic [101,102], anti-calcium
overload +, lipoxygenase inhibitors [103], etc. Flavonoids are categorized into some sub-
classes depending on the C ring and B ring, as well as unsaturation and the oxidation of
the C ring. These are flavonols (quercetin, rutin, myristine, morin, kaempferol), flavones
(apigenin, luteolin), anthocyanin (cyanidin, malvidin), flavanones (hesperetin, naringin,
naringenin) and isoflavonoids (genistin, genistein) [104]. The flavonoid structures are
shown in Figure 2.
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3.1. Luteolin

Luteolin (3,4,5,7-tetrahydroxy flavone) is discovered in many natural resources, such as
vegetables and fruits that are used daily in human life [105]. Furthermore, it has been tested
in many pharmacological activities, including anticancer, antidiabetic, anti cholesterol, and
cardioprotective measures against doxorubicin [106,107]. Moreover, it is known to inhibit
the carbonyl reductase 3 for the conversion of doxorubicin into doxorubicinol [108,109].
In Chinese traditional medicine, plants rich in luteolin are used to treat inflammation,
hypertension, and to increase the luteolin plays a vital role as an anticancer agent in
multiple mechanisms, such as the suppression of kinase, the regulation of cells, and
apoptosis. It has shown many positive effects regarding the multiple cardioprotective effects
against ischemia/reperfusion, heart failure, and atherosclerosis [110–112]. The luteolin
experimental study was conducted in both in vitro and in vivo models against doxorubicin-
induced cardiotoxicity. Moreover, a study conducted by [113] reported that rats which
were administered a cumulative dose of doxorubicin at 16 mg/kg, as well as luteolin of
50 and 100 mg/kg, for the luteolin groups, showed that both doses of 50 and 100 mg/kg
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attenuated the toxicity of doxorubicin. The cardiac biomarkers such as troponin T, BNP,
and LDH in doxorubicin in the co-treatment luteolin group were significantly reduced.
Meanwhile, in the other groups, only the rats which were administered doxorubicin
significantly increased. Furthermore, luteolin increases the expression of phlpp1 and p-Akt
protein. phlpp1 has been known to regulate the AKT protein to increase cell survival,
which minimizes the apoptosis caused by doxorubicin. Interestingly, a similar result also
reported that in the pretreatment of luteolin 10 and 20 µM on H9c2 induced by DOX, the
10 µM showed a depletion of ROS production. On the other hand, the H9c2 cell that was
only given DOX significantly increased the ROS level, while the pretreatment of luteolin
increased the expression of PTEN, and decreased ERK, AKT, and mTOR [114]. Recently,
many studies have reported that mitochondria are the main target of DOX toxicity and
have led to the opening of the mitochondrial permeability transition pore (mPTP) [115].
The PI3K/Akt and ERK play an essential role in cell proliferation, apoptosis, and migration
of the cells [116]. Another study implied that DOX activated several downstream pathways,
including PI3K/Akt, while the main role of luteolin is to block the phosphorylation of PI3K,
which causes the decrease in ERK, AKT, and mTOR [117]. In an in vivo study, CK-MB, LDH,
and some specific cardiac biomarkers including BNP, Troponin T, and CRP were used to
assess cardiotoxicity rate [118]. An agreement study by Syahputra showed that rats induced
by doxorubicin significantly increased their BNP and Troponin T levels [119]. In some
studies, the antioxidant was widely determined by the abundance of ROS production. SOD
plays the main role in the neutralization of O-, which is radically active in H2O2, and which
is less toxic [120]. The previous study stated that doxorubicin reduced the SOD levels while
pretreatment of luteolin increased the SOD levels [117]. Luteolin- 7-O-β-D-glucopyranoside
isolated from Dracocephalum tanguticum can reduce the production of CK and LDH and
inhibit the increase in ROS expression on H9c2-treated Dox [121]. Interestingly, luteolin
has anti-calcium overload qualities, whereby Ca2+ plays an essential role in the contraction
and relaxation of the cardiac muscle; therefore, it is important to maintain the level of
Ca2+ level, since its imbalance could lead to the loss of cardiac function. SERCA2a plays
an important role in maintaining the reuptake of this Ca2+. This luteolin significantly
increased the SERCA2a expression in rats with an injured myocardium, which prevented
contractile impairment [122]. Therefore, this study conducted proper documentation of
the contribution of luteolin against doxorubicin-induced cardiotoxicity. Table 1 completely
shows the study design and the doses administered for both luteolin and doxorubicin, and
the durations and parameters.

3.2. Quercetin

Quercetin is a flavonol group that is generally found in many plants, such as berries,
onions, green hot paper, apples, pears, spinach, etc. [123]. Furthermore, its daily intake in
humans is estimated to be 20–50 mg [124]. This promising natural compound has been
widely tested for numerous pharmacological activities, including anticancer, antidiabetic,
anti-analgesic, and anti-inflammatory properties, and as a cardioprotective it encounters
multiple causes such as doxorubicin-induced cardiotoxicity, ischemia/reperfusion injury,
and diabetic cardiomyopathy [125,126]. Quercetin acts on several upstream and down-
stream signaling pathways of the cells such as cardiomyocytes, which are beneficial for
cell survival. Quercetin, which downregulates the protein of ERK and MAP kinase on
cardiac cell injury [127] was tested on H9c2 cells; the results showed that upregulating
the expression of the Bmi-1 protein played the main role in ROS generation and mito-
chondrial function. Bmi-1 modulated the antioxidant defenses by suppressing the p53
pro-oxidant protein [128]. Furthermore, the H9c2 cell treated with quercetin showed a
significantly reduced apoptotic effect, while the H9c2 cell that was only administered
doxorubicin significantly increased the apoptotic cell. Moreover, in the in vivo models,
mice treated with 20 mg/kg of doxorubicin alone significantly reduced in heart weight
and heart-to-body weight ratio. The results of this study showed an increase in creatinine
kinase (CK) and LDH as cardiac biomarkers in mice treated with only doxorubicin. Mean-
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while, the mice treated with 100 mg/kg of quercetin during pretreatment significantly
reduced the cardiac biomarkers [128]. The results clearly showed that quercetin counters
the production of oxidative stress by doxorubicin. The simultaneous administration of
quercetin with resveratrol on H9c2 cells showed a significant reduction in ROS, AST, ALT,
and CK [127]. Interestingly, pre-treatment of quercetin with H9c2 elevated the expression
of protein 14-3-3γ which is involved in the protection of myocardial injury. Therefore,
pretreatment of quercetin suppressed caspase-3 activity, while the H9c2 cell which was
administered with doxorubicin alone inclined the caspase-3 activity. The cell pretreatment
of quercetin prevented the opening of mPTP, while in the Dox alone, mPTP was high such
that it stimulated the swelling of mitochondria and the excessive release of ROS [129]. In
agreement with a study reported by [130], the combination of 80 mg/kg quercetin with
sitagliptin on a rat induced with a doxorubicin accumulative dose of 18 mg/kg showed
a significant reduction of cardiac biomarkers LDH, CK, Troponin, and CRP. Meanwhile,
the doxorubicin group showed a significant trend in these parameters. The combination
of sitagliptin and quercetin was more potent compared to sitagliptin and quercetin alone
against doxorubicin, and multiple mechanisms including antioxidant, anti-inflammatory,
and lipid-lowering effects contributed against doxorubicin [130]. In correlation with the
Asma study on an in vivo model, the co-administration of a quercetin dose of 10 mg/kg
with losartan of 0.7 mg/kg, on rats induced with doxorubicin of 15 mg/kg, inclined with
the myocardial antioxidant enzymes such as SOD and CAT, while the marker of oxida-
tive stress MDA declined [131]. Moreover, the TNF alpha, which is already known as
a pro-inflammatory cytokine that stimulates ROS, increased in doxorubicin alone. Inter-
estingly, quercetin attenuated the TNF alpha and the Nuclear Factor-Kappa B (NF-κB).
This inhibition was mediated by the antioxidant ability of quercetin. The combination of
losartan and quercetin showed a better correlation against the toxicity of doxorubicin than
losartan and quercetin alone, because of the synergetic effect [132]. An in vivo study stated
that quercetin 2 mg/kg/day for 7 days attenuated the cardiac toxicity caused by DOX,
which significantly changed the cardiac biomarkers and significantly improved cardiac
histology [133].

3.3. Apigenin

Flavonoids are natural compounds in almost all plants tissue. One of them includes
apigenin, which belongs to the sub-classes of flavone [134]. Apigenin has several inter-
esting pharmacological activities which include antioxidant, inflammation, autoimmune,
neurodegenerative, and antidiabetic effects, etc. [135]. Furthermore, it upregulates the
cell signaling pathway PI3K/Akt and downregulates NF-κB, as well as reduces COX-2
expression. Interestingly, apigenin has well documented elevated antioxidant enzymes
such as SOD, Catalase, and Glutathione for encountering cellular oxidants (Sahu et al.,
2019). Interleukin 6 (IL-6) and the TNF alpha, which are known as pro-inflammatory
cytokines, are attenuated by apigenin. In an antidiabetic animal model, apigenin regu-
lated hyperglycemia and neutralized the reactive oxygen species (ROS) [136]. Moreover, it
played a vital role in encountering cardiac remodeling, cardiac apoptosis, and toxicity due
to doxorubicin [136]. Table 1 below shows a few reports on apigenin against doxorubicin.
Apigenin is a common compound discovered in countless plants, and it has strong antioxi-
dant activity. Some studies were conducted on behalf of the cardioprotective activity in
both animal and cardiac cell experiments. A study conducted by Zara et al. showed that
apigenin increased the body weight and heart body weight relative ratio in rats treated
with doxorubicin. Hence, the ejection fraction was significantly improved, and there was
no difference with normal rat groups. In addition, the percentage of fibrosis on the cardiac
cell was decreased compared to doxorubicin alone [137]. Cardiac biomarker injuries, such
as CK-MB, LDH, and troponin T, were decreased in the apigenin + doxorubicin group. The
expression of anti-apoptotic protein Bcl was decreased, and the expression of pro-apoptotic
caspase 3 and Bax was also decreased [137]. In agreement with the previous study, api-
genin significantly reduced myocardial enzymes AST, LDH, and CK [138]. In addition,



Molecules 2022, 27, 1320 8 of 19

mitochondrial dysfunction has been recently highlighted as a major incense in rats treated
with doxorubicin. Interestingly, the ratio of Bax/bcl2 was increased in the doxorubicin
treatment group, although, on the other hand, the apigenin protein pro-apoptotic was
reversed. Furthermore, apigenin also activated the PI3K/Akt/mTOR pathway in rats
treated with doxorubicin, which increased apoptosis. Apigenin of 75 mg/kg leads to the
activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) on the rat-induced
myocardial infraction, reducing the CK-MB and LDH, as well as reducing the expression
of Bax. The stimulation of PPAR-γ decreased in size and inflammation [136]. A similar
study conducted by [139] stated that apigenin attenuated myocardial/reperfusion injury
by significantly reducing TNF alpha, phospho-IkB-, NF-κB, and ICAM-1. Interestingly,
apigenin depleted the inflammatory biomarker of COX-2 and iNOS expression on rats.

3.4. Rutin

Rutin, or quercetin-3-O-rutinoside, is one of the flavonoid compounds which belongs
to the subclasses of flavanol [140]. Furthermore, more than 60 plant species which include
Vernonia amygdalina from the family Asteraceae contain rutin [141]. As with many other
compounds of flavonoids, a major problem is poor bioavailability due to low solubility,
and unstable and poor permeability [142]. Rutin is pharmacologically known to atten-
uate cardiac remodeling by blocking some cellular signaling pathways and ROS [143].
Doxorubicin is known to cause dilation of the left ventricle, leading to cardiac impart-
ment, specifically reducing the ejection fraction. In addition, it generates ROS, apoptosis,
lipid peroxidation, and inflammatory response, while endogenous antioxidant SOD, GSH,
Catalase are reduced [144]. Rutin has been tested on several in vivo and in vitro models
against doxorubicin, and the data is well documented in Table 1. Rutin has significantly
shown a decrease in ROS and apoptosis in H9c2 cells treated with doxorubicin. Meanwhile,
groups that were administered with doxorubicin only showed a significant increase in
ROS and apoptosis [118]. A previous study stated that the activation of ROS-dependent
p38 MAPK and the deactivation of ERK signaling pathway led to myocardial apoptosis
by doxorubicin [118]. Interestingly, the existence of rutin in the H9c2 cardiomyoblast cell
protects the activation of the p38 MAPK signaling pathway [118]. Moreover, the expression
of pro-apoptotic proteins caspase 3, caspase 7, and caspase 9 in H9c2 cells on apigenin
treatment show a significant decrease. A similar study conducted by Ma et al. (2016) noted
that rutin increased the ejection fraction (%) and fractional shortening (%) in mice induced
with doxorubicin. Moreover, the cardiac histopathology showed that the fibrosis area
was significantly decreased compared to mice administered with doxorubicin alone [145].
Interestingly, this is in line with the apoptotic cell (%) that significantly decreased in the
treatment of apigenin. Furthermore, the expression of Bcl-2 was significantly increased in
the H9c2-treated apigenin in the doxorubicin group [146].

3.5. Cyanidin

A study conducted by Sixue et al. showed that purple sweet potato anthocyanin
(PSPA) of doses 400, 600, 800 µg/mL significantly increased the cell viability of H9c2
compared to the control group. The NO secretion and TNF-α were significantly decreased
in H9c2 treated with DOX 3 µmol/L + PSPA dose 200 and 400 µg/mL. Interestingly, the
CK, LDH, and TMAO also significantly decreased in H9c2 which was treated with DOX
3 µmol/L + PSPA dose 200 and 400 µg/mL [147]. Furthermore, the result of the vivo
model showed that mice that were treated with PSPA of doses 100 and 200 mg/kg had
serum and heart tissue levels of LDH, CK, TNF-α, TMAO that were significantly decreased
compared with the doxorubicin group [147]. Additionally, anthocyanin has the ability to
reduce the level of pro-inflammatory cytokine, which increases in both H9c2 and mice
treated with doxorubicin [147]. This is in line with the result of histological analysis of the
heart, which shows that doxorubicin causes myocardial rupture and an excessive amount of
inflammatory infiltration. However, mice that were receiving PSPA 200 observed only small
inflammatory infiltration. This is in line with a study contributed by [148], which stated
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that cyanidin-3 glucoside can reduce the toxicity caused by doxorubicin, showing that it
increases cell viability and decreases renin-angiotensin-aldosterone (RAA). Anthocyanins
also significantly decreases reactive oxygen species such as ROS, O.2, OH., H2O2, ONOO-,
NO, and the MDA as a marker of lipid peroxidation on H9c2 cell-induced doxorubicin [149].
Generally, cyanidin inhibits apoptosis, pro-inflammatory cytokines, ROS production, and
lipid peroxidation; however, it elevates cell viability and antioxidant effects.

3.6. Hesperidin

Hesperidin is one of the flavonoids subclasses of flavanones, which has been exten-
sively tested for its pharmacological activities both in vitro, in vivo, and in silico. The
antioxidant properties of hesperidin are extremely high; this shows that hesperidin has
potent scavenging activity with the inhibitory concentration of 10.60 µg/mL [150]. The
results of a study conducted by Trivedi et al. show that the hesperetin dose of 100 mg/kg
significantly reduced the MDA in rat serum induced with doxorubicin [151]. Additionally,
the expression of NF-κB, p38, and caspase on cardiac histopathology by IHC showed a
significant decrease in rats receiving hesperidin of 100 mg/kg compared with the group
which was only injected with doxorubicin. In addition to hesperidin, a previous study
revealed that hesperidin formulated with solid nanoparticles (SLN) decreased the cardiac
markers of CK-MB and troponin I on rats treated with doxorubicin [152]. Moreover, the
hesperidin-SLN decreased the lipid peroxidation but increased the CAT and SOD lev-
els [152]. A similar study showed that rats induced with doxorubicin and given hesperidin
50 mg/kg (3 times a week) had significantly decreased levels of LDH, CK, NO, MPO, MDA,
and Caspase-3, compared with the groups that given only doxorubicin [153].

3.7. Chrysin

Chrysin is a flavonoid discovered in honey, mushrooms, and several plants [154].
Currently, several pharmacological activities of chrysin have been tested on cell and rat
models. In cardioprotective activity, chrysin depleted the production of ROS, which caused
decreases in protein p38, p53, and Nf-κB in cardiac cells [155]. The activation of the
p53 cardiac cell stimulated the protein pro-apoptosis Bax and decreased the protein anti-
apoptosis Bcl-2. Doxorubicin plays an important role in increasing PTEN and decreasing
VEGF, which downregulates the AKT protein that causes apoptosis [154]. Furthermore, a
study conducted by Mantawy showed that chrysin reduced pro-inflammatory markers
such as Nf-κB, iNOS, COX-2, and TNF-α on rats intoxicated with doxorubicin. Therefore,
Nf-κB plays an essential role in the downstream of the inflammatory response which causes
pathological changes in the cardiac cell [156].

3.8. Naringenin and Narigin

Naringenin and naringin are flavonoids that belongs to the isoflavonoid subclasses,
widely found in grapes and citrus [157]. Furthermore, they have been tested in some
pharmacological activities, including against ischemia/reperfusion and cardioprotective
activity against doxorubicin [158]. A conducted study showed that naringenin increased
antioxidant endogenous activities such as SOD, GPx, GST, Catalase, and GSH [159]. This
antioxidant diminishes superoxide anion, superoxide radical, and hydrogen peroxide
that increase while being treated with doxorubicin [160]. Moreover, naringenin is known
to increase the expression of Nrf-2 as an antioxidant modulator to produce more an-
tioxidants [161]. Subsequently, the cardiac marker injury was also decreased with the
co-treatment of naringenin on rats intoxicated with doxorubicin (CK-MB, LDH, AST, and
Troponin T) [162]. Meanwhile, the lipid peroxidation was decreased on a rat receiving
naringenin. Moreover, inflammation markers such as TNF-α, IL-6, and IL-10 [162] were
decreased compared to the previous study. A summary of the mechanism is presented in
Figure 3.
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Figure 3. Summary of flavonoids’ role against doxorubicin that increases (green) antioxidant endogen,
cardiac function, mitochondria function, calcium homeostasis, nerf 2 expressions, and ATP while
reducing (red) inflammatory, ROS, apoptosis, lipid peroxidation, caspase 3 activity.

Table 1. The cardioprotective activity of flavonoids against doxorubicin-induced cardiotoxicity.

Compound Study Design Flavonoid Dose Doxorubicin Dose Duration Parameters References

Luteolin In vivo (rat)

50 mg/kg
100 mg/kg

(P.O 1 week in advance
and gastric

administration lasted
for 5 weeks)

16 mg/kg
(Intraperitoneal

injection once a week)
5 weeks

↓BNP, ↓CK-MB, ↓MDA,
↓LDH, ↑SOD, ↑Bcl2, ↓Bax,
↑p-AKT, ↓Caspase-3

[48]

Luteolin-7-
O-glucoside In vitro (H9c2) 10 and 20 µM

(pre-treated for 24 h)
10 µM

(Incubated for 24 h) 48 h

↑Cell viability, ↓apoptosis,
↓ROS, ↑P-PTEN, ↓P-Akt,

↓P-ERK,
↓p-mTOR, ↓p-GSK-3bate

[114]

Luteolin In vitro (H9c2) 5, 10, 20 µM
(pre-treated for 24 h)

20 µM
(Incubated for 24 h) 48 h

↑Cell viability, ↓CK, ↓LDH,
↓ROS, ↓ [Ca2+]i

[118]

Luteolin In vitro
(AMCMs) 1, 10, 50 µM 1 µM 24 h

↓LDH, ↓CK, ↓Apoptosis,
↓ROS, ↑Bcl-2, ↓Bax,
↓Caspase 9, ↑Bnip3,

↑Parkin, ↑Pink1, ↑LC3BII,
↑P62, ↓mTOR, ↑LAMP1,

↑TFEB, ↑Drp1

[117]

Quercetin In vivo (rat) 10, 25, 50 mg/kg
(P.O for 7 weeks)

2 mg/kg
(Intraperitoneal once a

week until 4 weeks)
7 weeks

↓Blood pressure, ↓HR,
↓LVEDP, ↑coronary flow,
↑+(dp/dt) max, ↑-(dp/dt)

max, ↓CK-MB, ↓LDH,
↓Na+, ↓K+, ↓MDA, ↑GSH,
↑SOD, ↑Catalase, ↑Nrf2

[122]

Quercetin In vivo (rat) 2 mg/kg
(P.O for 7 days)

10 mg/kg
(I.V on day 5) 7 days ↓AST, ↓LDH, ↑GSH, ↓BUN,

↓Creatinine, ↓TBRAS [133]

Quercetin In vitro
(H9c2)

100 µM
(pre-treated for 48 h

and 96 h)
1 µM 48 h and 96 h ↑CR inhibition, ↓LDH,

↓iron chealting, ↓LPO IC50 [163]
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Table 1. Cont.

Compound Study Design Flavonoid Dose Doxorubicin Dose Duration Parameters References

Quercetin

In vitro
(H9c2)

50 and 100 µM
(Incubated 48 h)

0–16µM
(Incubated 48 h) 48 h ↑Cell viability, ↓apoptosis,

↑MMP, ↓ROS, ↑Bmi-1
[128]

In vivo
(Mice)

100 mg/kg
(P.O for 10 days)

20 mg/kg
(I.P) 48 h

↑LVEF, ↑LVFS, ↓LVEDD,
↓LVESD, ↓LDH, ↓MDA,

↑SOD, ↑Bmi-1

Quercetin
polymeric
micelles

In vitro
(H9c2) µM 0.01, 0.1, 1 µM 48 h ↓Caspase 3, ↓caspase 7,

↓ROS, ↓apoptosis
[164]

In vivo
(mice)

3.31 mg/kg
(I.V every 3 days for

3 cycle)

6 mg/kg
(I.V every 3 days for

3 cycle)
10 days ↓AST, ↓ALT, ↓CK

Quercetin
In vitro

(Neonatal
Rat

cardiomyocytes)

10,20,40,80 µM
(pre-treated for 22 h) 1 µM (incubated 24 h) 48 h (2 h nor-

mal condition)

↑Cell viability, ↓LDH,
↓caspase 3, ↓apoptosis,
↑14-3-3γ, ↑MMP, ↑SOD,
↑Catalase, ↑Gpx, ↓MDA,

↑GSH, ↑GSSG

[129]

Quercetin In vivo
(rat)

10 mg/kg
(P.O for 6 weeks)

2.5 mg/kg
(I.P every 2 days for

2 weeks)
6 weeks ↓CK-MB, ↓LDH, ↓TNF,

↑SOD, ↑CAT, ↓MDA, ↓NO [131]

Apigenin In vivo (rat) 25 mg/kg
(P.O for 12 days)

2 mg/kg
(I.P every 2 days for

12 days)
12 days

↑%EF, ↑%FS, ↓LVIDd,
↓LVISd, ↓LDH, ↓CK-MB,
↓cTn-I, ↓ALT, ↓AST,

↓%Fibrosis, ↓MDA, ↑SOD,
↑Catalase, ↑Bcl-2, ↓Bax,

↓Caspase-3

[137]

Apigenin

In vitro
(Murine

cardiomyocytes)
20 µM

(Incubated for 24 h)
1 µM (incubated for

24 h) 24 h

↑Cell viability, ↓ROS,
TBARS, ↑CAT, ↓Carbonyl

protein, ↑SOD, ↑GST, ↑GPx,
↑GSH, ↑GR, ↓DNA

fragmentation, ↓8-OHdG,
↓Cyt c, ↑Bcl-2, ↓Bax,
↓caspase 3, ↓caspase 9,
↓caspase 8, Apaf-1, FAS,
t-Bid, ↓IκBα, ↓NF-κB,

PKC-δ, ↓JNK, ↓p38, ↓p53,
↑PI3K, ↑Akt, mTOR,

↓iNOS, ↑HO-1, and ↑Nrf-2

[136]

In vivo (rat) 100 mg/kg (P.O
7 days)

3 mg/kg (I.P on
day 1,3,5) 7 days

↑Total erythrocytes,
↑Haemoglobin, Total

leucocytes, ↓Total
cholesterol, HDL, TGD,

LDH, ↓CK, ↓AST,
↓Troponin I, ↓Troponin T,
↑SOD, ↓Protein carbonyl,
↓ROS, ↓TBARS, ↑CAT,
↑GPx, ↑GST, ↑GSH,

↓8-OHdG, ↑GR, ↓NADPH
oxidase, ↓DNA

fragmentation, ↓MMP,
↓Cyt C, ↑Bcl-2, ↓Bax,
↓Caspase 3, ↓caspase 9,
↓caspase 8, ↓FAS, ↓t-Bid,
↓IκBα, ↓NF-κB, ↓PKC-δ,
↓JNK, p38, ↓p53, ↑PI3K,
↑Akt, ↑mTOR, ↓iNOS,
↑HO-1, and ↑Nrf-2

Apigenin In vivo
(mice)

125 and 250 mg/kg
(Gastric gavage for

17 days)

3 mg/kg
(I.P every 2 days for

16 days)
17 days

↓AST, ↓LDH, ↓CK,
↓Apoptosis, ↓Bax, ↑Bcl-2,
↓Beclin1, ↓LC3, ↑p-mTOR,
↑mTOR, ↑p-AKT,
↑AKT1/2/3, ↑PI3K

[138]

Rutin In vivo
(H9c2)

10, 30, 50, or 70 µM
(pre-treated for 1 h)

5µM/pirarubicin
(Incubated 24 h) 24 h

↑Cell viability, ↓ROS,
↓Apoptosis, ↓caspase 3,
↓caspase 7, ↓caspase 7,
TGF-β1, p-p38 MAPK

[165]

Rutin

In vivo
(mice)

100 mg/kg
(P.O for 11 weeks)

3 mg/kg
(I.P every 2 days for

2 weeks)
11 weeks ↑LVEF, ↑LVFS, ↓%fibrosis,

[166]

In vitro
(cardiomyocytes)

10 µM
(pre-treated for 24 h)

1 µM
(incubated for 24 h) 48 h

↓Apoptosis, ↑Bcl-2,
↓Caspase 3, ↓P62,
↓LC3BI/II, ↓ATG5

Rutin In vivo
(mice)

100 µmol/kg
(I.P for 5 days)

15 mg/kg
(I.P day 1) 5 days

↑GSHpx, ↓MDA, ↓CPK,
↓Total bone marrow,
↓NADPH IC50

[146]
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Table 1. Cont.

Compound Study Design Flavonoid Dose Doxorubicin Dose Duration Parameters References

Rutin In vivo (rat)
50 mg/kg

(P.O 3 times per week
for 3 weeks)

25 mg/kg 3 weeks

↓Total cholestrol, ↑HDL,
↓LDL, ↓CK, ↓LDH, ↓AST,
↑Glutathione, ↑GPx,
↑Glutathione-s-

tranasferase,
↓MDA

[167]

Hesperidin In vivo (rat)

50 mg/kg
(Gastric administration

3 times per week for
3 weeks)

4 mg/kg
(I.P 3 times per week

for 2 weeks)
3 weeks

↓CK, ↓LDH, ↓NO, ↓MPO,
↓MDA, ↑GSH, ↑CAT,

↓Caspase 3
[168]

Anthocyanin In vitro (HL-1) 0, 5, 25, 125, 250 µM 0, 0.125, 0.25, 0.5, 1, 2,
4 µM 48 h ↑Cell viability, ↓RAS [148]

Anthocyanin In vitro (H9c2) 20 and 40 µg/mL
(post-treated for 24 h)

1 µM
(treated for 6 and 12 h) 36 h

↑Cell viability, ↓apoptosis,
↓CHIP, ↑HSF1, ↓IGF-IIR,
↓caspase 3, p-NFκB,
↑p-Akt, ↑ERα, ↑ERβ

[149]

Chrysin In vivo (rat) 25 and 50 mg/kg
(P.O for 12 days)

15 mg/kg
(I.P on day 12) 12 days

↓CK-MB, ↓LDH, ↓MDA,
↓NF-κB, ↓iNOS, ↓COX-2,
↓Bax, ↑Bcl2, ↓TNF-α,

COX-2, ↑SOD, ↑CAT, ↓NO,
↓Apoptosis, ↑GSH, ↑Cyc C

[155]

Chrysin In vivo (rat)
50 mg/kg

(P.O 4 times per week
for 5 weeks)

5 mg/kg
(I.P once a week for

4 weeks)
4 weeks

↓VEGF, ↑AKT, ↑PTEN,
↓NF-κB, ↓Bax, Bcl-2, ↓P53,
↓MAPK, GSH, ↓MDA,
↑CAT, ↑SOD, ↑Gpx, ↑GR

[155]

Hesperidin In vivo (rat)
25, 50, 100 mg/kg

(P.O 5 times per weeks
for 5 weeks)

4 mg/kg
(I.P once a week for

5 weeks)
5 weeks

↓MDA, ↑GSH, ↓NF-kB,
↓p38, ↓Caspase-3,
↓apoptosis, ↓%
demaged cell

[151]

Hesperidin
solid

nano particle
In vivo (rat) 20 mg/kg

(P.O for 7 days)
15 mg/kg

(I.P on day 5) 7 days
↓CK-MB, ↓Troponin I,
↓MDA, ↑SOD, ↑CAT,
↓Apoptosis, ↓Caspase 3

[152]

Anthocyanin

In vitro
(H9c2) 100–800 µg/mL 3 µmol/L for 12 h 12 h ↓NO, ↓TNF-α, ↓TMAO,

↓LDH, ↓CK
[169]

In vivo
(mice)

100 and 200 mg/kg
(P.O for 25 days)

13 mg/kg injected on
day 26, 27, and 18 28 days ↓NO, ↓LDH, ↓CK, ↓TNF-α

↓TMAO

Naringenin In vivo (rat) 25 mg/kg
(P.O for 7 days)

15 mg/kg
(I.P on day 7) 7 days ↓LDH, ↓CPK, ↓MDA,

↑SOD, ↑GSH, ↑CAT, ↑GST [170]

Naringenin In vivo (rat) 100 mg/kg
(P.O for 2 weeks)

15 mg/kg
(I.P on day 14) 2 weeks

↓CK-MB, ↓Creatinine,
↓AST, ↓ALT, ↓Urea, ↓LDH,
↓TNF-α, ↓IL-6, ↓IL-1β,
↓TBARS, ↑GSH, ↑CAT,
↑SOD, ↑GST, ↑GPx

[160]

naringenin-7-
O-glucoside In vitro (H9c2) 5, 10, 20, 40, and 80 µM

(pre-treated for 24 h)
10 µM

(Incubated 24 h) 48 h
↓Cell viability, ↓ROS,
↓LDH, ↓CK, ↑GSH,
↑GPx, ↓ [Ca2+]I

[171]

Naringenin In vivo (rat) 15 mg/kg
(P.O for 30 days)

15 mg/kg
(I.P on day 30) 30 days ↑SOD, ↑CAT, ↑GSH [159]

Naringin In vivo (rat) 50 and 100 mg/kg
(I.P for 14 days)

15 mg/kg
(I.P on day 10) 14 days ↑GSH, ↑SOD, ↑CAT,

↓MDA, ↓NADH, ↓Cyt-C, [161]

Naringin In vivo (rat) 50 mg/kg
(P.O for 10 weeks)

3 mg/kg
(I.P on week 1,3,5,7,9) 10 weeks

↓LDH, ↓Troponin T,
↓MDA, ↑CAT, ↑SOD, ↑GPx,
↓TGFβ1, ↓TNF-α, ↓IL-6,

↓IL-10

[162]

BNP: brain natriuretic peptide; CK-MB: creatinine kinase-MB; MDA: malondialdehyde; LDH: lactate dehydro-
genase; SOD: superoxide dismutase; Bcl2: B-cell lymphome2; TNF-α: tumor necrosis factor; IL: interleukin;
ROS: reactive oxygen species; Cty-c: cytochrome c; GPx: glutathione peroxidase; PTEN; phosphatase and
tensin homolog; NO: nitrite oxide; MMP: mitochondria membrane potential; GSH: glutathione; CAT: cata-
lase; NADH: nicotinamide adenine dinucleotide; HDL: high density lipoprotein; LDL: low density lipoprotein;
RAS: renin angiotensin aldosterone; iNOS: inducible nitrite oxide; LVEF: left ventricular ejection fraction; LVFS: left
ventricular ejection shortening; NF-κB: nuclear factor kappa B; HR: heart rate; 8-OHdG: 8-Oxo-2’-deoxyguanosine;
CR: carbonyl reductase; HO-1: heme oxygenase-1; nrf-2: Nuclear factor-erythroid factor 2-related factor 2; AST: as-
partate transaminase; ALT: alanine transferase; TGFβ1: transforming growth beta 1; MAPK: mitogen activated
protein kinase; COX-2: cyclooxygenase; Bnip3: BCL2 interacting protein 3.

4. Conclusions

In conclusion, doxorubicin has multiple mechanisms that cause cardiac toxicity, in-
cluding decreased antioxidant effects, decreased mitochondrial function, increased lipid
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peroxidation, and increased inflammatory response. Furthermore, it has been acknowl-
edged that no study elucidates the predominant mechanism. The dietary supplements in
flavonoids, such as quercetin, rutin, luteolin, apigenin, hesperidin, anthocyanin, and narin-
genin, play an essential role in combatting cardiac toxicity by multiple mechanisms which
are reducing ROS, lipid peroxidation, mitochondria permeability and the suppress apopto-
sis (Figure 3). In the future, it is suggested that more mechanism activities of flavonoids
against doxorubicin-induced cardiotoxicity are explored.
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