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Variable Selection in the 
Regularized Simultaneous 
component Analysis Method for 
Multi-Source Data integration
Zhengguo Gu*, niek c. de Schipper & Katrijn Van Deun

Interdisciplinary research often involves analyzing data obtained from different data sources with 
respect to the same subjects, objects, or experimental units. for example, global positioning systems 
(GPS) data have been coupled with travel diary data, resulting in a better understanding of traveling 
behavior. The GPS data and the travel diary data are very different in nature, and, to analyze the two 
types of data jointly, one often uses data integration techniques, such as the regularized simultaneous 
component analysis (regularized ScA) method. Regularized ScA is an extension of the (sparse) principle 
component analysis model to the cases where at least two data blocks are jointly analyzed, which - in 
order to reveal the joint and unique sources of variation - heavily relies on proper selection of the set 
of variables (i.e., component loadings) in the components. Regularized ScA requires a proper variable 
selection method to either identify the optimal values for tuning parameters or stably select variables. 
By means of two simulation studies with various noise and sparseness levels in simulated data, we 
compare six variable selection methods, which are cross-validation (CV) with the “one-standard-error” 
rule, repeated double CV (rdCV), BIC, Bolasso with CV, stability selection, and index of sparseness (IS) - 
a lesser known (compared to the first five methods) but computationally efficient method. Results show 
that iS is the best-performing variable selection method.

As a result of recent technological developments, often data from varying types of sources with respect to the 
same investigation units are gathered and analyzed jointly, which is referred to as multi-source data integration 
(also known as multi-block data analysis, linked data analysis, and in a broader sense, data fusion1). In health 
research, joint analysis combining global positioning systems (GPS) data and self-report travel diary data for 
the same subjects has been shown to be insightful for understanding people’s traveling behavior, purpose, and 
immediate environment, providing critical information relevant to health research2. In metabolomics, to gain a 
comprehensive picture of the metabolism in a biological system, researchers have conducted joint analysis on the 
measures obtained from two different instrumental methods, which are Mass-spectrometry (MS) with gas chro-
matography (GC/MS) and MS with liquid chromatography (LC/MS)3–5, on the same samples. Multi-source data 
integration has also been found useful in epigenetics (e.g., joint analysis on genetic information and environmen-
tal factors)6, in epidemiology (e.g., joint analysis on behavioral data and genetic data)7, and in longitudinal and life 
course studies (e.g., joint analysis on longitudinal survey data and bio-measures)8, to name a few.

A popular multi-source data integration methodology often used in social and behavior research, bioinfor-
matics, and analytical chemistry9–14 is the simultaneous component based data integration method (SCA for 
short). In essence, SCA is an extension of the well-known principal component analysis (PCA) model15 to the 
cases where more than one data block is analyzed. Here, a data block can be, for example, survey data, genetic 
data, and behavioral data. Under certain constraints imposed on all data blocks, information shared across all 
data blocks can be extracted and represented by a few components. Thus, by means of dimension reduction, 
SCA is used to explore and interpret the internal structure that binds all data blocks together. Recent extensions 
of SCA have greatly improved the flexibility and the usefulness of the method by incorporating regularization 
such as the Lasso16 and the Group Lasso17, resulting in the regularized simultaneous component analysis method 
(regularized SCA for short)13,18–20. Regularized SCA reveals not only the information shared across all data blocks, 
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which is often referred to as “the common process” or “the joint sources of variation” in the data, but also the 
information that is unique to certain but not all data blocks, which is referred to as “the specific process” or “the 
unique variation” underlying the data. Being able to correctly identify and distinguish the common and specific 
processes is useful and important. For example, Kuppens, Ceulemans, Timmerman, Diener, and Kim-Prieto21 
pointed out that, in cross-cultural psychology, researchers were often interested in information that was unique to 
a certain culture (i.e., the specific process), but unfortunately such unique information was usually buried under 
a vast volume of common traits shared across all cultures (i.e., the common process) and therefore was difficult to 
be identified. Regularized SCA can be used to identify such unique information. In addition, regularized SCA can 
handle high-dimensional datasets and, compared to SCA, not only produces sparse results that are much easier to 
interpret, but also yields consistent estimates22. Such selection of the relevant variables is often needed in practice 
to hint at what variables to further investigate. As a side note, SCA involves rotating component structure and 
truncating small loadings to zeros, which may generate misleading results23. Regularized SCA, however, does not 
require the rotation or truncation of results. To explain what regularized SCA can offer, we use an application of 
the method to a three-block parent-child relationship survey dataset documented by Gu and Van Deun18 as an 
example.

The parent-child relationship survey dataset consists of three data blocks obtained from a large-scale survey 
collected from 195 families. For details of this dataset, see Gu and Van Deun18, and for details of the raw data 
from which the parent-child relationship survey dataset was retrieved, see Schneider and Waite24. The first data 
block contains 195 mothers’ opinions with respect to 8 items, including (1) relationship with partners, (2) aggres-
siveness when arguing with the partner, (3) child’s bright future, (4) activities with the child, (5) feelings about 
parenting, (6) communication with the child, (7) aggressiveness when communicating with the child, and (8) 
confidence about oneself. The second data block contains 195 fathers’ opinions regarding the same 8 items. The 
third data block contains 195 children’s ratings on 7 items, including (1) self confidence/esteem, (2) academic per-
formance, (3) social life and extracurricular activities, (4) importance of friendship, (5) self image, (6) happiness, 
and (7) confidence about the future. Table 1 shows the descriptive statistics of the dataset. The three data blocks 
can be jointly analyzed because they share the same investigation units – families. In other words, when the three 
data matrices are placed side by side (see Fig. 1), each row contains the information of the mother, the father, and 
the child from the same family. The result of regularized SCA (combined with CV for variable selection) applied 
to this data set is presented in Table 2, which contains an estimated component loading matrix. The individual 
loadings contained in Table 2 are interpreted in a similar way as the loadings generated in a PCA analysis, but the 
power of regularized SCA is that it facilitates the interpretation of joint and specific variation at the block level. 
The table reveals a few important features of regularized SCA. First, the result is sparse, meaning that redundant 
information is dropped, facilitating easy interpretations. Second, the method reveals joint and specific processes 
underlying the three data blocks. For example, Component 1 combines information from all three data blocks, 
capturing the joint process relevant to the parent-child relationship. Components 2, 3, 4, and 5 reveal specific 
processes that are unique to the parents (i.e., components 2 and 3), unique to the children (i.e., Component 4), 
and unique to the fathers (i.e., Component 5). To interpret the components, we use Component 3 as an example. 
This component suggests that for both the mother and the father, their (good) relationship with the partner, (less) 
aggressiveness when arguing with the partner, and their (high) self-confidence are positively associated among 
each other.

The parent-child relationship example shows that regularized SCA can be a powerful tool for jointly exploring 
multiple data sources and discovering interesting internal structures shared among data sources or unique to 
some but not all data sources. However, to realize its full potential, regularized SCA requires a proper variable 
selection method for component loadings to ensure that the right structure (i.e., whether components are com-
mon or unique) and the right level of sparseness are imposed. Currently, CV with “one-standard-error” rule and 
stability selection25 have been used together with regularized SCA19,20. As far as we know, no research has been 
conducted on the performance of the two variable selection methods: We do not know whether the two methods 
indeed correctly select important variables (i.e., non-zero component loadings), and if they do, which variable 
selection method performs better. CV and stability selection are not the only methods for regularized SCA. Other 
variable selection methods, including information-criterion-based indices and bootstrapping methods, have been 
proposed for regularized models, such as sparse PCA and regularized regression analysis, but they have not been 
used for regularized SCA.

In this study, to identify a suitable variable selection method for regularized SCA, we examined the per-
formance of six methods, including CV with “one-standard-error” rule26, stability selection25, repeated double 
cross-validation (rdCV)27, Index of Sparseness (IS)28–30, Bolasso with CV31–33, and a BIC criterion34,35. We chose 
CV with the “one-standard-error” rule, rdCV, IS, and Bolasso, because they had been used successfully in var-
ious applications of sparse PCA methods, including early recognition and disease prediction36, schizophrenia 
research37, epidemics38, cardiac research39, environmental research40, and psychometrics41. We included stability 
selection because of its popularity in the statistical literature and because it has been used for regularized SCA. We 
included the BIC criteria by Croux, Filzmoser and Fritz34 and by Guo, James, Levina, Michailidis, and Zhu35 and 
IS because of their computational efficiency. In addition, we provided an adjusted algorithm of stability selection 
specifically designed for regularized SCA, and we explained how to use rdCV, IS, Bolasso with CV and the BIC 
criterion in regularized SCA.

Results
Simulation studies. Data generation. We conducted two simulation studies. In the first simulation study, 
we evaluated the performance of the variable selection methods when two data blocks were integrated. We con-
sidered high dimensional data blocks (i.e., the number of persons smaller than that of variables) and also typ-
ical data blocks seen in social sciences (i.e., the number of persons larger than that of variables). The second 
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simulation study extended the first one by integrating four data blocks rather than two data blocks. Both simula-
tion studies followed the same simulation design, and therefore, in the remainder of the section, we outline the 
design of the first simulation study in details and mention the second simulation study when necessary.

In the first simulation study, the data were generated in five steps.
Step 1: Two data matrices, denoted by X1 and X2, were generated. Here we considered three situations:

= ∈ = ∈× ×R Rx xX X(1) { } and { } , (1)ij ij1
20 40

2
20 10

= ∈ = ∈× ×R Rx xX X(2) { } and { } , (2)ij ij1
20 120

2
20 30

and

= ∈ = ∈× ×R Rx xX X(3) { } and { } , (3)ij ij1
80 40

2
80 10

where, for all three situations, ∼ . . .x i i d N(0, 1)ij . The choice of how to generate initial structures in this step 
has little influence on the final results as it only contributes to the true model part; other choices could also have 
been made, for example using an autoregressive structure on the covariance matrices. Then, the concatenated data 
matrix with respect to rows, denoted by =

∼X X X[ , ]C 1 2 , was of dimension 20 × 50, 20 × 150, and 80 × 50, respec-
tively. In the following, we use the first situation (i.e., Eq. 1) as an example to explain the remaining steps.

Step 2: Using singular value decomposition (SVD), we decomposed ∼XC into UΣV. We defined the “true” com-
ponent score matrix, denoted by Ttrue, as the matrix containing the three left singular vectors in U corresponding 
to the three largest singular values. Let Σ∼ denote the diagonal matrix containing the three largest singular values, 
and let ∼V denote the matrix containing the three right singular vectors corresponding to the three largest singular 
values. Then, the non-sparse component loading matrix, denoted by PC, was = Σ

∼∼
P VC .

Step 3: Notice that PC is a 50 × 3 matrix. Let ≡ ∈ ×
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sponding to the second block. Thus, ≡
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. We assumed that the first component of PC was the common com-

ponent, representing the common process across both data blocks, and we assumed that remaining two 

Questionnaire Title Mean SD

Mother

Relationship with partners (the higher the score, the more satisfied) 3.58 0.79

Argue with partners (the higher the score, the less violent) 3.65 0.42

Child’s bright future (the higher the score, the stronger the feeling of bright future) 4.49 0.52

Activities with the child (the higher the score, the more activities) 2.40 0.39

Feelings about parenting (the higher the score, the more positive about parenting) 3.33 0.68

Communication with the child (the higher the score, the more communication) 4.16 0.50

Argue (aggressively) with the child (the higher the score, the less aggressive) 3.08 0.45

Confidence about oneself (the higher the score, the more confident) 2.71 0.43

Father

Relationship with partners (the higher the score, the more satisfied) 3.67 0.70

Argue with partners (the higher the score, the less violent) 3.77 0.42

Child’s bright future (the higher the score, the stronger the feeling of bright future) 4.48 0.51

Activities with the child (the higher the score, the more activities) 2.30 0.38

Feelings about parenting (the higher the score, the more positive about parenting) 3.40 0.64

Communication with the child (the higher the score, the more communication) 3.97 0.60

Argue (aggressively) with the child (the higher the score, the less aggressive) 3.18 0.42

Confidence about oneself (the higher the score, the more confident) 2.78 0.47

Child

Self confidence/esteem (the higher the score, the more confident) 2.08 0.46

Academic performance (the higher the score, the better the performance) 6.87 1.32

Social life and extracurricular activities (the higher the score, the more social life) 2.22 0.38

Importance of friendship (the higher the score, the more important friendship is) 3.94 0.61

Self image (the higher the score, the more positive self image is) 2.56 0.52

Happiness (the higher the score, the happier) 2.29 0.44

Confidence about the future (the higher the score, the more confident about the future) 3.94 0.47

Table 1. Descriptive statistics of the parent-child relationship data, obtained from Gu and Van Deun18.
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components were distinctive components, representing unique processes, so that p2
1 in P1 and p3

2 in P2 were 

replaced with 0. As a result, PC became 
















p 0 p

p p 0
1
1

3
1

1
2

2
2

.

Step 4: We replaced some loadings in p1
1, p1

2, p2
2, and p3

1 with zeros to make p1
1, p1

2, p2
2, and p3

1 sparse, and we con-
sidered two situations: 30% and 50% of the loadings in p1

1, p1
2, p2

2, and p3
1 were replaced with zeros. Let PC

true denote 

the concatenated component loading matrix after the sparseness was introduced to 
















p 0 p

p p 0
1
1

3
1

1
2

2
2

. Note that for 

notational convenience we used the same symbols for the sparsified loading vectors as previously.
Step 5: We computed =X T P( )C

true true
C
true T, and added a noise matrix, denoted by E, to XC

true to generate the 
final simulated dataset, denoted by XC

generated, so that α= +X X EC
generated

C
true , where the scalar α is a scaling fac-

tor. The cells in E were generated from N(0, 1). Note that an implicit assumption of PCA and also SCA is inde-
pendent and identically distributed noise; other types of noise structure may affect the results. By adjusting α, we 
were able to control the proportion of noise variance in XC

generated. We considered two noise levels: 0.5% and 30% 
of variance in XC

generated were attributable to noise.
In summary, the first simulation study included the following design factors:

•	 Three situations of X1 and X2 (i.e., Eqs. 1, 2 and 3).
•	 Two sparseness levels in p1

1, p1
2, p2

2, and p3
1: 30% and 50%.

•	 Two noise levels: 0.5%, and 30%.
The design factors were fully crossed, resulting in × × =3 2 2 12 design cells. In each design cell, we 
simulated 20 datasets following the above five steps, and therefore in total 240 datasets were simulated. 
Then, for each dataset, we conducted the regularized SCA analysis and compared the results generated by 
the model selection methods, which are CV with “one-standard-error” rule, rdCV, BIC, IS, Bolasso with 
CV, and stability selection.
The design of the second simulation study also involved five steps similar to the first simulation, but we 
made the following changes. In Step 1 of the second simulation study, we considered only one situation:

= ∈

= ∈

= ∈

= ∈

×

×

×

×

R

R

R

R

x

x

x

x

X

X

X

X

{ } ,

{ } ,

{ } , and

{ } , (4)

ij

ij

ij

ij

1
20 120

2
20 30

3
20 40

4
20 10

where ∼ . . .x i i d N(0, 1)ij . In Step 3, we inserted 0 in PC such at
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In summary, the second simulation study included the following two design factors:
•	 Two sparseness levels in p1

1, p2
1, p1

2, p2
2, p3

2, p1
3, p3

3, and p1
4: 30% and 50%.

•	 Two noise levels: 0.5%, and 30%.

Figure 1. Joint analysis on multi-source data: Using the parent-child relationship survey dataset as an example.
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The design factors were fully crossed, resulting in × =2 2 4 design cells. In each design cell, we simulated 20 
datasets following the above five steps, and therefore in total 80 datasets were simulated.

Performance measures. To compare the variable selection methods, we used two types of performance meas-
ures. The first type concerned the component loading matrix, and the second type concerned the component 
score matrix. The first type consisted of three performance measures. Let P̂C denote the estimated concatenated 
component loading matrix. The first performance measure, denoted by PL, was the proportion of non-zero and 
zero loadings correctly identified in P̂C compared to PC

true:

= .− +PL (6)P
number of correctly selected non zero loadings number of correctly identified zero loadings

total number of loadings in C
true

Notice that ∈PL [0, 1]. Intuitively, for regularized SCA, the best model selection method should be the one 
that generating the highest PL among the methods. In addition to PL, we also used PLnon-0 loadings, defined as

=−
−

−
PL , (7)Pnon 0 loadings

number of correctly selected non zero loadings
total number of non zero loadings in C

true

and PL0 loadings, defined as

= .PL (8)P0 loadings
number of correctly identified zero loadings

total number of zero loadings in C
true

Component 
1

Component 
2

Component 
3

Component 
4

Component 
5

Mother

Relationship with partners 0 0 11.92 0 0

Argue with partners −5.53 0 5.88 0 0

Childs bright future −8.83 0 0 0 0

Activities with children −4.65 −9.02 0 0 0

Feeling about parenting −9.02 0 0 0 0

Communation with children −9.20 0 0 0 0

Argue with children −8.78 0 0 0 0

Confidence about oneself −6.66 0 7.26 0 0

Father

Relationship with partners 0 0 11.80 0 0

Argue with partners 0 0 5.26 0 −9.17

Childs bright future −3.39 0 0 0 −5.76

Activities with children 0 −11.56 0 0 0

Feeling about parenting −4.04 0 0 0 −6.94

Communation with children 0 −8.17 0 0 0

Argue with children −4.98 0 0 0 −9.88

Confidence about oneself 0 0 5.60 0 −8.19

Child

Self confidence/esteem −5.82 0 0 8.66 0

Academic performance 0 0 0 7.08 0

Social life and extracurricular 0 0 0 4.10 0

Importance of friendship 0 0 0 9.60 0

Self Image 0 0 0 10.36 0

Happiness 0 0 0 9.55 0

Confidence about the future 0 0 0 7.48 0

Table 2. Estimated component loading matrix generated by the regularized SCA method with cross-validation 
(CV) applied to the parent-child relationship data, obtained from Gu and Van Deun18. Note that we are 
interested in the associations among items within a component, and the associations are indicated by the 
signs of the loadings. Take Component 2 for example. The three non-zero loadings have the same sign (in this 
case “−” sign), meaning that mother’s “activities with children”, father’s “activities with children”, and father’s 
“communication with children” are positively associated with each other. Two loadings having opposite signs 
indicates a negative association between the two items. We remind the reader that, when interpreting the 
loadings and the associations among them, one should also take into account how the items are scored (see 
Table 1). For example, a higher score on “relationship with parters” indicates a more satisfied relationship. A 
higher score on “argue with partners” indicates a less violent relationship.
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We used PLnon-0 loadings to evaluate how well a model selection method assisted correctly retaining non-zero 
loadings and used PL0 loadings to evaluate how well a model selection method assisted correctly identifying zero 
loadings.

In this study, we focused on the component loading matrix, and we used the variable selection methods to 
help us identify non-zero and zero loadings, but the component score matrix was also important. Ideally, we 
would prefer an estimated component score matrix as close as possible to the true component score matrix. 
Therefore, the second type of performance measure evaluated the degree of similarity between Ttrue and the esti-
mated component score matrix T̂, quantified by Tucker congruence ϕ42

ϕ = .
ˆ

ˆ ˆ
T T

T T T T

vec( ) vec( )

(vec( ) vec( ))(vec( ) vec( )) (9)

true T

true T true T

Notice that ϕ ∈ −[ 1, 1]. Ideally, a good model selection method for regularized SCA is the one that makes ϕ 
close to 1.

Results. We used the R package RegularizedSCA (version 0.5.5)20 to estimate the regularized SCA model; the R 
script for replicating the study is included in the supplementary material. All columns in the simulated datasets 
were mean-centered and scaled to norm one. We used the Group Lasso penalty to identify component structure 
(i.e., common/distinctive components) and used the Lasso penalty to impose sparseness within a component. For 
details, please see the Methods section.

Figures 2, 3, 4 and 5 summarize the results of the first simulation, where two data blocks were integrated. 
Specifically, Figs. 2, 4 and 5, by means of boxplots, present the performance measures PL (Eq. 6), PLnon-0 loadings 
(Eq. 7), and PL0 loadings (Eq. 8), respectively. Figure 3 presents the boxplots of Tucker congruence measures. For 
each figure, the upper, middel, and bottom panels correspond to the first, second, and third situations of X1 and 
X2 (i.e., Eqs. 1, 2 and 3), respectively. The reader may notice that most methods (except for BIC and Bolasso) did 
not differ much in Tucker congruence, and therefore, we focus on discussing PL, PLnon-0 loadings, and PL0 loadings and 
mention Tucker conguence only when necessary.

Based on the figures, we concluded the following. First, CV with “one-standard-error” rule and rdCV did not 
outperform the other methods in most cases in terms of correctly identifying non-zero and zero loadings (see 
Fig. 2). Figures 4 and 5 show that the two methods tended to retain more non-zero loadings than needed, result-
ing in high PLnon-0 loadings but low PL0 loadings, which is a known feature of CV-based methods43. Second, stability 
selection was the best-performing method in terms of PL. However, as we have explained in the Methods section, 
in order for the method to work in the simulation, we assumed that the correct number of non-zero loadings 
was known a priori, which is unrealistic in practice. Third, IS was the second best-performing method (Fig. 2), 
witnessed by a balanced, high PLnon-0 loadings (Fig. 4) and high PL0 loadings (Fig. 5). Fourth, BIC performed worse than 
the other methods (except for Bolasso) when the noise level was high (i.e., 30%). Figures 4 and 5 suggest that BIC 
consistently favored very sparse results, resulting in very high PL0 loadings but low PLnon-0 loadings, which in turn lead 
to low Tucker congruence values (Fig. 3). Finally, Bolasso performed the worst among all the methods in terms 
of PL and Tucker congruence. This is primarily because the algorithm is very strict: A loading was identified as a 
non-zero loading only if the loading was estimated to be different from zero in all 50 repetitions (see the Methods 
section). As a result, the algorithm generated an estimated loading matrix with too many zeros - that is, very high 
PL0 loadings in Fig. 5 and very low PLnon-0 loadings in Fig. 4. Figures 6, 7, 8 and 9 present the results of the second sim-
ulation study, where four data blocks were integrated. It may be noted that the four figures are very similar to the 
Figs. 2, 3, 4 and 5, and therefore, similar conclusions can be made for the second simulation study. For the sake of 
simplicity, we do not discuss the Figs. 6, 7, 8, and 9.

Based on the two simulation studies, we conclude that, in practice, IS is the best-performing variable selection 
method for regularized SCA. In addition, more research is needed to improve the stability selection algorithm 
for regularized SCA so that it will no longer rely on the unrealistic assumption that the correct number of total 
non-zero loading is known a priori.

empirical examples. In this section, we present three empirical applications of regularized SCA combined 
with IS for variable selection. We used the first two empirical examples to explain to the reader how to interpret 
the estimated component loading matrix generated by regularized SCA together with IS in applied research. The 
third empirical example is the parent-child relationship data discussed in the Introduction section. We reanalyzed 
the data by using IS and compared the results with Table 2. We remind the reader that, to evaluate and to interpret 
the results generated by regularzed SCA, one typically resorts to both the estimated component loading matrix 
and the estimated component score matrix. In this article, because we focus on variable selection in the compo-
nent loading matrix, we refrain from discussing the interpretation of the estimated component score matrix in 
the remainder of this section. Furthemore, for detailed explanation on the use of regularized SCA and the inter-
pretation of the results, we refer to Gu and Van Deun18.

We used the following setup for IS: 50 Lasso tuning parameter values (equally spaced ranging from 0.0000001 
to the smallest value making the entire estimated component loading matrix a zero matrix), and 50 Group Lasso 
tuning parameter values (equally spaced ranging from 0.0000001 to the smallest value making the entire esti-
mated component loading matrix a zero matrix). All columns in the empirical datasets were mean-centered and 
scaled to norm one before the regularized SCA analysis was performed.

Joint analysis of the Herring data. In food science, researchers are often interested in the chemical/physical char-
acteristics and the sensory characteristics of a certain food item and analyze the characteristics jointly. An 
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example is the Herring data obtained from a ripening experiment44,45. In this article, we used part of the original 
Herring data20, consisting of two datablocks. The first block contained the physical and chemical changes, includ-
ing pHB, ProteinM, ProteinB, Water, AshM, Fat, TCAIndexM, TCAIndexB, TCAM, and TCAB, of 21 salted 
herring samples. The meaning of the labels of the physical and chemical changes can be found at http://www.
models.life.ku.dk/Ripening_of_Herring. The second block contained the sensory data, including features such as 
ripened, rawness, malt, stockfish smell, sweetness, salty, spice, softness, toughness, and watery, of the same 21 
samples. An interesting research question is whether certain physical and chemical changes are associated with 

Figure 2. Integration of two blocks: Proportion of non-zero and zero loadings in P̂C correctly identified (i.e., 
PL). The upper, middle, and bottom panels correspond to Eqs. 1, 2 and 3, respectively. BL stands for BoLasso 
with CV. SS stands for stability selection.

https://doi.org/10.1038/s41598-019-54673-2
http://www.models.life.ku.dk/Ripening_of_Herring
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certain sensory characteristics of the herrings. It may be noted that, in this article, we do not discuss how to iden-
tify the number of components R (see the Methods section), and for this topic, we refer to Gu and Van Deun18. A 
previous study18 suggested that, for the Herring data, the reasonable number of components R was 4. Therefore, 
we performed the regularized SCA analysis with IS and =R 4, and the estimated component loading matrix is 
presented in Table 3. The table suggests that, for each component, not all variables were important. For example, 
for Component 1, variables pHB, Water, and AshM from the block of “physical and chemical changes” and 

Figure 3. Integration of two blocks: Tucker congruences between T̂ and T. The upper, middle, and bottom 
panels correspond to Eqs. 1, 2 and 3, respectively. BL stands for BoLasso with CV. SS stands for stability 
selection.

https://doi.org/10.1038/s41598-019-54673-2
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variables Ripened, Rawness, Stockfish smell, Sweetness, and Spice from the “sensory” block were important and 
therefore their loadings were different from zero. To interpret the associations among the variables of Component 
1, we primarily look at the signs of the non-zero loadings. For example, for Component 1, variables pHB, Water, 
Rawness, Sweetness, and Spice were negatively associated with variables AshM, Ripened, Stockfish smell. The 
remaining three components can be interpreted in the same way.

Figure 4. Integration of two blocks: Proportion of non-zero loadings in P̂C correctly selected (i.e., PLnon-0 loadings). 
BL stands for BoLasso with CV. SS stands for stability selection.

https://doi.org/10.1038/s41598-019-54673-2
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Joint analysis of metabolomics data. In metabolomics, researchers often use multiple instrumental methods to 
measure as many metabolites as possible and perform joint analyses by combining the measures on the same 
metabolites gathered from different instrumental methods5. The dataset used in this article contained measures 
of 28 samples of Escherichia coli (E. coli) obtained from using two measurement methods, which were mass spec-
trometry with gas chromatograph (GC/MS) and mass spectrometry with liquid chromatography (LC/MS)3,4. The 
dataset contained a block of GC/MS data with 144 metabolites and a block of LC/MS data with 44 metabolites. 
For a detailed description of the dataset, including the experimental design and conditions for obtaining the 
measures, we refer to Smilde, Van der Werf, Bijlsma, Van der Werff-van der Vat, and Jellema5. A previous study19 

Figure 5. Integration of two blocks: Proportion of zero loadings in P̂C correctly identified (i.e., PL0 loadings). BL 
stands for BoLasso with CV. SS stands for stability selection.

https://doi.org/10.1038/s41598-019-54673-2
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suggested that the appropriate number of components R was five. We thus performed the regularized SCA analy-
sis with IS and =R 5. It may be noted that, in this example, because of the large number of variables, a table of 
estimated component loading matrix such like Table 3 usually is not practical. Instead, researchers typically use a 
heatmap so as to get some impression about the sparseness of the loading matrix. Figure 10 presents such a 
heatmap for the estimated component loading matrix. We found that many loadings in Fig. 10 were very close or 
equal to zero. As a side note, for this study, researchers typically focus on interpreting the estimated component 
score matrix instead of the estimated component loading matrix (see, e.g., Van Deun, Wilderjans, van den Berg, 
Antoniadis, and Van Mechelen46).

Re-analysis of the parent-child relationship survey data. Table 4 presents the estimated component loading 
matrix obtained by using IS. The orders of the components were adjusted by using Tucker congruence so that the 
components in Table 4 are comparable to the components in Table 2 which were generated by using CV18. The two 
estimated component loading matrices in Tables 4 and 2 are comparable, and the conclusions based on the two 
tables are almost the same. For example, for Component 1 of both tables, the last 7 variables from the “Mother” 

Figure 6. Integration of four blocks: Proportion of non-zero and zero loadings in P̂C correctly identified (i.e., 
PL). BL stands for BoLasso with CV. SS stands for stability selection.

Figure 7. Integration of four blocks: Tucker congruences between T̂ and T. BL stands for BoLasso with CV. SS 
stands for stability selection.
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block were positively associated with the variables “child’s bright future”, “feeling about parenting”, “argue with 
children” from the “Father” block and were also positively associated with the variable “self-confidence/esteem” 
from the “Child” block.

Discussion
In this article, we examined six variable selection methods suitable for regularized SCA. The popular CV-based 
variable selection methods, including CV with “one-standard-error” rule and rdCV, did not outperform other 
methods. This result may be surprising to many researchers, especially considering that CV seems to be the 
standard practice when it comes to variable selection. The poor recovery rate of component loadings by using the 
CV-based methods in the simulations showed that the CV-based methods retained more loadings than needed. 
Stability selection is a promising method, but at this moment we do not know how to identify an accurate lower 
bound for the expected non-zero loadings (i.e., Q), making it impossible to tune λL. Thus, we advocate the use 
of IS. It is possible that a hybrid method combining IS and stability selection may perform better than IS. For 

Figure 8. Integration of four blocks: Proportion of non-zero loadings in P̂C correctly selected (i.e., PLnon-0 

loadings). BL stands for BoLasso with CV. SS stands for stability selection.

Figure 9. Integration of four blocks: Proportion of zero loadings in P̂C correctly identified (i.e., PL0 loadings). BL 
stands for BoLasso with CV. SS stands for stability selection.
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example, one first uses IS to decide the total number of non-zero loadings and then uses stability selection given 
the total number of non-zero loadings. Further examination on this idea is needed.

We focused on determining the status of the components (i.e., common/distinctive structure) and their level 
of sparseness. Another important issue that remains to be fully understood is the selection of the number of com-
ponents R. Because the goal of this article is to understand variable selection methods for the component loading 
matrices, the selection of R is beyond the scope of this article. For interested readers, we refer to Bro, Kjeldahl, 
Smilde, and Kiers47, Gu and Van Deun18, and Måge, Smilde, and van der Kloet48. We believe that more studies 
are needed to evaluate the performance of model selection methods for determining R and the performance of 
variable selection. This may be done sequentially (i.e., first determining R and then, given R, performing variable 
selection) but also simultaneously (for example, using the index of sparseness to determine R and to perform var-
iable selection at the same time). Finally, we call for studies on comparing the performance of variable selection 
methods in regularized models. The six variable selection methods studied in this article originated in sparse 
PCA literature. Therefore, we suspect that stability selection and IS would still outperform the other five methods 
in the sparse PCA settings. However, we are not aware of any study that compares variable selection methods in 
sparse PCA.

Admittedly, the six methods studied in this article do not constitute an exhaustive list of all possible variable 
selection methods for regularized SCA. Other variable selection methods exist, such as the method by Qi, Luo, 
and Zhao49, the information criterion by Chen and Chen43, and the numerical convex hull based method50, but 
they cannot be readily adapted to be used together with regularized SCA. These methods are promising though, 
and therefore require full attention in separate articles.

Methods
Regularized ScA. Let ∈ = …×R k KX , ( 1, 2, , )k

I Jk  denote the kth data block with I rows representing 
subjects, objects, or experimental conditions measured on Jk variables. One may notice that I does not have a 
subscript k, meaning that all K data blocks are to be analyzed jointly with respect to the same I subjects, objects, 
or experimental conditions. Each data block may have a different set of variables. Let ∈ ×∑RXC

I Jk k denote the 
concatenated data matrix, which is obtained by concatenating Xk s with respect to rows (i.e., ≡ …X X X[ , , ]C K1 ). 
Note that I may be much smaller than Jk (i.e., high-dimensional data). Let ∈ ×RT I R denote the component score 
matrix, and let = …r Rt , ( 1, , )r  denote the rth column in T. Let ∈ ×RPk

J Rk  denote the component loading 
matrix for the kth data block, and let = … = …k K r Rp , ( 1, , ; 1, , )r

k  denote the rth column in Pk. Regularized 
SCA performs data integration by means of solving the following minimization problem,

∑ ∑ ∑λ λ− + + JX TP P Pmin ,
(10)k

k k
T

L
k

k G
k

k k
T P,

2

2

1 2k

subject to

Component 1 Component 2 Component 3 Component 4

Physical and chemical changes

pHB 2.98 −1.13 0 2.19

ProteinM 0 2.85 0 −2.97

ProteinB 0 −4.04 −1.35 0.87

Water 0.78 −0.78 0 4.27

AshM −3.67 0 0 2.13

Fat 0 0 0 −4.26

TCAIndexM 0 −4.17 0 0

TCAIndexB 0 0 1.46 −3.97

TCAM 0 −4.09 0 0

TCAB 0 −4.18 −0.73 −0.93

Sensory

Ripened −1.68 −4.02 0 −0.69

Rawness 1.13 2.90 2.46 0

Malt 0 −4.14 0.95 0

Stockfish smell −3.84 −0.99 0 −1.58

Sweetness 1.26 −3.45 0 1.21

Salty 0 0 −4.11 0

Spice 1.23 −1.16 −2.68 0.90

Softness 0 −4.34 0 0

Toughness 0 −4.32 0 0

Watery 0 −4.05 0 1.09

Table 3. The Herring data: Estimated component loading matrix generated by using regularized SCA with IS.
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λ λ= ≥ .T T I; , 0T
L G

Regularized SCA performs dimension reduction by imposing a pre-defined number of components, denoted 
by R ( ≤ ΣR I Jmin( , )k k ; for details on deciding R, see Gu and Van Deun18). ∑ = ∑ ∑ | |pPk k k j r j r

1
,k k

 is the Lasso 

penalty16, and its corresponding tuning parameter is λL. ∑ = ∑ ∑J J pP ( )k k k k k j r j r
2

,
2

k k
 is the Group Lasso 

penalty17, and its corresponding tuning parameter is λG. Note that if λ = 0L  and λ = 0G , Eq. 10 reduces to a least 
squares minimization problem. As a side note, before performing the regularized SCA analysis, all columns in Xk 
may be mean-centered and scaled to norm one or to −Jk

1/2 in order to give all blocks - even those that contain 
relatively few variables - equal weight; This procedure is referred to as data pre-processing. However, one may 
notice that in Eq. 10 the Group Lasso penalty is also weighted by Jk . Thus, it is likely that, when data are scaled to 

−Jk
1/2, Eq. 10 would favor data blocks with fewer variables, because the Group Lasso penalty takes Jk  into account. 

In addition, because in this study we are interested in identifying the associations between (some) variables across 
data blocks, penalties are imposed on the component loading matrix19,46. T is assumed to be the same for all K 
data blocks, and therefore it serves as a “bridge” linking all data blocks. Information shared among all data blocks 
or unique to some blocks, such as the loadings in Table 2, is obtained by estimating the component loading matrix 

= …k KP , ( 1, 2, , )k . Assuming T is known, we may further reduce Eq. 10 to

Figure 10. Joint analysis of metabolomics data: The heatmap for the estimated component loading matrix 
generated by using IS.

https://doi.org/10.1038/s41598-019-54673-2


1 5Scientific RepoRtS |         (2019) 9:18608  | https://doi.org/10.1038/s41598-019-54673-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑ ∑λ λ− + + .
= = =

JX p t p pmin
(11)

k
T

r

R

r
k

r
T

L
r

R

r
k

G k
r

R

r
k

p 1 2

2

1
1

1
2

r
k

Let T̂ denote the estimated component score matrix based on Eq. 10, and let P̂k denote the estimated compo-
nent loading matrix for the kth data block. Further, Let ∈ ∑ ×ˆ RPC

J R( )k k  denote the concatenated estimated com-
ponent loading matrix, which is obtained by concatenating all P̂ sk  with respect to the columns (i.e., 

≡ …ˆ ˆ ˆP P P[ , , ]C
T

K
T T

1 ). The algorithm for estimating Eq. 10 requires an alternating procedure where T̂ and P̂C are 
estimated iteratively. Given P̂C, T̂ is obtained by computing =T̂ VUT, where UΣVT is the SVD of P XC

T
C
T. Given T̂, 

P̂C is obtained by estimating = … = …k K r Rp ( 1, 2, ; 1, 2, , )r
k  in Eq. 11 18:

λ

λ
λ=









−








.

+

ˆ
S

S
J

p
X t

X t1
2 2 (2 , )

(2 , )
(12)

r
k G k

k
T

r L
k
T

r L
2

In Eq. 12, ⋅S( ) denotes the soft-thresholding operator. The operator [x]+ is defined as =+x x[ ] , if >x 0, and 
=+x[ ] 0, if ≤x 0. For details of the estimation procedure, see Algorithm 1 of Gu and Van Deun18.

Information regarding the position of non-zero/zero loadings in PC may be known a priori. For example, 
Bolasso and stability selection procedures, which will be discussed shortly, can be used to identify the position of 
non-zero/zero loadings. Once the position of non-zero/zero loadings is identified, one uses regularized SCA with 
λ λ= = 0L G  to re-estimate the non-zero loadings in PC while keeping the zero loadings fixed throughout the 
estimation procedure. For details of the estimation procedure, see Algorithm 2 of Gu and Van Deun18.

Variable selection methods. The variable selection methods discussed in this article can be categorized 
into two groups. The first group, including CV with “one-standard-error” rule, rdCV, BIC criterion, and IS, aims 
at identifying the optimal λL and λG for Eq. 10. Once the optimal λL and λG are obtained, one re-estimates the 
model by using the optimal λL and λG. The second group, including the Bolasso with CV and stability selection, 

Component 
1

Component 
2

Component 
3

Component 
4

Component 
5

Mother

Relationship with partners 0 0 12.05 0 0

Argue with partners −5.42 0 5.74 0 0

Childs bright future −8.88 0 0 0 0

Activities with children −4.09 −8.71 0 0 0

Feeling about parenting −8.85 0 2.80 0 0

Communation with children −8.77 −3.81 0 0 0

Argue with children −9.07 0 0 0 0

Confidence about oneself −6.45 0 7.35 0 0

Father

Relationship with partners 0 0 11.85 0 0

Argue with partners 0 0 5.12 0 −9.27

Childs bright future −3.53 0 0 0 −5.63

Activities with children 0 −10.87 0 0 0

Feeling about parenting −4.17 0 0 0 −6.84

Communation with children 0 −8.71 0 0 0

Argue with children −5.07 0 0 0 −9.83

Confidence about oneself 0 0 5.51 0 −8.29

Child

Self confidence/esteem −5.88 0 0 8.65 0

Academic performance 0 0 0 7.12 0

Social life and extracurricular 0 0 0 4.03 0

Importance of friendship 0 0 0 9.57 0

Self Image 0 0 0 10.44 0

Happiness 0 0 0 9.64 0

Confidence about the future 0 −4.72 0 7.19 0

Table 4. The parent-child relationship data: Estimated component loading matrix generated by using 
regularized SCA with IS. Please be noted that the signs of components 1, 2, and 5 were manually changed 
from positive to negative. The signs of Component 3 were manually changed from negative to positive. Due 
to the invariance of signs of regularized SCA, changing signs do not influence the interpretation of loadings. 
Therefore, we changed the signs to make it easier for the reader to compare the table with Table 2.
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aims at identifying the position of non-zero/zero loadings in PC through repeated sampling. Once the position of 
non-zero/zero loadings is identified, one re-estimates the non-zero loadings while keeping the zero loadings fixed 
at zero. In the remainder of this article, we assume that the number of components R is known. To identify R in 
practice, one may use the Variance Accounted For (VAF) method9,10 and the PCA-GCA method14. Both methods 
are included in the R package “RegularizedSCA”20 (for details on how to use the two methods, see Gu and Van 
Deun18). We remind the reader that more research is needed for fully understanding how to identify R.

CV with “one-standard-error” rule. Given a set of λL s (consisting of evenly spaced increasing values ranging 
from a value close to zero, say, 0.000001, to the smallest value making =P̂ 0C ), denoted by ΛL, and a set of λG s 
(also consisting of evenly spaced increasing values ranging from a value close to zero to the smallest value making 

=P̂ 0C ), denoted by ΛG, the algorithm searches through a grid of λL s and λs s (i.e., the Cartesian product of ΛL 
and ΛG). For each combination of λL and λG, denoted by λ λ( , )L G , the algorithm conducts K-fold CV. Take 10-fold 
CV for example, 10% of the data cells in XC are replaced with missing values, and afterwards, missing values in 
each column are replaced with the mean of that column. The algorithm then computes the mean squared predic-
tion errors (MSPE)51 for each λ λ( , )L G . (Suppose a Q-fold CV ( = … …Q q Q1, , , ) is performed. Let Xk

q( ) denote 
the data from the kth block for the qth fold. Let P̂k

q( )
 denote the estimated component loading matrix for the kth 

data block for the qth fold. Let T̂
q( )

 denote the estimated component score matrix for the qth fold. Then MSPE is 

Σ Σ − ˆ ˆ QX T P( ) /q k k
q q

k
q T( ) ( ) ( )

2

2
). Let λ λMSPE( , )L G

 denote the MSPE given λ λ( , )L G . Let λ λ( *, *)L G  denote the pair 
that generates the smallest MSPE across all pairs of λ λ( , ) sL G , and let λ λSE( , )* *L G

 denote the standard error of 
λ λMSPE( , )* *L G

. Applying the “one-standard-error” rule26, the algorithm searches for the optimal pair, denoted by 
λ λ( , )L

o
G
o , such that its MSPE, λ λMSPE( , )L

o
G
o , is closest to but not larger than +λ λ λ λMSPE SE( , ) ( , )* * * *L G L G

. As a side 
note, in the simulation, the algorithm searched the optimal pair whose MSPE was closest to (i.e., could be slightly 
larger or smaller than) +λ λ λ λ⁎ ⁎ ⁎ ⁎MSPE SE( , ) ( , )L G L G

. In the simulation, we used 5-fold CV.

Repeated double cross-validation (rdCV). The rdCV27, as its name would suggest, is an algorithm that performs 
double CV repeatedly. Double CV consists of two so-called “layers”, and at each layer a CV is executed. Figure 11 
presents a sketch of the algorithm. In the ρth repetition (ρ = … P1, , repetition), the concatenated dataset, XC, is 
randomly split into T segments with a (nearly) equal sample size; that is, each segment contains (roughly) the 
same number of subjects/objects/experimental conditions. The τth segment, denoted by τSEG  (τ = … T1, , ), is 
used as the test set, and the remaining segments constitute the calibration set, denoted by τ−SEG . The algorithm 
then executes CV with “one-standard-error” rule on τ−SEG  and generates the optimal λ λ( , )L

o
G
o  for τ−SEG . Thus, 

in total, ×P Trepetition  pairs of λ λ( , ) sL
o

G
o  are generated. Note that, in Fig. 11, one may add an extra step after Step 

(d): In this extra step, one may calculate the MSPE, which provides information for selecting optimal tuning 
parameters. But Filzmoser, Liebmann, and Varmuza27 suggested that the extra step might be omitted: One may 
simply use a histogram or a frequency table for the ×P Trepetition  pairs of λ sL

o  and λ sG
o  and choose the λL

o and λG
o 

that have been generated most frequently by the algorithm. In the simulation, we let the algorithm choose the 
most frequently generated λL

o and λG
o separately, which was more efficient computationally. In addition, we used 

5-fold CV for the inner layer, and for the outer layer, we set the number of segment =T 2 and the number of 
repetition =P 50repetition .

Figure 11. The algorithm of the rdCV.
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The BIC criterion. Given a set of λL s (consisting of evenly spaced increasing values ranging from a value close to 
zero, say, 0.000001, to the smallest value making =P̂ 0C ), denoted by ΛL, and a set of λG s (also consisting of 
evenly spaced increasing values ranging from a value close to zero to the smallest value making =P̂ 0C ), denoted 
by ΛG, the algorithm searches through a grid of λL s and λG s (i.e., the Cartesian product of ΛL and ΛG). For each 
combination of λL and λG, denoted by λ λ( , )L G , the algorithm computes the BIC.

The BIC criterion used in this article is based on two BIC criteria in the sparse PCA literature, one proposed 
by Croux, Filzmoser, and Fritz34 and the other one by Guo, James, Levina, Michailidis, and Zhu35. We define the 

variance of the residual matrix if there would be no sparseness in P̂, denoted by V, as = − ˆ ˆV X T P( )C
sca

C
sca T( ) ( )

2

2
, 

where T̂
sca( )

 and P̂C
sca( )

 are obtained from the traditional simultaneous component model without Lasso and Group 
Lasso penalties. We define the variance of the residual matrix given λL and λG, denoted by ∼V , as 

= −
∼ ˆ ˆV X TPC C

T

2

2
, where T̂ and P̂C are obtained from Eq. 10. We define the degrees of freedom given λL and λG, 

denoted by λ λdf ( , )L G , as the number of non-zero loadings in P̂C. Then the BIC criterion adjusted for regularized 
SCA, given λL and λG, based on Croux et al. is

λ λ λ λ= +
∼

BIC V
V

df log I
I

( , ) ( , ) ( ) , (13)L G L G

and the BIC criterion adjusted for the regularized SCA method based on Guo et al. is

λ λ λ λ= + .
∼

BIC IV
V

df log I( , ) ( , ) ( ) (14)L G L G

Notice that the BIC in Eq. 14 is exactly I times the BIC in Eq. 13. Thus, the two methods are in fact equivalent. 
Then, the optimal tuning parameter values, λ λ( , )L

o
G
o , are the ones that generate the lowest BIC.

Index of Sparseness (IS). Given a set of λL s (consisting of evenly spaced increasing values ranging from a value 
close to zero, say, 0.000001, to the smallest value making =P̂ 0C ), denoted by ΛL, and a set of λG s (also consisting 
of evenly spaced increasing values ranging from a value close to zero to the smallest value making =P̂ 0C ), 
denoted by ΛG, the algorithm searches through a grid of λL s and λs s (i.e., the Cartesian product of ΛL and ΛG). 
For each combination of λL and λG, denoted by λ λ( , )L G , the algorithm computes the IS.

We define the total variance in XC, denoted by Vo, as =V Xo C 2
2. The unadjusted variance assuming no pen-

alty (i.e., λ λ= = 0L G ), denoted by Vs, is defined as = ˆ ˆV T P( )s
sca

C
sca T( ) ( )

2

2
. Finally, the adjusted variance, denoted 

by Va, is defined as = ˆ ˆV TPa C
T

2

2
, where T̂ and P̂C are obtained from Eq. 10 (i.e., λ ≠ 0L  and λ ≠ 0G ). Let #o denote 

the total number of zero loadings in P̂C. Then IS, according to Gajjar, Kulahci, and Palazoglu28 and Trendafilov29, 
is

= ×
∑ ×

.IS V V
V J R

#
( ) (15)

a s

o

o

k k
2

The optimal tuning parameter values, λ λ( , )L
o

G
o , are the ones that generate the largest IS.

Bolasso with CV. Bolasso, originally proposed by Bach31, has been extended to a hybrid procedure combining 
the original Bolasso with CV32,33 for stably selecting variables in Lasso regression. Figure 12 presents the algo-
rithm of the Bolasso with CV. In essence, the Bolasso is a bootstrapping procedure. For each bootstrap sample, 
regularized SCA with K-fold CV is executed, generating the optimal tuning parameters, λ λ( , )L

o
G
o  based on the 

Figure 12. The algorithm of the Bolasso with CV.
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“one-standard-error” rule. Afterwards, P̂C is obtained given λ λ( , )L
o

G
o . Let Prepetition denote the total number of 

repetitions. Then in total Prepetition P̂ sC  are generated. The algorithm then compares the Prepetition P̂ sC , checks which 
loadings have been estimated to be not zeros for Prepetition times, and records the corresponding index set. As a 
result, an index set containing the position of non-zero loadings is obtained. Finally, P̂C and T̂ are estimated given 
the index set. One may notice that because of the invariance of the regularized SCA solution under permutations 
of components18, the P̂ sC  must first be adjusted according to a reference matrix by using the Tucker congruence42 
(for details, see the R script provided in the supplementary material). As a side note, in the simulation, we used 
5-fold CV and let =P 50repetition .

Stability selection. Stability selection25 was demonstrated for variable selection in regression analysis and graph-
ical models based on the Lasso. To use this method for regularized SCA, we have made a few adjustments and 
present the algorithm in Fig. 13. The algorithm goes through a set of S Lasso tuning parameter values with 
decreasing order, denoted by λ λ λ λΛ = … …[ , , , , , ]L L L L

s
L

S(1) (2) ( ) ( ) , λ λ λ λ> > > > > ( )L L L
s

L
S(1) (2) ( ) ( ) , 

indexed by = …s S1, 2, , . λL
(1) is fixed at the minimum value that makes ≡P̂ 0C . Given the sth value, λL

s( ), the 
algorithm works as follows. First, 100 samples with ⌊ ⌋I/2  subjects (i.e., rows) from XC are randomly drawn without 
replacement. For each sample created, regularized SCA with λL

s( ) and λ = 0G  is applied. Therefore, the algorithm 
generates 100 P̂ sC . Because of the invariance of regularized SCA solution under permutations of components, the 
P̂ sC  are adjusted according to a common reference matrix by using the Tucker congruence (for details, see the R 
script in the supplementary material). Then, the algorithm counts the number of times that the same loading is 
estimated to be a non-zero loading across the 100 P̂ sC , which is then divided by 100, resulting in the selection 
probability for that loading (see Step 1(d) in Fig. 13). As a result, each component loading has a selection proba-
bility, which is then compared to a pre-defined selection probability threshold πthr, and the loadings for which the 
selection probabilities lower than πthr are constrained to be zero loadings. The error control theorem proposed by 
Meinshausen and Bühlmann25 (Theorem 1, p. 7) adjusted for the regularized SCA model is

Figure 13. The algorithm of stability selection adjusted for regularized SCA.
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π
≤

−
×

∑
EV Q

R J
1

2 1
,

(16)thr k k

2

where EV denotes the expected number of falsely selected variables, Q denotes the expected non-zero loadings, 
and ∑R Jk k is the total number of loadings. We notice that, when Gu and Van Deun19 applied stability selection in 
their study on regularized SCA, they failed to recognize the problem of Eq. 16: When used for regularized SCA, 
the lower bound for Q produced by Eq. 16 is not strict enough, making it difficult to tune ΛL. To explain, we use 
the first simulation study in the Results section as an example and consider the situation of 

= ∈ = ∈× ×R Rx xX X{ } and { }ij ij1
20 120

2
20 30 and 50% of loadings in p1

1, p1
2, p2

2, and p3
1 are zero loadings. In this 

case, the total number of non-zero loadings is 150, and the total number of loadings is ∑ = × =R J 3 150 450k k . 
If we use Eq. 16 and let =EV 1, and π = .0 9thr , then ≥Q 19, which is much smaller than 150 (i.e, the total num-
ber of non-zero loadings). Thus, using Eq. 16 to tune ΛL is likely to generate a component loading matrix that is 
too sparse. In this article, the algorithm tunes ΛL by using the number of expected non-zero component loadings 
Q, which is assumed known a priori (see Step 1(e) in Fig. 13). Thus, given λL

s( ), if the total number of loadings with 
selection probability not lower than πthr is equal to or larger than Q, then the algorithm ignores the remaining 
Lasso tuning parameter values λ λ…+[ , , ]L

s
L

S( 1) ( ) . Assume the algorithm stops at λL
s( ), then for each loading, there 

are s selection probabilities generated based on λ λ…[ , , ]L L
s(1) ( ) . The algorithm records the maximum selection 

probability across the s selection probabilities for each loading, ranks the loadings in descending order according 
to their associated maximum selection probabilities, and picks the loadings whose maximum probabilities belong 
to the first Q maximum probabilities (see steps 2, 3, and 4 in Fig. 13). Finally, the selected loadings are 
re-estimated, while the remaining loadings are fixed at zero. As a side note, in the simulation, we set π = .0 6thr . 
Also in the simulation, Q was known, which was the total number of non-zero loadings in PC

true, but this is unre-
alistic in practice.
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