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Previous cDNA microarray results showed that MYH9 gene expression levels are
increased in TGF-β1-stimulated lung fibroblast. Recently, our proteomic results
revealed that the expression levels of MYH9 protein are notably upregulated in lung
tissues of bleomycin-treated rats. However, whether MYH9 plays a critical role in the
differentiation of fibroblast remains unclear. Herein, we demonstrated that TGF-β1
increased MYH9 expression, and siRNA-mediated knockdown of MYH9 and
pharmacological inhibition of MYH9 ATPase activity remarkably repressed TGF-β1-
induced lung fibroblast-to-myofibroblast differentiation. TGF-β1-stimulated MYH9
induction might be via ALK5/Smad2/3 pathway but not through noncanonical
pathways, including p38 mitogen-activated kinase, and Akt pathways in lung
fibroblasts. Our results showed that MYH9 inhibition suppressed TGF-β1-induced lung
fibroblast-to-myofibroblast differentiation, which provides valuable information for
illuminating the pathological mechanisms of lung fibroblast differentiation, and gives
clues for finding new potential target for pulmonary fibrosis treatment.
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INTRODUCTION

Fibroblasts are the primary mesenchymal cells in lung tissues, and their overactivation and
differentiation into myofibroblasts are crucial to fibrosis progression induced by pulmonary
toxic drugs or other lesions (Siani and Tirelli, 2014; Weng et al., 2014; Darby et al., 2016),
which lead to the loss of respiratory function and finally death. The differentiation of fibroblasts
into myofibroblasts is featured by the increase of α-smoothmuscle actin (α-SMA) expression and cell
cytoplasmic filament formation. In addition, the activated myofibroblasts secrete abundant collagen
and fibronectin-containing extracellular matrix that accumulates and is remodeled into fibroblast
foci (Scotton and Chambers, 2007). These functional changes mainly contribute to fibrosis
development that is regulated by canonical and noncanonical TGF-β1 signaling (Gharaee-
Kermani et al., 2009).

In, 2003, Rice et al. (Rice and Leinwand, 2003) firstly reported the roles of three isoforms of
skeletal muscle myosin heavy chains (IIa, IId, and embryonic) and their enzymatic activity in lung
myofibroblast biology. On the other hand, class II non-muscle myosin has three isoforms, NM IIA,
NM IIB, and NM IIC, which are encoded by three different genes, MYH9, MYH10, and MYH14,
respectively. Southern et al. (Southern et al., 2016) thought MYH10 might be an effector of the pro-
fibrotic phenotype. These indicated that elucidating the function of muscle myosin and non-muscle
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myosin might provide candidate targets for the regulation of
myofibroblast differentiation. However, much work about these
remains to be done.

Intriguingly, only the levels of MYH9 in TGFβ1-stimulated
fibroblasts change in both Kapoun’s cDNA microarray data
(Kapoun et al., 2006) and our previous proteomic results (Zhou
et al., 2017). However, whetherMYH9 really exerts an important role
in lung fibroblast-to-myofibroblast differentiation remains unclear. In
this work, we explored the expression and function ofMYH9 protein
in TGF-β1-induced lung fibroblasts and further investigated how
TGF-β1 upregulated MYH9 protein expression in lung fibroblasts.

MATERIALS AND METHODS

Reagents
Human recombinant TGF-β1 (Cat. No. 240-B-010) was purchased
from R&D (Minneapolis, MN). MYH9 siRNAs (Cat. No. 129901,
siRNA ID, HSS106870, HSS106871) and negative control siRNA
were acquired from Invitrogen (Waltham, MA). Negative control
siRNA and Smad2 and Smad3 siRNA were bought from Shanghai
Genepharma Inc. Validated Smad2 siRNA sequence (Jeon et al.,
2006): sense, 5′-GUCCCAUGAAAAGACUUAA-3′. Validated
Smad3 siRNA (Jazag et al., 2005): sense, 5′-ATGGTGCGAGAA
GGCGGTCAA-3′. siRNAs were transfected into cells 24 h before
TGF-β1 treatment by using Lipofectamine RNAiMax reagent.
Blebbistatin (SF9087), SB43152 (SF7890), perifosine (SC0227),
and SB203580 (S1863) were purchased from Beyotime (Haimen,
China). Rabbit anti-MYH9 antibody (ab138498), rabbit anti-
α-SMA antibody (ab124694), rabbit anti-fibronectin antibody
(ab45688), rabbit anti-Smad2 (ab40855), and rabbit anti-Smad3
(ab40854) were bought from Abcam (Cambridge, United
Kingdom). Rabbit anti-p-Smad2/3 antibody (8,828) were
acquired from Cell signaling technology (Danvers, MA). Rat tail
collagen (sc-136157) was procured from Santa Cruz (Dallas, TA).
Secondary antibodies were obtained from LI-COR (Lincoln, NE).

Cells
MRC-5 cell line (Cat. No, CCL-171; Lot No. 62559214) was
procured from the American Type Culture Collection (Manassas,
VA) andmaintained inMEMwith 10% FBS at 37°C with 5% CO2.
The MRC-5 cells were seeded into plates, and their density was
approximately 2×104 cells/mL; on the following day, the medium
was changed into MEM containing 0.5% FBS and cultured
overnight. Then, TGF-β1 (2.5 ng/ml) co-treated with/without
blebbistantin (MYH9 ATPase inhibitor), SB43152 (ALK5
inhibitor), perifosine (Akt inhibitor), and SB203580 (p38
MAPK inhibitor) was used to treat the cells. Finally, the cells
were prepared for the following experiments.

Total mRNA Isolation and Real-Time PCR
Analysis
Total mRNA of MRC-5 cells was extracted using RNA extraction
kit (Vazyme) and the extracted mRNA was measured by using
Nanodrop spectrophotometry (Thermo-Scientific, Wilmington,
DE). Total mRNA was reverse-transcribed, and cDNA was then

subjected to real-time PCR analysis. The levels of MYH9 and
GAPDH mRNA expression were measured by using the SYBR
Green kit (Thermo). These primers’ sequences were as follows:
MYH9: sense, 5ʹ- CCTCAAGGAGC- GTTACTACTCA-3ʹ;
antisense, 5ʹ-CTGTAGGCGGTGTCTGTGAT-3ʹ, and GAPDH:
sense, 5ʹ-GCTGGCGCTGAGTACGTCGTGGAGT-3ʹ; antisense,
5ʹ-CACAGTCTT-CTGGGTGGCAGTGATGG-3ʹ. These primers
were acquired from Shanghai Sangon.

Western Blot Analysis
Western blot analysis was conducted as previously described
(Gao et al., 2013; Cui et al., 2018). In a typical procedure, the
protein samples were separated by running 6% or 12% SDS-
PAGE and transferred into the PVDF membrane (Merck
Millipore). Then, the PVDF membrane was blocked using 5%

FIGURE 1 | TGF-β1 stimulated MYH9 mRNA and protein expression in
MRC-5 cells. MRC-5 cells were maintained in MEM with 10% FBS and
stimulated with/without 2.5 ng/ml of TGF-β1 for 48 h. MYH9 mRNA
expression (A) was determined by qRT-PCR analysis, and MYH9
protein expression (B) was measured with Western blot analysis. n � 3;
control group vs. TGF-β1 group: *p < 0.05.
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nonfat milk for approximately 45 min, and the membrane was
incubated with the indicated primary antibody overnight. On the
following day, the membrane was incubated with the specific
secondary antibody for approximately 1 h. Finally, the PVDF
membrane was scanned and visualized by LI-COR Imaging
System (Nebraska, United States).

Cell Immunofluorescence
F-actin immunostaining analysis was carried out in accordance with
a previously reportedmethod (Cui et al., 2018; Lu et al., 2020).MRC-
5 cells were induced by TGF-β1 (2.5 ng/ml) treatment with/without
MYH9 siRNA for 48 h. Then, the cells were fixed and permeabilized.
The permeabilized cells were incubated in 100 nM of rhodamine
phalloidin for 30 min. After they were rinsed with PBS three times,
the cells were incubated with DAPI working solution (final
concentration: 100 nM) for 30 s. Lastly, the cells were rinsed with
PBS three times, and they were visualized and captured using an
Olympus X-51 microscope.

Assay of Fibroblast-Containing Gel
Contraction Capability
Fibroblast gel contraction assay was conducted in accordance with
our previous report (Cui et al., 2018; Lu et al., 2020). Briefly, MRC-5
cell suspension (1×105 cells/mL) was mixed with rat tail collagen
solution (3 mg/ml) at a ratio of 2:1 for fibroblast-containing collagen
gel assay. The mixtures were placed in plates for 30 min. The gels
were then detached and continued to culture in MEM containing
10% FBS overnight. On the following day, the media were replaced
with MEM containing 0.5% FBS for 24 h. Afterward, the fibroblast
collagen gels were stimulated with/without 2.5 ng/ml of TGF-β1 and
10 μMof blebbistantin for 48 h. Finally, the collagen gel surface areas
were determined using ImageJ software.

Statistics
For statistical analysis, post hoc tests with one-way ANOVA with
were conducted for comparisons between groups. Error bars in
the figures were used to represent standard deviation.

RESULTS

TGF-β1 Stimulated MYH9 mRNA and
Protein Expression in MRC-5 Cells
TGF-β1 is well known as a profibrotic cytokine that promotes lung
fibroblast-to-myofibroblast differentiation (Kim et al., 2018). We

FIGURE 2 | Inhibition of MYH9 repressed TGF-β1-induced fibroblast-to-
myofibroblast differentiation in MRC-5 cells (A) RNA interference-mediated
knockdown of MYH9 repressed TGF-β1-induced fibroblast-to-myofibroblast
differentiation in MRC-5 cells. MRC-5 cells were transfected with
scramble or MYH9 siRNA (50 nM); 24 h after transfection, the cells were
starved overnight. MRC-5 cells were treated with/without 2.5 ng/ml of TGF-β1

(Continued )

FIGURE 2 | for 48 h. MRC-5 cell protein samples were prepared and assayed
by Western blot analysis for determing MYH9, α-SMA and fibronectin protein
expression levels (B) Blebbistatin alleviated TGF-β1-stimulated differentiation
of MRC-5 cells. MRC-5 cells were co-treated with/without 2.5 ng/ml of TGF-
β1 and 10 μM of blebbistatin for 48 h. The α-SMA protein expression levels in
different treatment groups were determined by Western blot analysis. n � 3;
scramble siRNA group vs. scramble siRNA group treated with TGF-β1: *p <
0.05; scramble siRNA group treated with TGF-β1 vs. MYH9 siRNA group
treated with TGF-β1: #p < 0.05.
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determined the levels of MYH9 mRNA and protein expression in
TGF-β1-stimulated MRC-5 cells. Both MYH9 mRNA and protein
expression levels in TGF-β1-treated MRC-5 cells were higher than
those of normal fibroblasts, as shown in Figure 1A and Figure 1B,

which was consistent with that of previous cDNAmicroarray results
from TGF-β1-stimulated fibroblast differentiation (Kapoun et al.,
2006) and our previous proteomic results from bleomycin-treated
rats (Zhou et al., 2017).

FIGURE 3 |Decrease in MYH9 suppressed formation of cell filaments stimulated by TGF-β1 in MRC-5 cells. MRC-5 cells were stimulated with/without 2.5 ng/ml of
TGF-β1 for 48 h. MRC-5 cells were stained with rhodamine phalloidin in red. Blue corresponds to DAPI (nuclei). Three replicate experiments were performed, and one
representative experiment was displayed. The quantification results of F-actin intensity were measured using ImageJ software (n � 3, control group vs. TGF-β1 group:
*p < 0.05; TGF-β1 group vs. blebbistantin group: #p < 0.05).
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Inhibition of MYH9 Repressed
TGF-β1-Induced Fibroblast-To-
Myofibroblast Differentiation in MRC-5 Cells
To further investigate the role of MYH9 in lung fibroblast-to-
myofibroblast differentiation, we conducted siRNA-mediated
knockdown of MYH9 and then determined the expression levels
of α-SMA protein, one of the most important markers of fibroblast-
to-myofibroblast differentiation (Weng et al., 2014). As shown in
Figure 2A, data from Western blot analysis exhibited a notable
decrease in MYH9 protein upon siRNA knockdown, and
subsequently MYH9 knockdown reduced the levels of α-SMA
and fibronectin in TGF-β1-induced MRC-5 cells. This result
suggested that MYH9 knockdown repressed TGF-β1-induced lung
fibroblast differentiation.

MYH9 protein can integrate with actin and induce mechanical
force via magnesium-dependent ATPase activity of MYH9 protein
(Kovacs et al., 2004; Lv et al., 2013). Therefore, we considered
whether MYH9 protein ATPase activity contributes to the TGF-
β1-induced expression of fibroblast-to-myofibroblast differentiation
markers in lung fibroblasts. The pharmacological inhibition of
MYH9 protein by its inhibitor, blebbistatin (10 μM), prevented
the induction of α-SMA protein by TGF-β1 in MRC-5 cells
(Figure 2B). These data indicated that MYH9 inhibition
alleviates TGF-β1-induced lung fibroblast-to-myofibroblast
differentiation.

Decrease in MYH9 Suppressed the
Formation of Cell Filaments Stimulated by
TGF-β1 in MRC-5 Cells
The formation of many thickened cytoplasmic stress filaments is
one critical characteristic that shows a successful phenotypic
transition from fibroblasts to myofibroblasts (Cai et al., 2012;
Cui et al., 2018). Here, we performed MYH9 knockdown using
MYH9 siRNA directed toward MYH9 mRNA to study whether
MYH9 plays a crucial role in the formation of cytoplasmic
filaments in MRC-5 cells. As shown in Figure 3, MYH9
downregulation abrogated the TGF-β1-stimulated well-
organized cytoplasmic filaments in MRC-5 cells. This finding
showed that MYH9 knockdown can repress TGF-β1-induced
lung fibroblast-to-myofibroblast differentiation.

Blebbistatin, a MYH9 Protein Inhibitor,
Attenuated TGF-β1-Stimulated
Fibroblast-Containing Collagen Gel
Contraction Capability
To further validate the roles of MYH9 ATPase activity in TGF-
β1-induced lung fibroblast-to-myofibroblast differentiation, we
conducted collagen gel contraction capability assay as described
in our previous report. As shown in Figure 4, blebbistatin
decreased the contraction capacity of MRC-5 cell-containing

FIGURE 4 |Blebbistatin attenuated TGF-β1-stimulated fibroblast-containing collagen gel contraction capability. MRC-5 cell-containging collagen gels were treated
with/without 2.5 ng/ml of TGF-β1 and 10 μMof blebbistatin for 48 h. The surface area of MRC-5 cell-containing collagen gel wasmeasured using ImageJ software (n � 3,
control group vs. TGF-β1 group: *p < 0.05; TGF-β1 group vs. blebbistantin group: #p < 0.05).
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collagen gels. The result also suggested that MYH9 inhibition
attenuates TGF-β1-induced human lung fibroblast-to-
myofibroblast differentiation.

ALK5 Kinase Activity but Not the Activation
of p38 MAPK and Akt Was Required for
TGF-β1-Stimulated MYH9 Expression
To define the upstream mechanisms of TGF-β1-stimulated MYH9
induction in MRC-5 cells, we tested the effects of pharmacologic
inhibitors of ALK5, p38 MAPK, and Akt on these cells. Among
them, only ALK5 inhibition reduced the MYH9 protein expression
levels stimulated by TGF-β1 in MRC-5 cells, whereas the other two
inhibitors did not affect the MYH9 protein expression (Figure 5).
This result suggested that TGF-β1-inducedMYH9 inductionmay be
through ALK5 signaling activation.

Smad2/3 Mediated TGF-β1-Stimulated
MYH9 Induction in MRC-5 Cells
ALK5 is known to activate Smad2 and Smad3 (Budi et al., 2017).
To determine whether TGF-β1 stimulates MYH9 via Smad2 and
Smad3 protein, we used an RNAi strategy to determine if Smad2
or Smad3 is required for MYH9 induction in TGF-β1-treated
MRC-5 cells; Smad2 or Smad3 knockdown inhibited TGF-β1-
induced MYH9 inducibility (Figure 6). These data indicated that

TGF-β1-stimulated MYH9 induction was associated with the
regulation of ALK5/SMAD2/3 signaling in lung fibroblast-to-
myofibroblast differentiation.

Knockdown of MYH9 did Not Alter
the Smad2/3 Phosphorylation in
TGF-β1-Treated MRC-5 Cells
To investigate whether MYH9 regulates TGF-β1 signaling, the levels
of Smad2/3 phosphorylation were measured by immunoblotting
after siRNA-mediated knockdown of MYH9 followed by TGF-β1
induction for 1 h. As shown in Figure 7, knockdown of MYH9 did
not changed the phosphorylation of Smad2 and Smad3 in TGF-β1-
stimulated MRC-5 cells. These data suggested that MYH9 was a
downstream effector of TGF-β/Smads signaling in lung fibroblast-to
myofibroblast differentiation.

DISCUSSION

The activation of fibroblasts is an important pathophysiological
mechanism in pulmonary fibrosis (Park et al., 2012; Rahaman
et al., 2014;Wei et al., 2017; Penke et al., 2018). Myofibroblasts are

FIGURE 5 | ALK5 activity but not the activation of p38 MAPK and Akt
was required for TGF-β1-stimulated MYH9 induction. MRC-5 cells were co-
treated with/without 2.5 ng/ml of TGF-β1, 10 μMof SB43152 (ALK5 inhibitor),
10 μMof perifosine (AKT inhibitor), and 0.5 μMof SB203580 (p38MAPK
inhibitor) for 48 h. The expression levels of MYH9 protein in different treatment
groups were measured byWestern blot analysis (n � 3, control group vs. TGF-
β1 group: *p < 0.05; TGF-β1 group vs. ALK5 inhibitor group: #p < 0.05; TGF-
β1 group vs. p38 MAPK or Akt inhibitor group: NS).

FIGURE 6 | Smad2/3 mediated TGF-β1-stimulated MYH9 expression in
MRC-5 cells. MRC-5 cells were transfected with scramble, Smad2, or Smad3
siRNA (100 nM); 24 h later, the cells were starved overnight. The cells were
treated with/without 2.5 ng/ml of TGF-β1 for 48 h. MRC-5 cell protein
samples were prepared and assayed by Western blot analysis for determing
MYH9 protein expression levels (n � 3; control group vs. TGF-β1 group: *p <
0.05; scramble siRNA group vs. Smad siRNA group: #p < 0.05).
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active effector cells in wound repair and healing, but the
overactivation of these effector cells in injured or damaged
tissues can dysregulate repair and healing process featured by

the promotion of progressive tissue remodeling and fibrosis
(Tanaka et al., 2010; Xie et al., 2016). Fibroblast-to-
myofibroblast differentiation is mainly mediated by TGF-β1,
but its molecular mechanisms remains unclear (Kim et al.,
2018). Understanding the mechanisms is crucial for the
discovery of novel therapeutic treatments for this fatal and
largely treatment-ineffective disorder (Dunkern et al., 2007;
Michalik et al., 2013; Sabatini et al., 2013; Yang et al., 2014;
Abdalla et al., 2015). Kapoun et al. used global gene expression
data for the classification and characterization of pulmonary
fibrosis-specific gene sets that regulate fibroblast processes
involved in fibrotic pathogenesis and found that the MYH
gene is upregulated by TGF-β1 in human lung fibroblasts
(Kapoun et al., 2006). In this study, we demonstrate for the
first time that MYH9 is increased and is required for the
induction of fibroblast-to-myofibroblast differentiation by
TGF-β1 in human lung fibroblasts.

MYH9 protein, a cytoplasmic nonmuscle myosin, plays
important roles in human development and disease (Pecci
et al., 2018). Although MYH9 functions have been studied for
decades, its role in lung fibroblast-to-myofibroblast
differentiation remains elusive. In this work, we found that
MYH9 inhibition represses TGF-β1-stimulated lung fibroblast-
to-myofibroblast differentiation. MYH9 knockdown by siRNA
led to a decrease in α-SMA protein expression levels in the
presence of TGF-β1 and reduced TGF-β1-stimulated cell
cytoplasmic filament formation in MRC-5 cells. The biological
activity of MYH9 also depends on its capacity to bind and
hydrolyze ATP, which drives the closed conformation of the
MYH9 chaperone that represents its active form. Studies have
demonstrated that the inhibition of MYH9 activity remarkably
impairs cell migration and invasion. Liu et al. reported that
blebbistatin, an inhibitor of MYH9 ATPase activity, decreases

FIGURE 7 | Knockdown of MYH9 did not change the Smad2/3
phosphorylation in TGF-β1-stimulated MRC-5 cells. MRC-5 cells were
transfected with scramble or MYH9 siRNA (50 nM); 24 h after transfection, the
cells were starved overnight. MRC-5 cells were treated with/without
2.5 ng/ml of TGF-β1 for 1 h. MRC-5 cell protein samples were prepared and
assayed by Western blot analysis for determing the levels of Smad2/3
phosphorylation (n � 3, control group vs. TGF-β1 group: *p < 0.05; Scramble
siRNA group vs. MYH9 siRNA group: NS).

FIGURE 8 | Schematic representing the regulation of MYH9 on TGF-β1-
induced myofibroblast differentiation.
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contraction capability of activated hepatic stellate cells (Liu et al.,
2010). In our work, blebbistatin reduced the α-SMA expression
levels in TGF-β1-treated MRC-5 cells and alleviated the
contraction capability of fibroblast-containing collagen gel that
was stimulated by TGF-β1. Overall, these data indicate that
MYH9 inhibition can suppress lung fibroblast-to-myofibroblast
differentiation. Although TGF-β1-treated MRC-5 cell is a classic
model of studying fibroblast differentiation, it is not identical with
fibroblasts from idiopathic pulmonary fibrosis patients, and
much work about MYH9-regulated fibroblast differentiation
remains to be investigated.

In the present work, MYH9 was confirmed as the protein
upregulated by TGF-β1 stimulation, which is consistent with
our previous proteomic data in bleomycin-treated rats (Zhou
et al., 2017). TGF-β1 is a multifunctional cytokine that plays a
major role in the pathogenesis of pulmonary fibrosis (Kim et al.,
2018). TGF-β1 sends signals via two heterodimeric
transmembrane receptors, namely, type II and type I (ALK5)
receptors. TGFBR2 activates TGFBR1 (ALK5), which then
induces Smad2 and 3 phosphorylation in what is known as the
canonical pathway of TGF-β1 signaling. TGF-β1 can also stimulate
noncanonical signaling pathways, such as p38 MAPK signaling
and PI3K–Akt, which are also known as Smad-independent
pathways. Canonical and noncanonical signaling pathways have
been investigated in myofibroblast activation and fibrosis (Kim
et al., 2018). Here, we have demonstrated for the first time that
ALK5 is involved in TGF-β1-mediated upregulation of MYH9
expression in human lung fibroblasts, whereas the pharmacological
inhibition of p38 MAPK or Akt signaling has low influence.
Therefore, canonical TGF-β/Smad signaling pathways may
mediate MYH9 induction in TGF-β1-induced lung fibroblast-
to-myofibroblast differentiation. Smad2 and Smad3 are
downstream effectors of ALK5, which interact with each other
and their amino acid sequences have ∼90% homology similarity,

and theymight also play different roles in the development of tissue
fibrosis and the production of ECM (Meng et al., 2010). In this
work, we showed that TGF-β1-inducedMYH9 induction in MRC-
5 cells may depend on both Smad2 and Smad3.

In conclusion, as shown in the proposed schematic
representing (Figure 8), we have found that TGF-β1 can
increase MYH9 protein expression, which may be primarily
mediated via ALK5/Smad2/3 signaling. Furthermore, both
siRNA knockdown and pharmacological inhibition of MYH9
can suppress lung fibroblast-to-myofibroblast differentiation.
Further studies about the functions of MYH9 on lung
fibroblast-to-myofibroblast differentiation may provide insights
into the discovery of new treatment for pulmonary fibrosis.
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