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The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies
have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans,
including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell
transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review
the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally,
the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed.

1. Introduction

The mammalian gastrointestinal (GI) tract harbors a dense
and diverse microbial community, which is composed pri-
marily of bacteria but also includes fungi, archaea, and
viruses; collectively, these are referred to as the intestinal
microbiota [1]. These microorganisms establish symbiotic
relationships with their hosts, playing crucial roles in the
digestion of food and exerting a considerable influence on
the physiological, metabolic, nutritional, and immunological
state of the host [2-4]. Recent studies have demonstrated
that alterations in the composition of intestinal microbiota
are linked to multiple metabolic and inflammatory diseases
in humans, including obesity, inflammatory bowel disease
(IBD), colorectal cancer, allergy, type 2 diabetes, liver cir-
rhosis, rheumatoid arthritis, and neurodevelopmental disor-
ders [5-12]. These associations raise fundamental questions
regarding the immunomodulatory mechanisms by which
components of the intestinal microbiota and their metabo-
lites influence resistance or susceptibility to a broad range of
clinically important diseases.

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) is the only curative therapy for hematologic malignant

tumors, bone marrow failure, and congenital metabolic
disorders. However, the development of acute graft-versus-
host disease (aGVHD) limits the success of allo-HSCT and
is fatal to approximately 15% of transplant recipients [13, 14].
aGVHD results from an immunological attack on target
recipient organs and tissues (such as the skin, liver, lung, and
GItract) by donor allogeneic T cells that are transferred along
with the allograft. The development and severity of aGVHD
in transplant recipients depend on factors such as recipient
age, toxicity of the conditioning regimen, hematopoietic graft
source, and aGVHD prophylaxis approaches [15]. Steroids
are the first line of treatment, but patients with steroid-
refractory aGVHD have a dismal outcome, with long-term
mortality rates that can reach 90% [16]. Recent studies
have demonstrated a close relationship between intestinal
microbiota composition and the severity of aGVHD [17-19].

2. Altered Intestinal Microbiota Composition
and Diversity Associated with aGVHD

For many years, our understanding of the composition of
mammalian intestinal microbiota depended on culturing
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and identifying commensal microorganisms. However, this
approach is insufficient to catalog intestinal microbial species
because the majority of intestinal bacteria cannot be cultured
by currently available methods [20]. The emergence of new
molecular profiling techniques, such as 16S rRNA sequence-
based microbial identification and high-throughput sequenc-
ing analysis, has led to a revolution in the understanding
of the intestinal microbiota by allowing culture-independent
analysis of microbial community composition [21].

The human gut harbors approximately one hundred
trillion microbes, which is ten times the number of human
cells in the body [22]. Their combined genomes contain
more than five million genes, outnumbering the human
genetic potential by two orders of magnitude [23]. Several
phyla of bacteria constitute the bulk of the human intestinal
microbiota. The most abundant phyla in the human intestine
are Firmicutes and Bacteroidetes, which constitute over 90%
of the human intestinal microbes. The Firmicutes consist
primarily of bacteria belonging to the Clostridia class and
include a subset of Bacilli (Bacillaceae, Enterococcaceae, and
Lactobacillaceae), which are capable of oxidizing organic
sugars via fermentation to produce large amounts of lactic
acid and carbon dioxide [24, 25]. Members of the gut bacteria
belonging to the Bacteroidetes are represented by several
Bacteroides species, including B. acidifaciens, B. sartorii, and
B. uniformis. The remainder of the commensal bacteria,
accounting for less than 10% of the total population, belongs
to the phyla Proteobacteria, Fusobacteria, Actinobacteria,
Verrucomicrobia, Cyanobacteria, and TM7. These bacteria
are capable of successfully competing with members of the
Firmicutes and Bacteroidetes in a strict anaerobic environ-
ment, such as the colon [26, 27].

The importance of the intestinal microbiota to host health
is highlighted by alterations in community composition in
metabolic and inflammatory diseases, such as obesity and
IBD [5, 6]. The impact of the gut microflora on aGVHD has
been shown to be highly significant (Table 1). Earlier studies
in mice showed that symptoms of aGVHD could be reduced
with antibiotics and transplantation in germ-free conditions
[28, 29]. One recent study showed how intestinal microbiota
influences aGVHD progression following allogeneic bone
marrow transplantation (allo-BMT) [19]. Analysis of the
microbiota composition indicated that recipient mice that
developed aGVHD had a dramatic loss of bacterial diversity
and a distinct composition compared with recipient mice that
did not develop aGVHD. In mouse models of aGVHD, there
is marked expansion of Lactobacillus johnsonii and a decrease
in both Clostridiales and in other members of the phy-
lum Firmicutes in the ileum. To determine the connection
between L. johnsonii and aGVHD, the recipient mice were
treated with antibiotics and then gavaged with L. johnsonii
prior to allo-BMT. Antibiotic-treated mice showed a loss of
Clostridiales and an emergence of Enterococcus spp., which
was associated with exacerbated aGVHD [30]. In contrast,
mice reintroduced with L. johnsonii showed no expansion of
Enterococcus spp. and did not experience increased aGVHD
lethality or pathology. These results suggest that L. johnsonii
may reduce aGVHD severity by preventing the expansion
of Enterococcus spp. A clinical research study elucidated
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variations in the intestinal microbiota of 31 patients receiving
allogeneic HSCT [31]. The result of metagenomic analysis
showed that patients had a predominance of commensal
bacteria at the time of admission. After transplantation, a
relative shift toward Enterococci was observed, and this shift
was particularly prominent in patients that developed sub-
sequently active gastrointestinal aGVHD. Another clinical
study revealed that the diversity of intestinal microbiota
at engraftment is an independent predictor of mortality in
allo-HSCT recipients. Mortality outcomes were significantly
worse in patients with lower intestinal diversity [32].

3. Intestinal Barrier Damage and LPS-Induced
Septicemia during aGVHD

Scientists have described several requirements for aGVHD
development. First, the graft infused into the patient must
contain immunological cells, such as mature T cells. Second,
the recipient must be immunocompromised and cannot
reject cells from the donor. Third, there are immunologic dis-
parities between the recipient and the donor tissue cells. It is
accepted that the development of aGVHD can be conceptual-
ized as a three-stage process [15, 36]. First, antigen-presenting
cells (APCs) are activated. Underlying diseases, previously
administered therapies and the HSCT conditioning regimen
can damage host tissues, resulting in the production of “dan-
ger signals,” such as proinflammatory cytokines, chemokines,
MHC antigens, and costimulatory molecules on host APCs.
Second, donor T cells proliferate and differentiate in response
to activated host APCs. Additional inflammatory cytokines
are then released. Finally, a complex cascade is triggered. Both
cellular mediators, such as cytotoxic lymphocytes (CTLs)
and NK cells, and inflammatory factors, such as tumor
necrosis factor alpha (TNF-«), interferon gamma (IFN-y),
and interleukin-1 (IL-1), can cause the destruction of the
target tissue, typically the skin, liver, and gut.

It has been proposed that the GI tract may be particularly
critical at the initial stage. Both total body irradiation (TBI)
and high-intensive chemotherapy as part of the conditioning
regimen can reduce or eliminate tumor load and cause
sufficient immunosuppression to prevent graft rejection.
However, such treatments may also stimulate host tissues
to secrete inflammatory cytokines, such as TNF-« and IL-1,
and their direct influence on epithelial cells of the GI
tract allows for the translocation of intestinal microbes and
their by-products, including lipopolysaccharide (LPS) and
peptidoglycan, into the systemic circulation (Figure 1).

The symbiotic nature of the intestinal host-microbial
relationship is dependent on limiting bacterial penetration
of host tissues. Controlling bacterial interactions with the
intestinal surface is an important strategy for minimizing
bacterial translocation [37]. The intestinal epithelial surface is
the primary interface between the gut bacteria and deeper tis-
sues. Given the enormous numbers of commensal microbes
and the persistent invasion of pathogens, it is important that
the host immune system monitors and regulates microbial
interactions with the intestinal surface [38].
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TaBLE 1: Effect of the intestinal microbiota on GVHD.
Host Outcome Possible mechanisms Refs.
Oral administration of Lactobacillus rhamnosus . .
Mouse GG (LGG) before and after transplantation results ff;rclilz)r:;:foivr)lfﬂc}nigi l;':\crieiizeduced (17]
in improved survival and reduced aGVHD
Loss of physiologic diversity among the intestinal Paneth cells are targeted by GVHD,
Mouse microbiota and the overwhelming expansion of resulting in marked reduction in the (18]
Escherichia coli which caused septicemia expression of a-defensins
Loss of overall diversity of gut microbiota.
Eliminating Lactobacillales from the mice before . g .
Mouse BMT aggravated GVHD, whereas reintroducing L. johnsoni reduced GVHD severity by (191
o y . o prevention of Enterococcus expansion
Lactobacillus johnsonii mediated significant
protection against GVHD
Increased bacterial translocation and serum Neutrophil granulocytes recruited upon
Mouse lipopolysaccharide (LPS) levels were detected translocation of intestinal bacteria [33]
after TBI enhance GVHD via tissue damage
I mtry ooy o QD v gy ity
Mouse P Y gut MyD88/TLR9-dependent bacterial [34]
towards Enterobacteria, Enterococci, and sensin
Bacteroides/Prevotella spp. &
Successful total gastrointestinal decontamination Prevention of intestinal microoreanisms
Human (GID) of the graft recipient prevents moderate to ) & (35]
translocation
severe acute GVHD
After transPlantatlon, a relative sblft t.owarq Early microbiome shifts may affect
Enterococci was observed, especially in patients . o L .
Human intestinal inflammation in the setting of (31]
that developed subsequently or suffered from allogeneic SCT
active GI GVHD &
Mortality outcomes were significantly worse in Intestinal microbiota may be an
Human patients with lower intestinal tract bacterial important factor in the success or failure [32]

diversity

in allo-HSCT

The intestinal surface maintains an intact barrier through
formation of complex protein-protein networks that firmly
join together via tight junctions [39]. In HSCT, both TBI
and chemotherapy can cause intestinal mucosa damage.
Following this, intestinal bacteria may translocate into deeper
tissues from the damaged GI tract and cause infection and
septicemia [40]. In a mouse model of aGVHD, serious
impairment of intestinal barrier function in the jejunum
was detected, with increased permeability and morphological
changes owing to both decreased protein expression and
altered localization of the tight junction protein occluding
[41]. There is a significant relationship between gut micro-
biota and intestinal radiosensitivity. In a mouse model of
TBI-BMT, germ-free mice were markedly resistant to lethal
radiation enteritis [42]. Several commensal bacteria or their
components have the ability to protect intestinal mucosal
tissue from irradiation damage. Bacteria-derived flagellin
pretreatment protected mice from radiation-induced intesti-
nal mucosal injury and apoptosis via a Toll-like receptor
5 (TLR5)-dependent mechanism [43]. In a human trial,
patients taking the probiotic mixture VSL#3 (a mixture
of eight probiotic strains) experienced radiation-induced
diarrhea less frequently than patients taking a placebo in
a double-blinded study [44]. Another study showed that a
Lactobacillus rhamnosus GG- (LGG-) derived soluble protein,

p40, ameliorates intestinal injury and colitis, reduces apopto-
sis, and preserves barrier function by transactivation of the
EGEF receptor (EGFR) in intestinal epithelial cells [45].

The Paneth cell is an intestinal epithelial cell that plays
a key role in limiting bacterial penetration into host tissues.
Paneth cells secrete the majority of antimicrobial proteins
produced by the small intestine. These cells have a much
longer half-life than other cells found in the small intestine
[46]. Paneth cells can secrete a number of microbicidal pro-
teins, including a-defensins, which selectively kill pathogens,
while preserving commensals. When Paneth cells sense
bacterial signals, they react by discharging their microbicidal
granule contents into the gut lumen [47]. Therefore, Paneth
cells are critical to the immune response to pathogens and
the maintenance of a noninflammatory commensal flora in
the small intestine. Current studies show that Paneth cells are
targeted by aGVHD, resulting in a substantial loss of Paneth
cells in the intestine and marked reduction in the expression
of a-defensins in recipients with aGVHD. Restriction frag-
ment length polymorphism (RFLP) of intestinal microbial
communities showed loss of physiologic diversity among
the microbiota and the overwhelming expansion of a rare
bacterium. 16S rRNA gene sequencing demonstrated that this
peak was almost certainly due to the presence of Escherichia
coli in the intestine of recipients suffering from aGVHD [18].
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FIGURE 1: Schematic of the role of microbiota in graft-versus-host disease in the gut. Under normal conditions, the intestinal epithelial surface
maintains an intact barrier function that prevents bacterial invasion into deeper host tissues. Paneth cells secrete several microbicidal proteins,
including a-defensins, which selectively kill pathogenic bacteria. Bacteroides fragilis-derived TLR capsular polysaccharide A can promote the
induction of Treg cells. Segmented filamentous bacteria (SFB) induce production of serum amyloid A (SAA) in the gut, and SAA acts on
dendritic cells (DCs) to promote Th17 cell differentiation. After total body irradiation (TBI) and chemotherapy as part of the conditioning
regimen, the integrity of the intestinal surface is decreased. Intestinal bacteria and their components (pathogen-associated molecular patterns,
PAMPs) translocate to the lamina propria and are recognized by Toll-like receptors (TLRs) in host antigen-presenting cells (APCs). Activated
APCs secrete proinflammatory cytokines and prime donor T cells, which aggravate acute GVHD.

Another clinical study showed that enumeration of duodenal
Paneth cells is a readily available index of disease severity that
provides important information regarding aGVHD progno-
sis [48].

aGVHD and related infections are major obstacles to
HSCT. Septicemia is the most life-threatening infection fol-
lowing allogeneic HSCT, and gram-negative bacteria are the
most dominant pathogens of septicemia. aGVHD is regarded
as one of the major predisposing factors for the development
of septicemia. LPS can enter the circulation through the
impaired mucosal barrier after the conditioning regimen. In
experimental studies, the proinflammatory potency of LPS
varies from bacterial species to species. Probiotic microor-
ganisms have been shown to alter the composition of the
intestinal microflora and thereby mediate anti-inflammatory
effects. Modifying the intestinal microbiota by oral admin-
istration of LGG before and after transplantation resulted
in improved survival and reduced aGVHD. Furthermore,
subculture of mesenteric lymph nodes revealed a reduced
translocation of enteric bacteria [17].

4. Connections among Intestinal
Microbiota, Innate Immune Receptors, and
T Cell Differentiation during aGVHD

Connections between pathogen-associated molecular pat-
terns (PAMPs) and pathogen recognition receptors (PRRs)
control adaptive immune responses in inflammatory disor-
ders, including aGVHD. Intestinal bacteria and their com-
ponents are recognized by PRRs in antigen-presenting cells
(APCs). The stimulation of PRRs leads to transcription of
inflammatory genes and upregulation of proinflammatory
cytokines and class II and costimulatory molecules, resulting
in local tissue inflammation and migration of leukocytes [49].

Intestinal mucosal surfaces are rich in resident innate
immune cells, such as macrophages and dendritic cells
(DCs). Signaling through PRRs regulates the activity of DCs,
leading to phagocytosis, chemokine receptor expression,
cytokine secretion and migration from peripheral tissue to
draining lymph nodes, and antigen presentation (Figure 1).
Several TLRs have been described to recognize different
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PAMPs, including gram-positive bacteria-derived lipopro-
teins (TLR2), gram-negative bacteria-derived LPS (TLR4),
bacterial flagellin (TLR5), RNA (TLR3, TLR7, and TLRS),
cytosine-phosphorothioate-guanine (CpG) DNA (TLR9),
profilin (TLRI11, TLR12), and bacterial 23S ribosomal RNA
(TLR13) [50, 51]. TLR downstream signaling activates a com-
plex signaling cascade, eventually leading to host resistance
against pathogens by increased production of cytokines,
chemokines, adhesion molecules, and antimicrobial peptides,
as well as to enhanced antigen presentation by APCs. PAMPs
are recognized not only by TLRs but also by nucleotide-
binding oligomerization domain- (NOD-) like receptors
(NLRs). NLRs include proteins such as NALPs, NODI, and
NOD?2, which are involved in the secretion of inflammatory
cytokines, such as IL-1o and IL-18 [52].

As recognized molecular patterns of invading and resi-
dent microbes, TLRs are fundamental to controlling intesti-
nal tissue homeostasis in studies that involve intestinal
epithelial cell damage. In experimental aGVHD, TLRs appear
to have a significant role in disease outcomes. In models
of HSCT, TLR9 ™/~ transplant recipient mice have enhanced
survival compared to wild type mice [53]. However, the role
of TLR4 in aGVHD is still unclear, with conflicting findings
in different studies [54, 55]. Evaluation of the expression of
TLRson T lymphocytes and monocytes in 34 patients showed
that levels of TLR5 on monocytes and T lymphocytes are
positively correlated with aGVHD, whereas levels of TLRI
and TLR9Y are negative predictors [56].

The pathophysiology of aGVHD is a multistep process
that eventually results in T helper 1-driven (Thl-driven) tissue
damage. Recently, increasing evidence indicates the involve-
ment of T helper 17 (Th17) and regulatory T cells (Tregs) in
aGVHD pathogenesis [57]. One clinical study showed that
in situ quantification of the Th17/Treg ratio was a specific
marker of human aGVHD [58]. Murine experimental studies
provide inconsistent results on the role of Th17 in aGVHD
[59-61]. In contrast, Treg contributes to tolerance acquisition
to donor antigen in solid organ transplantation and protects
the development of fatal aGVHD in murine model [62].

The homeostasis of steady-state mucosal T cell subsets
is controlled by signals from various components of the
intestinal microbiota [63, 64]. Treg and Thl7 cells are the
most abundant lamina propria CD4" T cell subsets at steady
state. Tregs are crucial in inhibiting excessive inflammatory
responses toward intestinal bacteria [65, 66]. Thl7 cells are
characterized by the production of IL-17 and other effec-
tor cytokines, such as IL-17F and IL-22. Thl7 cell-derived
cytokines function as important activators of innate immune
mechanisms, such as recruitment of neutrophils and induc-
tion of antimicrobial peptide production from epithelial
cells. Th17 cells also play crucial roles in mucosal defense
against bacteria and fungi [67]. Treg and Thl7 cells have
reciprocal functions in regulation of intestinal microbiota.
Treg and Th17 cell numbers in the gut are controlled by signals
from different species of the commensal microbiota [68, 69].
Colonic Treg cells are induced by bacteria belonging to group
IV and XIVa Clostridia, and small intestinal Th17 cells are
induced by segmented filamentous bacteria (SFB) [70-72].

5. Probiotics and Their Potential Application
in the Treatment of aGVHD

Patients undergoing allo-HSCT have a substantially increased
risk of bacterial, fungal, and viral infection. Multiple
approaches to decrease the risk of infections after HSCT
have been explored, including laminar airflow housing, the
use of antibiotics, and prophylactic antiviral and antifungal
therapies [73]. Antibiotic resistance in pathogenic bacteria
has been an increasing threat to human health during the
last decade, and it is widely accepted that the antibiotic
resistance development and spread in microbes can be largely
attributed to the abuse and misuse of antibiotics [74]. In
addition, breakdown of the normal microbial community
by antibiotic use increases the risk of pathogen infection
and the overgrowth of harmful disease. Clostridium difficile
infection (CDI) is the most common cause of severe diarrhea
and occurs with increased frequency after broad-spectrum
antibiotic treatment [75, 76]. Results from a retrospective
study showed that CDI is strongly associated with aGVHD
and increased nonrelapse mortality in allo-HSCT patients
[77]. In recent years, fecal microbiota transplantation (FMT)
has emerged as an efficacious method for the treatment of
CDI [78, 79]. EMT refers to infusion of a fecal suspension
from a healthy individual into the GI tract of a patient
to restore healthy intestinal microbiota and cure disease.
However, there is risk associated with FMT. This is because
fecal suspension contains harmful bacteria, viruses, and
parasites. An alternative solution to this problem is to screen
some beneficial bacteria from stool and only infuse these
bacteria as a cocktail into the GI tract [80, 81].

Probiotics are live microorganisms, which when adminis-
tered in adequate amounts confer a health benefit to the host.
Probiotic strains are derived from fermented foods, beneficial
commensals, or the environment. A broad range of consumer
products containing probiotic microbes is currently available.
Various animal and human studies have demonstrated that
some probiotic strains can successfully modify the mucosal
immune response due to species and strain specificity of
the probiotics [82, 83]. The most commonly used probiotics
are Bifidobacterium, Bacillus, and the lactic acid bacteria
(LAB), including genus Lactobacillus and Streptococcus [84].
Lactobacillus rhamnosus ATCC 53103, isolated from a healthy
human intestinal commensal, is one of the most widely used
and well-documented probiotic strains [17, 45, 85-87]. Some
of the beneficial impacts of probiotics have been scientifically
documented, and three main categories of probiotics con-
tributing to host health have been described [83, 88, 89]. First,
certain probiotics can exclude or inhibit pathogens. Second,
probiotics can enhance the function of the intestinal epithelial
barrier by modulating various signaling pathways, inducing
mucus and antimicrobial peptide production, enhancing
tight junction functioning, and preventing apoptosis. Third,
probiotics can modulate host immune responses, resulting in
both local and systemic effects.

The rationale for using probiotics to treat gastrointesti-
nal disorders is supported by several clinical studies. In
one study, ingestion of Bifidobacterium infantis 35624 was
shown to alleviate symptoms of irritable bowel syndrome



(IBS) associated with normalization of the ratio of anti-
inflammatory to proinflammatory cytokines [90]. To assess
the effects of probiotics in diarrhea, a meta-analysis that
included 63 studies (n = 8014) was carried out; the results
showed that probiotic strains appear to be safe and have clear
beneficial effects in shortening the duration and reducing
stool frequency in acute infectious diarrhea [91]. Animal
models indicate the close connection between gut microbiota
and IBD, and several kinds of probiotics were evaluated
in human clinical trials [92, 93]. Escherichia coli Nissle
1917 shows efficacy and safety in maintaining a remission
equivalent in patients with ulcerative colitis [94]. Another
clinical study evaluated the impact of VSL#3 on maintenance
of remission. The once daily high dose probiotic VSL#3 is
effective in maintaining antibiotic-introduced remission for
at least one year in patients with recurrent or refractory
pouchitis [95].

There are several bottlenecks that need to be overcome
before probiotics can be applied in clinical treatment. One
important limitation is the delivery of viable cells to the
lower GI tract without a significant loss of cell viability
and metabolic features through the harsh conditions of the
stomach [96]. In addition, compared to animal models, a
major challenge for understanding the interactions between
intestinal microbiota and human hosts is the heterogeneity of
microbial composition that can colonize the intestine. Differ-
ent components of microbiota can have very different effects
on the host, and the composition of microbial communities
can be influenced by a variety of factors, including diet,
antibiotic therapy, and environmental exposure to microbes
[97, 98].

6. Conclusions and Future Perspectives

An increasing number of studies have identified an important
interaction between intestinal microbiota and mammalian
host health and disease. It is clear that microbiota can affect
disease progression in several experimental animal models.
Recent evidence has demonstrated that specific species of
intestinal bacteria appear to be specialized in their ability to
induce particular immune cell subsets. Probiotic bacteria can
modulate immune responses to promote health by altering
the composition of intestinal microbiota. Manipulation of the
intestinal microbiota through probiotics or their components
holds great promise for the treatment of inflammatory dis-
eases, including aGVHD.

Despite some notable successes from probiotics trials,
there are numerous obstacles to overcome before probiotic
strains can be utilized as aGVHD therapeutics. First, most of
the probiotics are species or strain specific. Thus, they should
be tested in vitro and then evaluated for their suitability and
efficacy in vivo. Only a few probiotic strains have been tested
in mouse aGVHD models to date. Hence, there remains
a pressing need to screen for probiotic strains that display
more remarkable therapeutic responses to aGVHD. Second,
although changes in microbiota associated with aGVHD pro-
gression are apparent, it is unknown which exact components
of the microbiota are responsible for aggravating or amelio-
rating aGVHD. Therefore, monitoring intestinal microbiota
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changes of patients before and after aGVHD is of vital sig-
nificance. Third, the association of intestinal microbiota with
aGVHD has become evident. However, causality of aGVHD
in response to probiotic-induced microbiota changes still has
not been demonstrated. Along with research on screening for
safe and effective probiotic strains moving towards increas-
ing profundity, more attention should be focused on the
immune mechanisms governing probiotic effects in aGVHD.
Several creative therapeutic methods might originate from
a better understanding of the relationship among probiotic
strains, intestinal microbiota, and immune regulation during
aGVHD.
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