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Abstract

T-cell activation is a key step in the amplification of an immune response. Over the

course of an immune response, cells may be chronically stimulated, with some propor-

tion becoming exhausted; an enormous number of molecules are involved in this pro-

cess. There remain a number of questions about the process, namely: (1) what degree of

heterogeneity and plasticity do T-cells exhibit during stimulation? (2) how many unique

cell states define chronic stimulation? and (3) what markers discriminate activated from

exhausted cells? We addressed these questions by performing single-cell multiomic anal-

ysis to simultaneously measure expression of 38 proteins and 399 genes in human T

cells expanded in vitro. This approach allowed us to study –with unprecedented depth–

how T cells change over the course of chronic stimulation. Comprehensive

immunophenotypic and transcriptomic analysis at day 0 enabled a refined characteriza-

tion of T-cell maturational states and the identification of a donor-specific subset of ter-

minally differentiated T-cells that would have been otherwise overlooked using

canonical cell classification schema. As expected, activation downregulated naïve-cell

markers and upregulated effector molecules, proliferation regulators, co-inhibitory and

co-stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins

and genes identifying unique states of activation, defined by markers temporarily

expressed upon 3 days of stimulation (PD-1, CD69, LTA), markers constitutively

expressed throughout chronic activation (CD25, GITR, LGALS1), and markers uniquely

up-regulated upon 14 days of stimulation (CD39, ENTPD1, TNFDF10); expression of

these markers could be associated with the emergence of short-lived cell types. Notably,

different ratios of cells expressing activation or exhaustion markers were measured at

each time point. These data reveal the high heterogeneity and plasticity of chronically

stimulated T cells. Our study demonstrates the power of a single-cell multiomic

approach to comprehensively characterize T-cells and to precisely monitor changes in

differentiation, activation, and exhaustion signatures during cell stimulation.
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1 | INTRODUCTION

The heterogeneity of T-cells is remarkable; many genes and proteins

(“markers”) are associated with cell maturity, trafficking, activation, and

function, and these markers can be dramatically modulated over the

course of an immune response [1–3]. Many are dysregulated by the

tumor microenvironment [4], so understanding their expression patterns

provides critical insight(s) into biological mechanisms of disease, as well

as information about potential drug targets. Moreover, it is likely that

expression patterns of these markers may be useful in predicting disease,

treatment outcome, or therapy-related adverse events [5].

Technologies to measure T-cell associated markers have evolved dra-

matically in the past decade [6, 7]. The use of platforms that assay cells in

bulk (like microarrays) has fallen out of favor, because these approaches

average expression across many cells, even though the cells vary individu-

ally in expression. Single cell RNA sequencing (sc-RNAseq) overcomes the

limitations of bulk measurements, and is powerful because of the large

number of transcripts that can be interrogated simultaneously [8]. How-

ever, transcription is a “noisy” process that occurs in bursts at irregular

intervals and varies even across isogenic/clonal cells [9]; moreover, cap-

ture of mRNA in single cell sequencing assays can also be inefficient, lead-

ing to drop-outs of some cell/gene signals. Therefore, cell populations

often cannot be clearly resolved based on transcriptional analysis alone.

Cell subset discrimination is greatly enhanced, however, when pro-

tein and transcript analysis are combined [10, 11]. Molecular cytometry,

a new class of single cell technologies, adapts next generation sequenc-

ing (NGS) to single cell analysis to simultaneously provide information

about cellular transcripts and proteins. Like flow cytometry, cells are sta-

ined with antibodies and unbound antibodies are washed away before

analysis. However, unlike flow cytometry, cells are labeled with

oligonucleotide-tagged antibodies (rather than fluorescent molecules),

and loaded onto an instrument that captures single cells and lyses them.

Beads capture cellular mRNA as well as oligonucleotides associated with

cell-bound antibodies via poly A-oligo dT interactions. Single cell

sequencing then reveals the number of antibodies bound and the target

of each bound antibody (as represented by a unique oligonucleotide tag).

In addition, cellular transcripts can be examined using targeted panels

[12] or whole transcriptome amplification [13]. In this manuscript, we

demonstrate the use of molecular cytometry to measure the expression

of 38 proteins and 399 targeted T cell transcripts that are relevant to

immune cell biology, including T cell exhaustion.

Molecular cytometry technologies, like CITE-Seq [10], REAP-

Seq [11] and AbSeq [14, 15] carry a number of advantages over other

single cell technologies. First, molecular cytometry (also known as geno-

mic cytometry) platforms measure many more parameters than fluores-

cence or mass cytometry at the single cell level, allowing exquisitely

detailed and comprehensive analysis of immune responses. Second, fluo-

rescence and mass cytometry both require subtraction of signals that

overlap across channels (compensation) [16–18]; and this requirement

poses significant challenges in terms of experimental design and data

analysis. The oligonucleotide tags used in molecular cytometry are

unique, which eliminates the need for cross-channel correction. Third,

molecular cytometry can simultaneously interrogate cellular mRNA and

proteins more easily than flow or mass cytometry, allowing study of

posttranscriptional regulation of protein expression. In sum, molecular

cytometry technologies offer deeper profiling of immune responses, as

recently demonstrated by two pioneering studies validating the multi-

omic (BD Rhapsody and BD AbSeq) approach for a comprehensive char-

acterization of either resting or activated immune cells [14, 15].

Upon antigenic challenge, immune responses are maintained and

amplified by activated T-cells, which express unique transcriptional

and protein signatures [19]. In the case of an acute infection, markers

associated with T cell activation drive key cellular processes, including

proliferation, recruitment, homing, cytokine secretion, and cytotoxic-

ity, ultimately resulting in resolution of the immune insult. However,

upon sustained antigenic stimulation, as in the case of chronic viral

infection or cancer, some activated T cells progressively develop an

exhausted phenotype, which is characterized by reduced or lost effec-

tor function (e.g., loss of cytokine secretion) and impaired proliferation

[20]. During the course of an immune response, the degree to which

these exhausted T-cells are generated dictates key outcomes, includ-

ing whether a pathogen is cleared or an organism is chronically

infected [21], the potential for responsiveness of a tumor to check-

point inhibition therapy [22], and potentially, the outcome of adoptive

immunotherapy using chimeric antigen-receptor (CAR)-T cells [23].

The study of activated and exhausted T-cells offers a unique set-

ting to explore the utility of molecular cytometry-based immune-pro-

filing. Further, there remain fundamental gaps in our understanding of

what happens when T-cells are chronically stimulated, namely:

(1) what degree of heterogeneity and plasticity do T cells exhibit dur-

ing chronic stimulation? (2) how many unique cell states (based on

transcriptional and protein expression profiles) define chronic stimula-

tion? and (3) what markers discriminate activated from exhausted

cells?

We sought to answer these questions by using molecular cyto-

metry to study an in vitro model system of chronic T-cell stimulation.

Our study revealed with unprecedented depth how T cells change

upon chronic stimulation at the genotypic and phenotypic level, and

also highlighted the use of molecular cytometry for immune profiling,

and may identify markers important to study in other settings of

chronic T-cell stimulation, like the tumor microenvironment.

2 | RESULTS

2.1 | Chronic stimulation of CD8+ T cells in vitro
recapitulates phenotypic and functional features of
exhaustion

We have developed two in vitro models mimicking either chronic or

transient T-cell stimulation. Chronic stimulation was achieved by con-

tinuously stimulating T cells with recombinant human IL-2 (rhIL-2) and

αCD3/CD28 beads for 14 days. Transient stimulation was achieved

by stimulating T cells with rh-IL2 and αCD3/CD28 beads for 3 days,

followed by resting in the presence of rhIL-2 for additional 11 days.

Cells were collected at different time points, as indicated in Figure 1A.

28 CORSELLI ET AL.



To assess whether CD8+ T cells in our in vitro model system

acquired phenotypic and functional features characteristic of chroni-

cally stimulated T cells, we measured the upregulation of well-

characterized inhibitory receptors, and the production of inflammatory

cytokines using flow cytometry. CD8+ T cells demonstrated apprecia-

ble upregulation of the inhibitory receptors CD279 (PD-1) and CD223

(LAG-3) upon 3 days of stimulation (Figure 1B). LAG-3 expression was

maintained through day 14 upon chronic stimulation, with a gradual

downregulation of PD-1 for some cells, as previously described. Under

transient stimulation conditions, CD8+ T cells progressively lost expres-

sion of both inhibitory receptors by day 14. Next, we analyzed T-cell

function at each time point, and for each experimental condition

(i.e., chronic vs. transient stimulation). At baseline and after 3 days of

culture with rhIL-2/αCD3/CD28, cells produced IFNγ and/or IL2; how-

ever, at day 7–in both chronic and transient conditions—cytokine

expression was greatly reduced (Figure 1B). This observation suggests

that cells become functionally impaired beyond 3 days of stimulation.

Cytokine production after 14 days was dramatically impaired when

cells were stimulated continually (chronic stimulation), while T-cell func-

tion was recovered in transient stimulation conditions (Figure 1B). Simi-

lar results were observed for CD4+ T-cells (Figure 1C). Together, these

data demonstrate that well-established phenotypic and functional

changes associated with T-cell exhaustion [20] are specifically and grad-

ually induced in our in vitro model system.

F IGURE 1 In vitro chronic
stimulation recapitulates features of T-
cell exhaustion. (A) Depiction of the
in vitro model used for chronic and
transient stimulation of T cells isolated
from healthy donors. Cells were
collected and frozen at day 0, 3, 7, and
14 for downstream analysis.
(B) Representative flow cytometry
analysis of the expression of inhibitory
receptors CD279 (PD-1) and CD223
(LAG-3), as well as cytokines (IFNg,
TNF, and IL2) on CD8+ T cells in
response to chronic or transient
stimulation. (C) Representative flow
cytometry analysis of CD4+ T-cells.
Analyses performed on fresh cells
from at least three independent
experiments
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2.2 | AbSeq enables protein detection with
specificity and resolution comparable to flow cytometry

Having confirmed that our in vitro system models the dynamics of

marker expression associated with T cell exhaustion, we next

compared the expression of different cell surface proteins, as mea-

sured by flow cytometry and AbSeq. The flow cytometry and AbSeq

panels used for the comparison are outlined in Table 1. Figure 2A

shows CD39 expression on total T cells (CD8+ and CD8- [mostly

CD4+]) over the time course of the study. CD39 expression on

TABLE 1 Multiplex panels used for protein analysis. A 13-parameter panel was used for flow cytometry-based analysis. A 38-parameter panel was
used for AbSeq-based analysis. Twelve specificities were common to both panels and were used to compare the performance of the two platforms

Marker Clone Flow cytometry or AbSeq Fluorochrome/dye used for flow cytometry analysis

CD4 SK3 Both BUV805

CD8 RPA-T8 Both BUV395

CD45RA HI100 Both APC-H7

CD62L DREG-56 Both FITC

CD95 DX2 Both BV786

CD279 (PD-1) EH12.1 Both PE-Cy7

CD223 (LAG-3) T47-530 Both BV480

CD366 (TIM-3) 7D3 Both BV711

CD357 (GITR) V27-580 Both BV421

CD152 (CTLA-4) BNI3 Both PE

CD39 TU66 Both BUV737

CD103 Ber-ACT8 Both APC

Live/Dead N/A Flow Cytometry Only 7-AAD

CD3 SK7 AbSeq Only N/A

CD14 MфP-9 AbSeq Only N/A

B7-H4 MIH43 AbSeq Only N/A

CD127 HIL-7R-M21 AbSeq Only N/A

CD134 ACT35 AbSeq Only N/A

CD137 4B4-1 AbSeq Only N/A

CD154 TRAP1 AbSeq Only N/A

CD183 1C6/CXCR3 AbSeq Only N/A

CD185 RF8B2 AbSeq Only N/A

CD194 1G1 AbSeq Only N/A

CD196 11A9 AbSeq Only N/A

CD197 3D12 AbSeq Only N/A

CD2 RPA-2.10 AbSeq Only N/A

CD25 2A3 AbSeq Only N/A

CD27 M-T271 AbSeq Only N/A

CD270 CW10 AbSeq Only N/A

CD278 DX29 AbSeq Only N/A

CD28 CD28.2 AbSeq Only N/A

CD30 BerH8 AbSeq Only N/A

CD38 HIT2 AbSeq Only N/A

CD49a SR84 AbSeq Only N/A

CD54 HA58 AbSeq Only N/A

CD69 FN50 AbSeq Only N/A

CD7 M-T701 AbSeq Only N/A

CD94 HP-3D9 AbSeq Only N/A

CD98 UM7F8 AbSeq Only N/A

Note: “N/A” = not used.
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CD8+ and CD8- T-cells was detectable in a small subset of cells

upon 7 days of chronic stimulation. After 14 days of stimulation, the

frequency of CD8+ and CD8- T cells expressing CD39 increased,

along with the level of CD39 expression. In contrast, no CD39

expression was detected in any T-cell subset after 14 days of tran-

sient stimulation. Once detectable, CD39 expression patterns were

qualitatively similar for both AbSeq- and flow cytometry-based mea-

surements. For 7 of 10 proteins whose detection was compared

using the two approaches, AbSeq and flow cytometry reported simi-

lar frequency of cells expressing each marker (Figures 2B and S1A).

Additionally, the kinetics of marker expression were relatively con-

sistent between the flow cytometry and AbSeq measurements

(Figures 2C and S1); however, sample size for this analysis was lim-

ited. Our data suggest that, consistent with past reports, sensitivity

and specificity of the AbSeq approach are generally comparable to

flow cytometry.

F IGURE 2 AbSeq and flow cytometry enable protein measurement with equivalent specificity and sensitivity. (A) Qualitative analysis of
CD39 kinetic expression within CD8+ and CD8� subsets of CD3+ T cells performed using either flow cytometry (top panel) or AbSeq (bottom
panel). (B) Percentage of CD8+ cells expressing PD-1, GITR, TIM-3 and CD39 at day 0 (D0), day 3 (D3), day 7 (D7 C) and day 14 (D14 C) of
chronic stimulation using either flow cytometry (red line) or AbSeq (blue line). (C) Levels of expression of PD-1, GITR, TIM-3 and CD39 on CD8+

T cells at day 0 (D0), day 3 (D3), day 7 (D7 C) and day 14 (D14 C) of chronic stimulation. Mean fluorescence intensity (red line, left y-axis) and
mean molecular count (blue line, right y-axis) were used to measure relative antigen expression levels using flow cytometry and AbSeq,
respectively. This side-by-side analysis was performed on different aliquots of the same cells derived from the same donor (Donor 1),
cryopreserved at the indicated time points. Flow cytometry data were down-sampled in order to analyze the same number of cells across the two
platforms at every time point (range 528–2446 cells)
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F IGURE 3 Legend on next page.
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2.3 | Molecular cytometry enables deeper profiling
of effector T cells

Next, we conducted a multi-omic analysis of resting CD8+ T cells (day

0) by simultaneously measuring the expression of 38 proteins and

399 T cell-specific genes at the single cell level. The 38-plex AbSeq

panel is outlined in Table 1; and the list of the 399 genes measured by

the targeted RNAseq panel is reported in File S1. First, we used

AbSeq to quantify the different subsets of unstimulated CD8+ T cells

(day 0) based on differential expression of markers commonly used

for identification of T-cell differentiation states [24, 25]. CD45RA and

CD28 were used to define CD45RA� CD28+ central memory cells

(CM), CD45RA� CD28� effector memory cells (EM) and CD45RA+

CD28� effector memory RA cells (EMRA). CD27 was additionally

used for the identification of CD45RA+ CD28+ CD27high naïve cells

(N). As expected, both qualitative and quantitative analysis revealed

differences across the three donors when looking at the different T

cell subsets (Figure 3A,B). We also noted a unique population of

CD45RA+CD28+CD27low cells in Donor 3, which represented ~12%

of the CD8+ T cell compartment.

To further define proteins and transcripts associated with the dif-

ferent maturation states across donors, we performed differential

gene and protein expression profiling comparing naïve cells to CM,

EM, and EMRA T cells. Consistent with published findings [25], we

observed higher levels of CD45RA, CD62L, CD197 (CCR7) proteins

and SELL, LEF1, IL7R and CCR7 transcripts in naïve cells (File S2). Also,

as expected, the multi-omic analysis revealed that EM and EMRA

cells (yellow and red boxes) express high levels of PD-1 protein and

transcripts encoding cytotoxic proteins NKG7 (NKG7), granzymes

(GZMA, GZMB, GZMH), granulysin (GNLY), and perforin (PRF1) (File

S2). Interestingly, CD8+ T cells from Donor 3 showed higher expres-

sion of effector-associated markers, compared to samples from

Donors 1 and 2 that were enriched for cells displaying a naïve/central

memory profile (Figure 3C). (Note that because CD45RA is a marker

expressed on both naïve and effector cells, the data for this marker

are repeated in the heat map.) Also, our analysis revealed new

markers not previously associated with the different T cell maturation

states (PIK3IP1, PASK, and TXK in CD8+ N cells and DUSP1 and

IFNGR1 in CD8+ CM cells).

To better characterize the CD45RA+CD28+CD27low population

in Donor 3, we generated t-distributed stochastic neighbor embed-

ding (t-SNE) maps for each donor. The events in the t-SNE plot are

color-coded based on the maturation state of cells as defined by dif-

ferential expression of CD45RA, CD28 and CD27 (Figure 3D). The

high number of EMRA cells in Donor 3 formed a distinct cell cluster

that included the CD27low cells (Figure 3C, bottom panel, red dashed

circle), suggesting that CD27low cells share gene and protein expres-

sion patterns with EMRA cells rather than CD45RA+CD28+CD27high

naïve T-cells, as might have been expected. To test whether CD27low

cells are more closely associated with EMRA than naïve cells, we per-

formed differential expression analysis, comparing all measured tran-

scripts and proteins between CD27low and naïve cells derived from

Donor 3. We found that genes and their corresponding proteins com-

mon to naïve cells (and absent from EMRA), like SELL/CD62L, IL7R/

CD127, CCR7/CD197, were expressed at higher levels in naïve cells

compared to CD27low cells (Table S1). Conversely, CD27low cells were

enriched for proteins and genes expressed by EMRA cells, like PD-1,

PRF1, GZMB, and IFNG (Table S2). Notably, 19 of the 20 markers

detected at higher levels in CD27low cells (compared to naïve cells)

were also enriched in EMRA cells (Table S3). In sum, our results dem-

onstrate that CD27low cells, that might have been wrongly classified

as naïve cells based solely on expression of CD45RA, CD28, and

CD27, are in fact, likely to be a subset of effector memory cells capa-

ble of reexpression of both CD45RA and CD27. This analysis reveals

the power of multi-omic (protein and mRNA) analyses for more pre-

cise identification of cell types, and for deeper profiling of classical

T-cell phenotypes.

2.4 | Molecular cytometry identifies gene and
protein signatures associated with different modes of
T cell activation

Having confirmed the utility of molecular cytometry for detailed cellu-

lar profiling, next, we used this approach to investigate temporal

changes in protein and gene expression that accompany chronic T-cell

stimulation and exhaustion. The same AbSeq and targeted gene

panels (Table 1 and File S1) that were used for the characterization of

T-cell maturational states, were used for a comprehensive analysis

of CD8+ T cells at different stages of chronic and transient stimula-

tion. High-dimensional datasets were generated for each donor at the

different time points based on expression of 38 proteins and highly

dispersed genes. Projection of cells from the of the three

concatenated donors using t-SNE revealed three major cell groups

F IGURE 3 Deep characterization of fresh CD8+ T-cell maturational states. (A) Gating strategy used to identify CD8+ naïve (blue box), central
memory (CM, purple box), effector memory (EM, yellow box), effector memory RA (EMRA, red box) T cells from three donors at day 0 based on
measurement of CD45RA, CD28 and CD27 expression via AbSeq. A unique population of CD45RA+CD28+CD27low cells (CD27low, green box)
was detected in donor 3. (B) Frequency of CD8+ T-cell subsets across the three donors. (C) Single-cell heatmap of selected proteins (Ab) and

genes differentially expressed across the three donors (fold change ≥2, q ≤ 0.05). Four hundred cells per donor are represented. Each column
represents a single cell from total CD8+ cell gate. Event columns are colored on a 0–100% min-max pseudocolor scale based on relative
parameter expression. Markers are grouped according to the cell type they are commonly expressed on, with CD45RA repeated because it is
expressed by both naïve and effector memory cells; for Donor 3, the heatmap values reflect mostly contributions from effector memory cells.
(D) t-SNE visualization of the CD8+ T-cell subsets showing different cell clusters with a naïve, CM, EM, EMRA and CD27low/� phenotype across
the three donors. T-SNE plots were generated based on expression of 38 proteins and highly dispersed genes. Cells were color-coded based on
the phenotype described in panel A. The red dashed circle indicates EMRA and CD27low/� cells clustering together in Donor 3
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(Figure 4A, “all donors”). The first group encompassed events from

resting cells (before activation, “day 0,” red colored events), while the

second group included events from 3, 7, and 14 days of chronic stimu-

lation (blue, orange, and green colored events), and the third group

comprised cells from the 3-day stimulation +11-day rest condition

(“Day 14 Transient,” purple colored events). These results demon-

strate that expression changes among the 38 markers measured by

AbSeq in conjunction with targeted gene expression analysis clearly

capture the distinction between resting and activated cells. Notably,

the combined analysis of mRNA and protein provided the best dis-

crimination of cell subsets at stimulation time points (Figure S2). For

example, when transcripts alone are used to discriminate stimulation

time points, a population of cells stimulated and then rested-down

(day 14 Transient, purple, mRNA only; see black arrow) appears to

track with unstimulated cells (red); however, when mRNA and protein

are combined, no cells have overlapping profiles at these time points

(Figure S2; mRNA+Ab). Similarly, when antibodies alone are examined

(Ab Only) a population of cells stimulated for 3 days falls in a contigu-

ous group with cells stimulated for 7 days (black arrow). However,

when mRNA and protein analysis are combined, these cells are mostly

distinct. Thus, a multiomic approach appears to provide better dis-

crimination of resting and activated CD8+ T-cell subsets.

We also examined CD4+ T-cells in our model system, and found

that a number of transcripts and proteins were elevated in both CD4+

and CD8+ T-cells chronically stimulated for 14 days (compared to

resting cells; File S3). These included a chemokine (CCL3), cytokines

(IFNg, CSF2), a marker of cellular activation (CD25), cytotoxic

enzymes (granulysin, granzyme B), markers of exhaustion (CD357,

LAG3), transcription factors (TYMS, UBEC2C, and ZBED2), and a

marker of cell proliferation (PCNA). These molecules provide a signa-

ture, common to CD4+ and CD8+ T-cells, for activated cells.

To identify the genes and proteins uniquely associated with the

mode of T-cell activation (chronic versus transient), we performed dif-

ferential expression analysis for each individual donor by comparing

each time point of the in vitro activation system to each other (File

S4). By comparing the individual lists of differentially expressed genes

and proteins, we identified, for example, common signatures defined

by markers upregulated in each donor at each time point, as compared

to unstimulated cells (day 0). The results of this analysis are summa-

rized using the Venn diagrams in Figure 4B. We also observed

upregulation of genes and/or proteins shared by two out of three

donors, or unique to each donor. The complete list of shared and

unique markers upregulated at each time point (in each donor), as

compared to day 0, is reported in File S5.

Next, we focused on genes and proteins that were upregulated

3-fold or higher upon activation in at least two of the three donors.

This approach resulted in the identification of four sets of genes and

proteins with unique expression patterns. The first set (Figure 5A, red

bar) consisted of markers elevated after 3 days of stimulation (D3),

but downregulated thereafter (CD278, CD69, IFNg, IL9, and

Lymphotoxin A [LTA]). The second set (Figure 5A, blue) represented

markers elevated after 14 days of chronic stimulation (D14C), and

included TNFSF10, YBX3, CSF2, BIRC3, ENTPD1, and CD39. The third

set of markers (Figure 5A, green) was upregulated at all stimulation

time points, but generally downregulated when the stimulus was

removed (as measured after 3 days stimulation and 11 days rest;

D14T in Figure 5A). This set included genes and proteins that could

be broadly classified into markers of activation/proliferation (CD25,

CD357, CD54, CD98, CD137, GZMB, IL2Ra, PCNA, TOP2A, and TYMS)

versus inhibition/exhaustion (CD223, IRF4, LAG3, LGALS1, and

ZBED2). The fourth set (Figure 5A, purple) encompassed markers

whose expression was upregulated in cells transiently stimulated.

F IGURE 4 Identification of common signatures associated with T-cell activation. (A) t-SNE visualization of CD8+ cells clusters at day 0 (red),
day 3 (blue), day 7 and 14 of chronic stimulation (orange and green, respectively), and day 14 of transient stimulation (purple). t-SNE plots were
generated based on expression of 38 protein and highly dispersed genes. (B) Venn diagrams indicate the number of shared or uniquely
upregulated genes and proteins across the three donors at day 3, day 7 chronic stimulation (D7 C), day 14 chronic stimulation (D14 C), and day
14 transient (D14 T) stimulation, as compared to unstimulated cells (day 0)
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Taken together, our analysis reveals unique activation signatures that

can be differentially linked to the duration of activation.

Notably, our analysis also revealed a set of genes and proteins

that were selectively associated with resting cells in all three donors.

These markers were down-regulated upon stimulation, and then par-

tially reacquired after the stimulation was removed. This marker set

included proteins and genes associated with naïve T-cells (CD45RA,

IL7R, and its corresponding protein CD127), along with DUSP1, FOSB,

and JUN (Figure 5B).

2.5 | Molecular cytometry reveals unique
relationships between inhibitory and proliferation
markers

To understand whether markers of activation or inhibition are

expressed on distinct cells or if these genes and proteins could be co-

expressed on the same cells, we plotted expression in bivariate plots

using concatenated data from the three donors. Among the various

combinations of markers, those involving LGALS1 and ZBED2 tran-

scripts stood out for their progressive expression over the time course.

At baseline, very few cells expressed LGALS1 (the mRNA for Galectin-1,

an immune inhibitory molecule) or proliferation markers TYMS and

PCNA (Figure 6A). At day 3, LGALS1 and both proliferation markers

were upregulated, and cells expressing all possible combinations of

markers (i.e., one marker alone, neither marker, both markers) could be

detected (Figure 6A). However, after 7 days of stimulation, almost all

cells expressing TYMS or PCNA co-expressed the inhibitory molecule

LGALS1, suggesting the inhibitory potential of these cells. Conversely,

after only 3 days of stimulation, the great majority of cells expressing

TYMS and PCNA co-expressed ZBED2, a transcription factor associated

with progression to T-cell dysfunction (Figure 6B). Beyond 3 days, the

frequency of cells expressing ZBED2 was gradually reduced, with a con-

current increase in the frequency of cells single positive for PCNA and

TYMS (Figure 6B). Thus, expression of LGALS1 and ZBED2 appear

reciprocal between days 3–14 (Figure 6C) of stimulation.

2.6 | Comparing chronic to transient stimulation

We also compared transient stimulation (3 days of stimulation,

followed by 11 days of rest) to chronic stimulation (14 days of

F IGURE 5 Identification signatures

associated with distinct modes of T-cell
activation. (A) Markers whose expression is
upregulated (≥ three-fold, in at least two
donors; left y-axis), as compared to day
0, at each time point (right y-axis). Markers
uniquely upregulated with 3 days of
stimulation are indicated by the red bar,
while markers unique to chronic 14-day
stimulation are indicated by the blue bar.
The green bar indicates which markers are
elevated at all time points in the
chronically stimulated cells, while the
purple bar denotes markers uniquely
associated with the 3-day
stimulation/11 day rest (transient
stimulation, D14T) condition. (B) Single-cell
heatmap of proteins (Ab) and genes
upregulated in all three donors at day
0 and downregulated upon cell activation
(fold change ≥2, q ≤ 0.05). Data from
420 cells measured at each time point. An
equal number of cells (140) from each of
the three donors is represented for each
time point
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continual stimulation). Differential gene/protein analysis revealed that

chronically stimulated cells are enriched for a particular set of markers

(compared to transiently stimulated cells, Table 2), which includes

markers of cytotoxic cells (GZMB, GNLY, CD94, GZMH, TNFSF10), sup-

pression (CD39, LAG3, CD223), effector function (CSF2 (GMCSF),

CCL3 (MIP1α), IFNg, CCL4 (MIP1β)), and immune checkpoints (CD357,

CD137). In contrast, transiently stimulated cells appeared capable of

retaining (or resting back down to) a naïve-like phenotype after the

initial 3-day stimulation, as evidenced by higher levels of CD45RA,

CD28, CD27, CD127, and IL7R (Table 2). The single cell data show

that fold-change (a bulk measurement) is accurately reflecting the sin-

gle cell co-expression of these molecules; thus, the cells we are

F IGURE 6 Combinatorial analysis of inhibitory and proliferation marker expression. Bi-variate plots showing the relationship between the
inhibitory markers LGALS1 (A) or ZBED2 (B) and the proliferation markers TYMS or PCNA throughout chronic stimulation. (C) Frequency of CD8+
T-cells expressing LGALS1 and ZBED2 throughout chronic stimulation. Data were generated from concatenated samples from three donors
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detecting at day 14 in the transient condition are naïve cells, not cen-

tral memory cells (which can share expression of some of the mole-

cules reported above, data not shown). An alternate interpretation of

this data is not that cells rest back down to a naïve-state, but rather

that transiently stimulated cells died, leaving mostly naïve cells that

were capable of persisting in the culture conditions. In any case, cells

transiently stimulated and then rested are distinct from unstimulated

(data not shown) and from cells after 3 days of stimulation (Table 3).

We next used Phenograph to define clusters of cell types/states

present within the transiently-stimulated condition. Although these

cells mostly-expressed markers of naïve cells, there were clusters of

cells that retained signatures of activated/proliferating cells. One clus-

ter expressed CCL3, CCL4, IFNg, and CD69 for example, while another

expressed TOP2a, PCNA, and MKI67 (data not shown). These results

reveal the heterogeneity associated with length of stimulation, and

illustrate how the combination of AbSeq and Phenograph are power-

ful tools for cellular profiling.

Interestingly, when we analyzed TCF7 expression through the

stimulation time course, we found a difference between TCF7+ and

TCF7- cells arise after 14 days of stimulation. At this time point, we

found that, compared to PD1+ TCF7- cells, PD1+ TCF7+ cells were

enriched for: CCR7 and CD27 (characteristic of naïve and central

memory T-cells; 2.2 and 2.0-fold enrichment respectively), CXCR3

(a marker of naïve CD8+ T-cells capable of enhanced differentiation

into effector cells [reference]; 1.6-fold enrichment), and CXCL13

(which is thought to enhance development of tertiary lymphoid struc-

tures, and may help convert Treg-mediated immune suppression to de

novo activation of an adaptive immune response; 7.1-fold enrich-

ment). Thus, PD1+ TCF7+ cells preferentially express markers that are

associated with the potential for maintenance and amplification of

immune responses; these findings support recent reports that PD1+

TCF7+ expression may denote cells that can be rescued from

immunosuppression.

2.7 | Molecular cytometry reveals correlation
between Cellular Transcription & Translation

In addition to detailed cellular profiling, molecular cytometry technol-

ogies provide a unique ability to correlate the expression of genes and

their corresponding proteins at the single-cell level. In this study, we

examined this correlation for 23 pairs of genes and their

corresponding proteins, and determined if kinetic changes (over the

activation time course) were similar. In some cases, mRNA and

the corresponding protein exhibited concordance in terms kinetics of

expression. For example, ENTPD1 and its corresponding protein CD39

were concordantly upregulated at day 14 of chronic stimulation

(Figure 7A). Similarly, both IL7R and its corresponding protein CD127

were concordantly downregulated upon chronic cell stimulation. For

certain markers, we observed discordant patterns for mRNA and pro-

tein expression. For example, unstimulated cells at day 0 express basal

levels of CD69 mRNA but not protein. Upon 3 days of stimulation, we

observed CD69 mRNA downregulation, with concomitant

upregulation of CD69 protein. After 3 days of stimulation, both CD69

TABLE 2 Genes and proteins (ab)
that are differentially expressed between
cells chronically stimulated for 14 days
versus those stimulated for 3 days and
then rested for 11

Elevated in D14 chronic versus transient Elevated in D14 transient versus chronic

Marker Fold change Marker Fold change

GZMB 21.0 CD45RA (Ab) 8.3

CSF2 13.5 CD28 (Ab) 5.0

GNLY 13.4 CD27 (Ab) 4.7

CD94 (Ab) 11.1 IL7R 4.1

CD357 (Ab) 10.9 CD183 (Ab) 3.8

CCL3 10.7 CD44 3.3

IFNG 10.6 TRIB2 3.0

CCL4 10.3 S100A10 3.0

ZBED2 9.4 CD3 (Ab) 2.9

CD39 (Ab) 7.1 CD127 (Ab) 2.5

CD25 (Ab) 6.8 FAM65B 2.4

CD54 (Ab) 6.8 MYC 2.4

LAG3 5.8 PIK3IP1 2.4

CD223 (Ab) 5.5 BIN2 2.3

DUSP4 4.4 GZMA 2.2

CCL1 4.4 CD8(Ab) 2.2

GZMH 4.1 CCR2 2.1

TNFSF10 3.9 CCR5 2.1

KLRC1 3.7 CD95 (Ab) 2.1

CD137 (Ab) 3.6 CCL5 2.1
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mRNA and protein were downregulated. Finally, in some cases, pro-

tein expression was detected (and varied over the course of the stim-

ulation), with rare and low mRNA expression (PDCD1 mRNA/PD1

protein, Figure 7A; other cases in Figure S3). In sum, the relationship

between protein and mRNA expression was complex, and observed in

all possible patterns (concordant/discordant in frequency of expres-

sion; concordant/discordant in level of expression). This is consistent

with previous reports describing the stochastic nature of mRNA tran-

scription [26].

The above analyses summarize the data on protein/gene expres-

sion correlation, but do not illustrate the heterogeneity of mRNA/

protein concordance on a cell-by-cell basis. Concordance and discor-

dance at the single cell are shown by heat map in Figure 7B. These

heat maps reveal the complexity of mRNA/protein expression and

kinetics at the single-cell level. In accordance with the similar kinetics

observed for ENTPD1 and CD39 (both upregulated after 14 days of

chronic stimulation; Figure 7A), the great majority of cells (represen-

ted by colored bars) co-expressed mRNA and protein (Figure 7B). The

same was not true for IL7R and CD127. Despite the overall similarity

in kinetics between IL7R and CD127 (expressed at day 0, reduced at

day 3, almost off on days 7 and 14; Figure 7A), a higher degree of het-

erogeneity was observed, with variable numbers of cells expressing

protein only, gene only or both over time. In contrast, CD69 mRNA is

expressed by many cells at all-time points (Figure 7B), but protein

is expressed at essentially a single time point (day 3).

3 | DISCUSSION

Molecular cytometry is a potentially powerful method for immune

monitoring; however, the technology is relatively new. We sought to

provide data that qualifies AbSeq, a new molecular cytometry tech-

nology, for use in immune monitoring and to demonstrate the power

of the approach. We first provide data suggesting that AbSeq com-

pares favorably with the gold standard flow cytometry. As past stud-

ies [10, 11, 14] have shown, the proportion of cells expressing various

markers are similar across the two platforms. In fact, when protein

expression is visualized using bivariate plots, and as expected when

using the same antibody clone for the two different methods, the pat-

terns are quite similar across the technologies. Where we found dis-

cordance in the percentage of cells expressing markers such as

LAG-3, CD62L, and CTLA-4, we speculate that this was a function of

poor performance of the fluorochrome-conjugated antibody, since it

is well-recognized that performance of an antibody clone may depend

on the fluorochrome chosen or the design of a multicolor panel [16].

To definitively demonstrate this, a variety of oligo and fluorescence

tags would need to be compared for the same antibody clone; never-

theless, the issue highlights two important advantages of molecular

cytometry over flow cytometry. First, all antibody tags are oligonucle-

otide sequences, so they share similar chemical and biophysical prop-

erties. As such, antibody performance in molecular cytometry is not

dependent on the tag chosen or labeling method. Second, signal,

background, and sensitivity are similar for all antibody tags that are

sequenced, unlike flow cytometry, where the detectors

(i.e., photomultiplier tubes) used for detection of each fluorochrome

can vary a great deal [27]. Moreover, in flow cytometry, the signals

observed for a given level of protein expression may differ by fluoro-

chrome, whereas the digital nature of molecular cytometry signals

allow a relatively consistent relationship to protein expression. In prin-

ciple, quantification of receptor levels by molecular cytometry may

therefore be considerably more straightforward than flow cytometry,

although the efficiency with which oligonucleotide-tagged antibodies

TABLE 3 Genes and proteins (ab) that are differentially expressed
between cells transiently stimulated for 3 days then rested for 11
versus cells stimulated for 3 days

Elevated in D14 transient over D3

Marker Fold change

CD52 6.2091

CD62L (Ab) 5.0631

CD27 (Ab) 5.0133

CD38 (Ab) 4.3823

CD183 (Ab) 4.0164

SELL 3.7154

KLRK1 3.4889

TRIB2 3.3777

IL7R 3.2278

CD8 (Ab) 3.0546

GZMA 3.0258

SELPLG 2.9951

IFITM2 2.7836

PIK3IP1 2.7315

BIN2 2.6601

FYB 2.6171

FAM65B 2.3680

IFITM3 2.3429

XBP1 2.2892

CD127 (Ab) 2.2744

CD27 2.2338

ARL4C 2.2228

CD44 2.1958

DPP4 2.1885

CD37 2.1157

CCR2 2.1125

ITGA4 2.1097

S100A10 2.0985

GIMAP2 2.0716

LEF1 2.0246

ZNF683 2.0114

LGALS3 2.0110

TSPAN32 2.0048

ADA 2.0041
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are captured onto beads and the depth of sequencing may complicate

this application.

Unlike other molecular cytometry publications, we measured

kinetics of marker expression, which provide further evidence of the

concordance between flow and molecular cytometry. Our kinetic

analysis also allowed comparison between protein and transcript

expression for the 23 mRNAs with a coordinate antibody target. We

found great variety in the relationships between transcript and protein

expression among individual markers; we did not find high correlation

between mRNA and protein expression, and often observed tran-

scripts that were up-regulated or present without concomitant pro-

tein expression, and vice versa. In some cases, discordance may

reflect protein or transcript expression that is below the level of

detection. However, we often found—for phenotypically similar cells–

that one cell had high levels of transcript while another cell did not.

The relationship between transcript and protein expression did not

follow any clear rules; it was not specific to proteins or cell types that

shared a function, nor were there common kinetic patterns. This

suggests that discordance between transcript and protein expression

may reflect (a) the stochastic nature of transcript expression, which

occurs in bursts [28–30] or (b) regulation of transcript expression

through mechanisms that are specific to individual proteins. In either

case, it is very clear that transcript expression is not a direct surrogate

for protein expression, nor is the abundance of an mRNA correlated

with protein [31]; these factors could diminish the value of platforms

that solely measure single cell RNA expression in isolation (without

consideration of protein expression) for immune monitoring.

Our analysis of naïve, memory, and effector T-cell subsets dem-

onstrates the power of molecular cytometry for accurate identifica-

tion of cell populations. In our oldest study subject (Donor

3, 61-years-old), we observed a population of CD45RA+ cells with

intermediate expression of CD27. Using canonical cell classification

schema [25], such cells might have been categorized as naïve; how-

ever, by more deeply profiling cells–measuring the many proteins and

genes available in our experiment–it became clear that CD27low cells

were much more similar to effector T-cells than naïve T-cells. The

F IGURE 7 Correlation between gene
and protein expression at the single cell
level. (A) Kinetic analysis of mRNA and
protein expression. mRNA and protein
levels were measured as mean molecular
count (MMC) and depicted by the red
trace (protein) and blue trace (mRNA) at
day 0 (D0), day 3 (D3), day 7 (D7 C) and
day 14 (D14 C) of chronic stimulation.

Analysis performed on three individual
donors. Data represented as mean ± SD.
(B) Single-cell heatmap of gene and
protein expression. A single cell is
represented in each column. One hundred
cells from a single donor (Donor 2) are
represented at each time point. Event
columns are colored on a 0–100% min-
max pseudocolor scale based on relative
parameter expression
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broader lesson revealed by this example is that molecular cytometry,

and other high-parameter single-cell technologies can check and chal-

lenge the classical schema used to categorize the maturational status

of cells. The problem presented by unusual patients or cell

populations, which may be outliers in immune monitoring studies, can

also be mitigated by molecular cytometry. The highly multiplexed, and

simultaneous measurement of protein and mRNA, provides increased

context that better describes unusual cell populations and allows

more accurate classification and enumeration. This advantage, how-

ever, may be mitigated somewhat by the limited throughput, lower

cell numbers, and expense of molecular cytometry platforms.

Our study examined, with great depth, how T cells change with

activation, using molecular cytometry to analyze time course speci-

mens from an in vitro activation model. The model recapitulated the

process of T-cell activation and exhaustion [24], as confirmed by flow

cytometric analysis of checkpoint molecules and cytokines. We identi-

fied sets of proteins and genes that are uniquely upregulated (com-

pared to resting cells) at each time point we analyzed. Five markers

were upregulated only at the 3-day time point, including the genes

coding for known activation marker CD69 and the effector cytokine

interferon gamma. We posit that these markers, whose expression

during short-term, ex vivo stimulation (6–24 h) is well-documented by

flow cytometry [32], remain elevated even after 3 days. Notably,

expression of IL9 and lymphotoxin A (LTA) mRNA were also highly

upregulated at this time point. These represent new targets for

immune assessment, perhaps using intracellular cytokine staining (ICS)

by flow cytometry (provided that these mRNA are translated into pro-

tein). The identification of new immune monitoring targets–beyond

the common cytokines measured by ICS–demonstrates the value of

molecular cytometry.

We also identified the proteins and genes upregulated through-

out the time course, which fell neatly into two groups—those that are

associated with enhancing cell function and those that inhibit cell

activity. Unlike bulk assays, in which thousands of cells are averaged

for analysis, single cell molecular cytometry data allowed us to ask

whether the upregulation of these markers was associated with two

distinct cell types (e.g., activated vs. exhausted) or whether these

markers could be co-expressed. We found that many activation and

inhibition markers were co-expressed, suggesting great plasticity in

cell state and function, and that the relationships between some of

these markers changed over the stimulation period. For example,

markers associated with cell proliferation PCNA and TYMS were

expressed by cells after 3 days of stimulation, with and without

LGALS1 expression. However, by day 7 of our stimulation assays, all

cells expressing proliferation antigens co-expressed LGALS1. This gene

transcript is notable because it encodes the Galectin-1 protein, which

is known to inhibit cell proliferation in the tumor microenvironment

and is a target of immunotherapy agents [33]. Our result suggests the

possible existence of an autocrine or paracrine feedback loop regulat-

ing cell proliferation, involving PCNA /TYMS and Galectin-1. Disrup-

tion of this feedback loop, using antibodies to Galectin-1, may provide

a new means to prevent exhaustion of CAR-T cells during their manu-

facture. Similarly, the ability of CAR-T cells to persist in vivo might be

enhanced by genetically engineering the over-expression of markers

that are normally downregulated with stimulation, including DUSP1,

FOSB, and JUN (which were part of our resting cell signature). Indeed,

a recent report describing “exhaustion-resistant” CAR-T cells with

over-expressed c-Jun supports this possibility [34]. Finally, measure-

ments of JUN, LGALS1, or the suite of markers upregulated with

14 days of stimulation may provide a predictor or indicator of the

capacity of a CAR-T cell product to persist in vivo, raising the intrigu-

ing possibility of a companion diagnostic for CAR-T cell therapy.

The high parameter data provided by single cell molecular cyto-

metry offers an unparalleled tool to better define a molecule's function,

expression, and disease relevance. For example, our study also reports

reciprocal expression of LGALS1 and ZBED2, in relationship to the

expression of proliferation markers PCNA and TYMS; expression of

LGALS1 is gained in proliferating cells over stimulation, while ZBED2 is

lost from proliferating cells over the course of stimulation. ZBED2

expression has recently been shown to mark a subset of melanoma-

infiltrating CD8+ T cells poised to progress to a dysfunctional,

exhausted state [35]. The same study also described highest and lowest

proliferative potential at early and late stages of exhaustion, respec-

tively, thus corroborating the importance of simultaneously assessing

inhibitory and proliferation markers at the single-cell level.

We have also identified a set of markers exclusively expressed

upon 14 days of chronic stimulation. Among these markers are the

gene ENTPD1 and its corresponding protein CD39, recently described

as a marker defining tumor antigen-specific, exhausted TIL [36]. The

significant loss of cytokine production observed by flow cytometry

with chronic stimulation suggests that expression of this set of

markers correlates with T-cell dysfunction. Further studies investigat-

ing the expression of the identified signatures of primary tumor infil-

trating lymphocytes are required to validate these hypotheses.

Ultimately, the power of molecular cytometry lies in the rich

datasets it provides. These can be produced with fewer antibody

panel design complications than other cytometry technologies. The

technology approach offers an important advance in our ability to

characterize–and exploit–cellular immunity.

4 | MATERIALS AND METHODS

4.1 | Cell preparation and cryopreservation

Peripheral blood was collected from N = 4 healthy donors (age 28-, 32-,

36-, and 61-years-old) in accordance with approved IRB protocol BDX-

ASCP0. Peripheral blood mononuclear cells (PBMCs) were isolated using

Ficoll-Paque Plus (GE Healthcare). T cells were isolated using BD IMag™

Human T Lymphocyte Enrichment Set, as per manufacturer's instruc-

tions (BD Biosciences). Aliquots of cells collected at different time points

of stimulation (day 0, 3, 7, and 14) were cryopreserved in freezing

medium containing 90% fetal bovine serum (FBS; Hyclone Laboratories

Inc.) and 10% DMSO (Sigma-Aldrich) and stored in liquid nitrogen.

Cryopreserved cells were thawed in a 37�C water bath, diluted with

1 ml of warm complete culture medium, then transferred to a tube
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containing 10 ml of warm complete culture medium. Cells were cen-

trifuged at 300g for 5 min prior to downstream processing. Cell viability

of fresh or thawed cells was overall consistently ≥90%.

4.2 | T-cell stimulation

Freshly isolated T cells were plated in a 24-multiwell plate (Corning) at

the concentration of 1 � 106 cells/well in 2 ml of complete culture

medium composed of RPMI 1640 medium (Gibco) supplemented with

10% FBS, 1% Penicillin–Streptomycin (Hyclone Laboratories, Inc.)

and 1% L-glutamine (Hyclone Laboratories, Inc.). To mimic a chronic

stimulation, cells were cultured for 14 days in a humified CO2 incuba-

tor at 37�C in complete culture medium with Dynabeads® Human

T-Activator CD3/CD28 beads (ThermoFisher Scientific) (25 μl/well;

bead-to-cell ratio of 1:1) and recombinant human interleukin-2

(rhIL-2; 25 U/ml; Sigma-Aldrich). To mimic a transient stimulation,

cells were cultured in the presence of CD3/CD28 beads and rhIL-2

for 3 days and then rested in the presence of rhIL-2 only for the

remaining 11 days of culture. For both stimulation conditions, cells

were collected at day 3, 7, 10, and 14. After collection, beads were

magnetically removed using a BD IMag Cell Separation Magnet

(BD Biosciences) prior to cell preparation for flow cytometry analysis,

passaging, cryopreservation. For cell passaging, cells were

resuspended in fresh complete medium for chronic or transient stimu-

lation and replated at the same cell density as at day 0.

4.3 | Flow cytometry

Fresh or thawed T cells were resuspended in 2 ml of BD Pharmingen™

Stain Buffer (FBS; BD Biosciences) and then centrifuged at 300 g for

5 min. For cell surface marker staining, 0.5 � 1 � 106 cells were incu-

bated for 30 min at 37�C with antibody cocktails composed of 100 μl

of Stain Buffer (FBS) (BD Biosciences), 10 μl of BD Horizon™ Brilliant

Stain Buffer Plus (BSB; BD Biosciences) and each antibody at its rec-

ommended concentration, unless otherwise stated. Cells were incu-

bated at room temperature (RT) for 30 min and then washed twice

with Stain Buffer (FBS). Cells were resuspended in 0.5 ml of Stain

Buffer (FBS) and incubated with the viability dye 7-AAD

(BD Biosciences) at RT for 10 min prior to acquisition on a 3-laser,

12-color BD FACSLyric™ Research System or a 5-laser, 18-color BD

LSRFortessa™ X-20 Research Use Only system. Instrument configura-

tion details are reported in Tables S5 and S6. For intracellular cytokine

detection, the collected cells were first stimulated for 4 h with phorbol

12-myristate 13-acetate (PMA; 50 ng/ml; Sigma-Aldrich) and

Ionomycin (500 ng/ml; Sigma-Aldrich) in the presence of the trans-

porter inhibitors BD GolgiPlug™ and GolgiStop™, as per manufacurer's

instructions (BD Biosciences). Cells were then washed with Stain

Buffer (FBS) prior to surface marker staining, as per the protocol

described above. Cells were then washed in Phosphate Buffered

Saline (PBS) without FBS and stained with Fixable Viability Stain

620 (FVS620; BD Biosciences) as per manufacturer's instructions.

After two washes in Stain Buffer (FBS), cells were fixed and perme-

abilized using BD Cytofix/Cytoperm™ Fixation/Permeabilization Solu-

tion, as per manufacturer's instructions (BD Biosciences). Cells were

then incubated at RT for 30 min with the antibody cocktail composed

of 100 μl of permeabilization buffer, 10 μl of BSB and each antibody

at recommended concentration, unless otherwise stated. Cells were

then washed twice with permeabilization buffer, resuspended in

0.5 ml of Stain Buffer (FBS) and acquired on a 3-laser, 12-color BD

FACSLyric Research System. After acquisition, all data were exported

as FCS3.1 files and analyzed using FlowJo™ software (version 10.6,

BD Biosciences). The following mouse anti-human antibodies, all pro-

vided by BD Biosciences, were used in this study: CD4 APC-H7 (clone

RPA-T4; 5 ul per test), CD4 APC-R700 (clone SK3; 5 ul per test), CD4

BUV805 (clone SK3; 5 ul per test), CD8 APC-H7 (clone SK1; 5 ul per

test), CD8 AlexaFluor® 700 (clone RPA-T8; 5 ul per test), CD8

BUV395 (RPA-T8; 5 ul per test), CD223 BV480 (LAG-3; clone

T47-530; 0.5 ul per test) CD223 AlexaFluor® 647 (LAG-3;

clone T47-530; 5 ul per test), CD45RA APC-H7 (clone HI100; 5 ul per

test), CD62L FITC (clone DREG-56; 20 ul per test), CD95 BV786

(clone DX2; 0.5 ul per test), CD366 BV711 (TIM-3; clone 7D3; 5 ul

per test), CD357 BV421 (GITR; clone V27-580; 5 ul per test), CD152

PE (CTLA-4; clone BNI3; 20 ul per test), CD39 BUV737 (clone Tu66;

0.5 ul per test), CD103 APC (clone Ber-Act8; 5 ul per test), interferon

gamma FITC (IFN-gamma; clone B27; 20uL per test), interleukin-2 PE

(IL-2; clone MQ1-17H12; 20 ul per test), and Tumor Necrosis Factor

APC (TNF; Mab11; 0.25 ul per test). Biological controls (unstimulated

T-cells) and fluorescence minus one (FMO) controls were used to set

gates.

4.4 | Single cell labeling with sample tags and
AbSeq

Cell surface staining was performed as described in the protocol “Sin-
gle Cell Labelling with the BD Single-Cell Multiplexing Kit and BD

AbSeq Ab-oligos” (BD Biosciences). Briefly, cryopreserved T cells from

three donors, were thawed as per the protocol described in cell

processing section. To enable all samples (N = 5 time points) for each

donor to be loaded on a single BD Rhapsody™ cartridge, the BD™

Human Single-Cell Multiplexing kit (BD Biosciences) was used to label

the cells from each donor with unique sample tag. Cells were sequen-

tially labeled with sample tags followed by BD AbSeq antibody-oligos

(Ab-oligos, listed in Table 1; all were used at a volume of 2.5 ul/test,

as per the manufacturer's recommendation). First, 1 million cells from

each donor/stimulation condition were transferred to a vial containing

a unique sample tag barcode (per donor) and incubated at room tem-

perature for 20 min. Following incubation, cells were washed 3 times

with Stain Buffer (FBS). Cells were counted and pooled together at an

equal ratio of all conditions for each donor. A panel of Ab-oligos,

described in Table 1, was prepared and added to the tube of 1 million

pooled cells from each donor. Cells were incubated on ice for 30 min.

Following incubation, cells were washed 3 times with Stain Buffer

(FBS) and resuspended in Sample Buffer (FBS).
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4.5 | Single cell capture and cDNA synthesis

Cell capture was performed as described in the protocol “Single Cell

Capture and cDNA Synthesis with the BD Rhapsody Single-Cell Anal-

ysis System” (BD Biosciences), using both the BD Rhapsody Scanner

and Express instrument. The BD Rhapsody scanner was used to per-

form cell count and viability using Calcein AM (Thermo Fisher Scien-

tific) and Draq7 (BD. Biosciences). 20,000 pooled cells from each

donor were loaded into three separate BD Rhapsody cartridges

followed by cell capture beads. 13,000 to 16,000 cells were captured

per patient, with an average doublet rate of 4.15%. Cells were lysed

and the capture beads were then retrieved and washed. Reverse tran-

scription, followed by Exonuclease I treatment was performed on the

retrieved cell capture beads, following manufacturer's instructions.

4.6 | Library preparation

After undergoing cell capture and reverse transcription Rhapsody

beads were taken into library preparation as described in “mRNA

Targeted, Sample Tag, and BD AbSeq Library Preparation with the BD

Rhapsody Targeted mRNA and AbSeq Amplification Kit”. Briefly, all
beads were amplified in PCR1 using the BD Human Immune Response

Panel (399 amplicons) + SMK, for 11 PCR cycles. Post-PCR1 reaction

cleanup utilized a double-sided 0.7�/1.2� Ampure method to sepa-

rate the larger mRNA PCR products from the smaller AbSeq/sample

tag PCR products. Each of the Sample tag and mRNA products were

taken into separate PCR2 reactions that utilize universal (SMK) or

nested (mRNA) primers. 1.2� and 0.8� single-sided Ampure cleanups,

respectively, were performed on the PCR2 products. AbSeq products

were taken directly into indexing PCR after PCR1. mRNA PCR2 prod-

ucts (diluted to 1.4–2.7 ng/μl) and AbSeq PCR1/sample tag PCR2

products (diluted to 1.1 ng/μl) were taken into a 6-cycle indexing PCR

reaction. SMK, mRNA, and AbSeq libraries from the same donor were

indexed with the same reverse primer, with distinct indexes used

between donors. Indexing PCR products for mRNA and AbSeq SMK

utilized 0.7� and 0.8� single-sided Ampure cleanups, respectively.

Indexing PCR reactions for mRNA and AbSeq/SMK All libraries were

quantified using Agilent High Sensitivity DNA Analysis kits.

4.7 | Sequencing

All libraries were diluted to 2 nM before pooling for sequencing. Pre-

liminary sequencing for quality assessment was performed on an

Illumina NextSeq 500 using a High Output 150 cycle kit with

75 � 75 bp PE reads. Libraries were pooled at a ratio of 1:5:12.5

(sample tag:mRNA:AbSeq) targeting 400 reads/cell from sample tag

libraries, 2000 reads/cell from mRNA libraries, and 5000 reads/cell

from AbSeq libraries. Full sequencing was done on an Illumina

NovaSeq 6000 using an S1 kit with 75 � 75 bp PE reads. For the

NovaSeq run the libraries were pooled at a ratio of 1:13:60 targeting

an additional 150 reads/cell for sample tag libraries, 2000 reads/cell

for mRNA libraries, and 9000 reads/cell from AbSeq libraries.

Sequencing metrics are reported in Table S4.

4.8 | Bioinformatics analysis

FASTQ files were downloaded from Illumina BaseSpace and uploaded

onto the Seven Bridges website. Each sample was run separately

through the BD Rhapsody Analysis Pipeline using fastqs from the

AbSeq panel and Human Immune Response Panel and using the “Sin-
gle-Cell Multiplex Kit–Human” multiplexing setting. Output files in

csv format were imported into SeqGeq v1.5 software

(BD Biosciences) for AbSeq and scRNA-Seq data analysis. All analyses

of molecular cytometry data were performed on cells gated first for

quality control measures. These include: (1) exclusion of empty wells

or doublets based on a plot of genes expressed versus library size;

(2) exclusion of genes never expressed or expressed by all cells by

plotting number of cells expressing each gene versus total reads for

each gene; and (3) exclusion of genes that do not vary across cells by

plotting dispersion versus the number of cells expressing a gene.

These measures are described in SeqGeq documentation. Finally, ana-

lyses were pregated on CD3+ cells. Data have been deposited at the

following link: https://tinyurl.com/cf5bmduf; data are stored in

the NCBI BioProject system, under Submission ID SUB9546922 and

Bioproject ID PRJNA726263.

4.9 | Dimensionality reduction

In order to overcome visualization artifacts associated with sparse

data, dimensionality reduction was performed using principal compo-

nent analysis (PCA) guided t-distributed stochastic neighbor embedding

(tSNE). The Opt-SNE optimized tSNE calculation was used to auto-

matically detect and implement appropriate settings for this machine

learning step in analysis [37]. Principal component analysis was per-

formed on highly dispersed gene parameters in combination with

extra-cellular antibody parameters detected via BD's™ AbSeq pipeline.

Data were projected on a relative scale (based on bins or channels), in

order to account for the vast differences in magnitude for protein ver-

sus transcript expression.

4.10 | Differential expression analysis

Differential expression analysis was performed by pairwise compari-

sons in volcano plots; illustrating log2 fold change versus adjusts p-

values, also known as “q-values”, for differentially expressed genes

(DEG). Mann–Whitney U-tests were utilized to estimate the repro-

ducibility of observations in non-parametric distributions [38]. False

Discovery Rate (FDR) adjusted p-values were appropriate for clusters

greater than 200 events in size. Inclusion criteria for DEG: fold-change

values +/�2.0 (up and down regulated, respectively) and q-values

<0.05.
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4.11 | Heat-maps

Single-cell heatmap figures were generated by first down sampling

populations to a representative number of events. Event columns

were then colored on a 0–100% min-max pseudocolor scale based on

relative parameter expression, annotated in descending order.
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