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Abstract

Background: Assay for Transposase-Accessible Chromatin (ATAC)-cap-seq is a high-throughput sequencing method that
combines ATAC-seq with targeted nucleic acid enrichment of precipitated DNA fragments. There are increased analytical
difficulties arising from working with a set of regions of interest that may be small in number and biologically dependent.
Common statistical pipelines for RNA sequencing might be assumed to apply but can give misleading results on
ATAC-cap-seq data. A tool is needed to allow a nonspecialist user to quickly and easily summarize data and apply sensible
and effective normalization and analysis. Results: We developed atacR to allow a user to easily analyze their ATAC
enrichment experiment. It provides comprehensive summary functions and diagnostic plots for studying enriched tag
abundance. Application of between-sample normalization is made straightforward. Functions for normalizing based on
user-defined control regions, whole library size, and regions selected from the least variable regions in a dataset are
provided. Three methods for detecting differential abundance of tags from enriched methods are provided, including
bootstrap t, Bayes factor, and a wrapped version of the standard exact test in the edgeR package. We compared the
precision, recall, and F-score of each detection method on resampled datasets at varying replicate, significance threshold,
and genes changed and found that the Bayes factor method had the greatest overall detection power, though edgeR was
slightly stronger in simulations with lower numbers of genes changed. Conclusions: Our package allows a nonspecialist
user to easily and effectively apply methods appropriate to the analysis of ATAC-cap-seq in a reproducible manner. The
package is implemented in pure R and is fully interoperable with common workflows in Bioconductor.
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Introduction

Assay for Transposase-Accessible Chromatin (ATAC)-cap-seq
can be conceptualized as a combination of two pre-existing,
widely used methods; the high-throughput sequencing of DNA
from targeted enrichment capture performed on DNA fragments
obtained from prior ATAC [1]. ATAC-seq allows for rapid detec-
tion of accessible chromatin that may indicate open chromatin,
DNA-binding protein binding sites, and nucleosome position. As
ATAC-seq is fast and requires small amounts of input material

[2], it is a popular and widely applicable assay used in a range
of developmental [3, 4], medical [5, 6], environmental [7, 8], and
technical studies [9]. Targeted sequence capture uses oligonu-
cleotide baits to extract specific DNA fragments from a mixture
and, when combined with ATAC-seq, allows an increase in sen-
sitivity of detection and throughput for particular preselected
genome regions at the expense of genome-wide detection. It is
a trivial step to consider combining ATAC-seq and capture to use
the advantages of each in a single experiment. However, doing
so will raise new analytic concerns, which are discussed more
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fully below. ATAC-cap-seq does not show that chromatin is open
in general, unless baits are tiled deliberately across continuous
wide regions.

A typical ATAC-cap-seq may be done by beginning with an
ATAC-seq library as described previously [2]. Next, small (ap-
proximately 9 nt) indexed sequence bar codes can be used to
amplify the ATAC libraries. Fragments are size selected, e.g., us-
ing SageELF, to enrich sequences between 300 bp and 1.2 kb in
order to give a uniform size distribution for multiplexing sam-
ples and replicates. Baits are designed and synthesized as 120-nt
single-strand RNA baits covalently bound to biotinylated mag-
netic beads. These can be used in sequence capture with the
multiplexed ATAC libraries. Libraries are quality checked and
then sequenced. Capture-seq [10, 11] is a cost-effective alterna-
tive to expensive whole genome analysis. Scientists can focus on
loci of interest and multiplex multiple samples and data types
for the same sequencing cost as a single whole-genome sample.

Analysis of sequence reads from ATAC-seq begins with map-
ping and alignment to a genome followed by peak detection to
identify read-enriched regions. A wide range of tools have been
developed to perform peak finding, notably, MACS [12], HOMER
[13], and SICER [14]. With these tools, the genome is divided into
windows, and the read counts in those windows are analyzed.
RNA sequencing (RNA-seq) packages that deal with read counts
post-mapping work on estimates of read counts corresponding
to regions that can be thought of as windows that represent
genes or transcripts. The edgeR [15] and DESeq [16] packages
implement negative binomial models to estimate differential
counts between samples. The Bioconductor [17] package csaw
uses fixed-width windows across the entire genome [18].

The enrichment capture step can produce a dataset with
characteristics for which workflows designed for many thou-
sands of windows may not give the best results. In particular,
the number of regions represented in the target set may be small
(tens rather than some thousands). Also, the selected regions in
an enrichment capture experiment are likely to be related bio-
logically and can conceivably covary as a small number or even
a single unit. The count of each feature is also dependent on the
magnitude of its abundance; the capture step results in overrep-
resentation of highly abundant features in the captured mixture.
These unique features of ATAC-cap-seq data mean that normal-
ization and differential count estimation must be applied care-
fully.

The tools and methods for solving this problem exist, but
they have not been used together frequently in bioinformat-
ics analysis, which has tended toward whole-genome, nonen-
riched sample analysis. Consequently, a nonspecialist user may
find it difficult to bring useful methods together. Hence, a work-
flow that is based around these methods would prove useful
to those beginning ATAC-cap-seq analysis from a nonspecialist
background.

Findings

A key aim of our atacR package is to allow the user to eas-
ily assess the success of their ATAC enrichment experiment
and determine what further preparative work is required. It
achieves this with comprehensive summaries and functions for
diagnostic plots. Application between sample normalization is
made straightforward. Functions to apply preselected control
gene normalization, library size normalization, or normaliza-
tion based on the least varying regions in the sample are imple-
mented. Differential count estimation functions for the applica-

tion of edgeR exact test, bootstrap t tests and a Bayes factor t test
are provided. The package is implemented in pure R, its base ob-
jects are standard Bioconductor and, as such, is designed to be
fully interoperable with common workflows in the Bioconductor
framework.

Workflow

The atacR workflow is based around three major steps: data
loading and inspection, identification of best targets to use for
normalization, and detection of differential count estimates.
The package provides functions that make each step of the
workflow straightforward and helps to make these potentially
complex analyses more reproducible and the components re-
useable in different contexts. Tutorial vignettes are provided
that can be loaded directly from the R console.

Loading
The atacR package relies on Bioconductor SummarizedExperi-
ment [19] container objects to record counts in user-defined win-
dows. Window locations, binary alignment (BAM) file paths, and
associated sample information are specified from general fea-
ture format files provided by the user. Read counts are loaded
and calculated from BAM using the windowCounts method in
R csaw [18] or Rsamtools [20]. A single function allows loading
and read filtering directly from BAM files. The atacR package pre-
pares these data into structures suitable for downstream analy-
sis.

The atacr object
The atacr object describes sample metadata, bait locations, and
the counts in target and nontarget windows. Generic summary
and plot methods are available that quickly present diagnostic
information from which the success of the experiment with re-
spect to read alignment to on–off targets can swiftly be ascer-
tained. Functions operating on this object each have a ”by” pa-
rameter that allows the user to specify on–off target subsets to
analyze. As the atacr object is essentially an R list, new data con-
taining the counts after application of any processing step can
be added to a custom slot and analyzed using atacr functions in
the same syntax.

Diagnostic plots and normalizations
Data in the atacr object can be assessed for sample bias using
specialized plot functions on a per sample and treatment basis.
Plots can be generated using functions for whole sample count
histograms, chromosome coverage density, Per sample plot of
log ratio versus average intensity (MA) plots, heat maps compar-
ing sample counts, density plots of genome regions’ designated
on–off target, and density plots of variability in regions nomi-
nated as normalization controls. See Fig.1 for examples.

atacR provides a small set of useful normalization methods
applicable to small sets of target windows or those in which the
large proportion show the same change in differential accessi-
bility. A straightforward library size normalization is provided.
For most ATAC purposes, this will be underpowered because the
small number of windows or high proportions of changing win-
dows will cause skew between samples. This method is useful
when the experiment has reasonably high counts (>20 mean)
and it is certain few windows (<10%) will display differential
counts. The atacR package also implements a dynamic method
based on estimating the goodness of fit (GoF) measure described
in [21]. This method calculates GoF, a window/gene level mea-
sure of variability across all samples, and selects the windows
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Figure 1: Example plots from atacR, generated on simulated data. (A) Per sample coverage count density. (B) GoF estimate density plot for control/noncontrol windows.
(C) Per sample plot of log ratio versus average intensity (MA) plot. (D) Per sample similarity heat map. (E) Per sample chromosome coverage count histogram.

with the lowest GoF as the subset on which to normalize. It is
fast, automatically finds the least variation and the best fea-
tures in the data to normalize with, and does a reasonable job
of between-sample normalization. It is usually the best one to
choose. It is particularly useful when it is not known whether
many or just a few windows will be changing, as it should per-
form the same regardless. In addition to library size and GoF,
a user-led method is provided in which control windows corre-
sponding to regions of the genome not expected to show differ-
ential accessibility can be defined in a text file. This is passed
to a normalization function that uses differences in these win-
dows between samples or treatments to scale whole experiment
counts. For ease of use with other normalization strategies, a set
of custom normalization factors can also be provided as a simple
vector and used directly.

Differential abundance and comparisons
The atacR package implements three methods of detecting dif-
ferential abundance; the standard and effective edgeR method
is wrapped for ease of use. A bootstrap t test and Bayes factor
method are also provided. These can be run in a single factor
manner on pairs of samples or on all samples simultaneously
with a common reference sample specified by the user.

We compared the precision, recall, and F-score of each
method on simulated ATAC-cap-RNA-seq data at varying repli-
cates, significance thresholds, and genes changed. To create a
simulated dataset, we examined counts from three indepen-

Table 1: Parameters for simulated datasets

Parameter Values used

Replicates per treatment 3, 5, 10
Number of counts changed 5, 10, 20
Fold change 1, 5, 2, 4
Significance detection level 0.1, 0.05, 0.01∗

∗For Bayes factor runs, significant Bayes factor of 1.1, 1.5, and 2 were used.”

dent RNA-capseq datasets of 52 target-enriched regions. These
showed a double peak in the count distribution, though the
residual to the mean count was roughly normally distributed
(Supplemental Information 1). We used the count set as a sam-
ple from which to randomly select base counts; from these, a
preselected number was multiplied in all replicates of the treat-
ment by a preselected factor to represent differential expression.
Experimental noise was also simulated for each count. At each
combination of parameters (Table1) The edgeR exact test, boot-
strap t test, and Bayes factor methods in atacR were used to iden-
tify differentially abundant counts. We calculated precision, re-
call, and F as described in the Methods section. Ten iterations of
the simulation were run and mean plotted (Fig.2B and 2C). The
edgeR method performed best in recall and precision in all simu-
lations with smaller numbers of changed windows (5), whereas
bootstrap t and Bayes factor were stronger to recall at 10 and
20 changed windows. The bootstrap showed greatest precision
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Figure 2: (A) Heat map of F-score, (B) recall, and (C) precision for runs of edgeR exact test, bootstrap t test, and Bayes factor t test for varying sample replicate, significance
threshold, and number of windows changed in simulated data.

at 20 changed windows. The F-score represents a balance be-
tween precision and recall. Here, we observed a slightly larger F-
score Bayes factor over all parameter values tested when 20 win-
dows were changed. The edgeR method had the highest F-scores
when only five windows had differential counts. From this we
conclude that Bayes factor is likely a good all-around method for
data with many changing windows (in this experiment, approx-
imately 40% of windows), whereas edgeR outperforms at lower
levels (approximately 10%).

Methods

To run simulations, 52 fake genome windows were defined in a
control and treatment experiment. The counts for each window
were selected from a dataset of 156 counts from a pilot wild-
type Arabidopsis RNA-cap-seq experiment. These counts are
stored in the atacR package as a data object ”athal wt counts”
for re-use. At each run of the simulation, the replicates per treat-
ment, number of counts changed, fold ratio by which the counts
changed, and the significance level at which detection was car-
ried out were varied. For each combination of parameters de-
scribed in Table1, we carried out 10 repetitions of the simulation.
The edgeR exact test, bootstrap t test, and Bayes factor t test were
performed on each run using atacR and counted as a true posi-
tive (TP), false positive (FP), or false negative. TP was defined as
the number of windows set with differential counts that were
correctly called by the detection method. FP was defined as the
number of windows that were called but were not set with dif-
ferential counts. FN was defined as the number of windows that
were set as differential but were not called differential. From this

precision, recall and F were calculated as follows:

Precision = T P
T P + F P

(1)

Recall = T P
F N + T P

(2)

F = 2
precision × recall
precision + recall

(3)

The simulated data experiments were carried out in RStu-
dio. The entire experiment code is provided in the Supplemen-
tal Materials. These are executable RMD files that can be rerun
to reproduce our experiment exactly in the R programming lan-
guage.

The version of atacR used was 0.4.13. The base counts that
were modified in simulations are available in the atacR package
in the object ”atacr::athal wt counts.”

Simulations and analyses were run on an Apple Macintosh
computer with R and OS specifications as described in Table 2

Availability of source code
� Project name: atacR
� Project home page: https://github.com/TeamMacLean/atacr
� Operating system(s): Platform independent
� Programming language: R
� License: GNU GPL 3

https://github.com/TeamMacLean/atacr
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Table 2: Machine used to run analyses

Environment parameter Values

platform x86 64-apple-darwin15.6.0
arch x86 64
os darwin15.6.0
system x86 64, darwin15.6.0
major 3
minor 4.2
year 2017
month 09
day 28
svn rev 73368
language R
version.string R version 3.4.2 (2017-09-28)
nickname Short Summer

The library is provided as an R package
that can be installed from Github using dev-
tools::install from github(’TeamMacLean/atacr’).

Availability of supporting data

The R code supporting the results presented here is available
in the repository (https://github.com/TeamMacLean/atacr). The
software is registered in the SciCrunch.org database with a Re-
search Resource Identification Initiative ID of SCR 016286.

An archival copy of the code and results of resampling exper-
iments are also available via the GigaScience repository GigaDB
[22].

Additional files

Simulations.csv
001 methods comparison.Rmd
002 methods comparison.Rmd
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ATAC: Assay for Transposase-Accessible Chromatin; BAM: bi-
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