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Extracellular vesicles are evolutionarily conserved nano-sized phospholipid membraned

structures and released from virtually all types of cells into the extracellular space. Their

ability to carry various molecular cargos (mRNA, miRNA, proteins, and lipids) from one

cell to the other to exert functional impact on the target cells enables them to play

a significant role in cell to cell communication during follicular development. As the

molecular signals carried by extracellular vesicles reflect the physiological status of the

cells of origin, they are expected to mediate any effect of environmental or metabolic

stress on the follicualr cells and the growing oocyte. Recent studies have evidenced

that reproductive cells exposed to various environmental stressors (heat and oxidative

stress) released extracellular vesicles enriched with mRNA and miRNA associated with

stress response mechanisms. Moreover, the metabolic status of post-calving cows could

be well-reflected in the follicular extracellular vesicle’s miRNA profile, which signified the

potential role of extracellular cellular vesicle molecular signals in mediating the effect of

metabolic stress on follicular and oocyte development. In the present review, the potential

role of extracellular vesicles in mediating the effect of environmental and metabolic stress

in various reproductive cells and oocytes are thoroughly discussedMoreover, considering

the importance of extracellular vesicles in shuttling protective or rescuing molecular

signals during stress, their potential usage as means of targeted delivery of molecules to

mitigate the effect of stress on oocytes are addressed as the focus of future research.

Keywords: extracellular vesicles, environmental stress, follicular development, metabolic stress,

intrafollicular cells

INTRODUCTION

Throughout their lifespan, including embryonic development, growth, maturity, and aging,
animals are exposed to various environmental (heat, cold, oxidative, chemicals, and others) and
endogenous stressors. Recurrent environmental and metabolic stress pose significant risk and
disruption of the reproductive physiology. Over the past five decades, the intensive selection
practices of dairy cows for higher milk yield have resulted in tremendous success in increasing the
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net milk yield. However, the increase in milk production has
resulted in a concomitant reduction in fertility traits (1), which
increases the likelihood of culling cows with lower fertility,
causing a reduction in the total amount of milk produced and
farm profitability (2). This is attributed to the negative correlation
of production traits and vulnerability to environmental and
metabolic stress. Environmental and metabolic stress factors
induce changes in the steroidogenic capacity of follicles,
mainly reduce estradiol production in the dominant follicles,
which impairs ovulation associated processes (3, 4). Oocytes
obtained from follicles exposed to both environmental and
metabolic stressors have lower developmental competence (5),
accompanied by reduced ability to fertilize and develop to the
blastocyst stage and establish a pregnancy (6). Exposure to both
environmental and metabolic stress impair the communication
between the oocyte and the surrounding follicular fluid. The
bi-directional communication between follicular cells and the
oocyte is mainly carried out either directly through gap junction
or secretion of paracrine and autocrine molecules (7). The
recent advancements in the discovery and characterization of
extracellular vesicles (EVs) released from various cell types
have provided an additional layer into the existing and well-
known mechanism of cell-to-cell communication (8). It has
been reported that EVs are important in shuttling bioactive
molecules (mRNAs, miRNAs, and proteins), which could reflect
the physiological status of the originating cells (9, 10). The
bioactive molecular content of EVs released from cells subjected
to a variety of environmental and metabolic stressors are distinct
and divergent compared to the EVs obtained from the unstressed
cells counterparts (11). For instance, cells subjected to heat stress
released heat shock proteins via EVs (12), and upon uptake by
recipient cells, it resulted in themodulation of the immunological
responses of the recipient cells (13). Similarly, supplementation
of cells with EVs obtained from cells challenged with oxidative
stress transported protective messages to the recipient cells upon
subsequent exposure to oxidative stress (14). Recently, we have
reported the rescuing effect of EVs from H2O2 treated bovine
granulosa cells by modulating the NRF2 signaling pathways (15).
Experimental models involving the application of heat, oxidative,
and metabolic stress factors on cultured granulosa could
provide insights into the possible association of intrafollicular
communications with the oocyte. Identifying the conserved and
stressor-specific bioactive molecules shuttled via EVs would be
beneficial in addressing the specific stress-associated decline in
oocyte maturation. The present review highlights the role of
EVs in modulating metabolic and environmental stresses. The
importance of EVs in intrafollicular communication and ovarian
physiology, the rescuing and protective impact of EVs against
subsequent stressors are thoroughly discussed.

INTRAFOLLICULAR COMMUNICATION
BETWEEN THE FOLLICULAR CELLS AND
THE OOCYTE

During the course of folliculogenesis, continuous bi-directional
communication between the oocyte and its encircling cumulus

cells, granulosa cells, and theca cells, to exchange an oocyte
and somatic cell factors, is indispensable for the ovulation of a
developmentally competent oocyte, that can undergo through
fertilization and the processes of embryogenesis (16). The gap
junction is the main mechanism of the cross-talk between the
oocyte and the follicular cells, which involves the formation
of the protein family connexins known for their variability
in the permeability, which in turn aids in the transportation
of molecules of lower molecular weight lower than 1 KDa in
size, which are ions, metabolites, and amino acids between
the oocyte and the follicular somatic cells (17). The follicular
microenvironment has two physical barriers that separate the
oocyte from the follicular cells, the follicular fluid-filled antrum
and the zona pellucida (ZP). Nevertheless, the constant flow
of information between the oocyte and the follicular cells is
maintained through the transzonal projection (TZP), irrespective
of the physical barriers (18). The cumulus cells, which are located
adjacent to the oocyte are the primary origin of the TZP. In
addition to the cumulus cells, which are proximate to the oocyte,
cumulus cells positioned at distant layers from the oocyte also
are reported to stretch a few TZPs (19). The number of TZP
in the growing oocyte is significantly higher, which signifies a
growing quest for somatic cells factors for its maturation and the
oocyte factors for the specialization of the surrounding somatic
cells (20), and signifies the stimulatory effect of the oocyte on
the surrounding somatic cells to generate more TZP. The study
further showed that the oocyte-secreted GDF9 stimulates the
surrounding cells to generate more TZP through the SMAD
signaling pathway. In a separate study, oocyte frommouse model
deficient in GDF9 showed to have a malformation of TZP (21).
It has been evidenced that, at the tip of the TZP a split is formed
and EVs have been detected at the tip of the splits, which signifies
the importance of TZP in shuttling EVs between the somatic cells
and the oocyte (22).

The formation of an antrum cavity filled with a serum-
like fluid exudate called the follicular fluid is the defining
phenomenon of the later stages of mammalian follicular
development (23). The follicular fluid, which is a mixture of
proteins, lipids, and nucleotide and ions, secreted from the
surrounding somatic cells and the oocyte, and blood plasma,
which cross the follicular barrier through the capillaries of
the theca cells, serves as an enclosed microenvironment for
the maturing oocyte (24). The follicular fluid is a source
of gonadotropins, growth factors, enzymes, and proteins and
the biochemical composition of the follicular fluid could also
be a reflector of the pathophysiological conditions of the
corresponding follicle and predictors of the oocyte quality
(25). The follicular fluid in the antrum segregates the oocyte
from the mural granulosa cells and theca cells, which creates
a conducive microenvironment for normal development of
the oocyte, and further facilitate the exchange of cellular
messages between them (24). The physical separation between
the oocyte and the follicular cells leads to the formation of
two distinct subpopulations of granulosa cells. The outer layers
of granulosa cells will be separated from the granulosa cells
layers adjacent and surrounding the oocyte, which becomes
cumulus cells. Nevertheless, the communication between the
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oocyte and follicular cells is still maintained mainly through
paracrine signaling. Here, each subpopulation of granulosa cells
is being exposed to the FSH and oocyte secreting factors, at
differential gradients (26). For instance, the interaction of the
oocyte secreted factors like the GDF9 and BMP15 with the FSH
and growth factors like the IGF1 is crucial in promoting the
proliferation and differentiation of the granulosa cells and the
cumulus cells, respectively (27).

EXTRACELLULAR VESICLES AS MEANS
OF INTRAFOLLICULAR
COMMUNICATIONS

Extracellular vesicles (EVs) are evolutionarily conserved nano-
sized, phospholipid bilayer membraned structures of varying
sizes released from virtually all types of cells through the
exocytosis process into the extracellular space (8). EVs are
reported to be present throughout an organism’s biological fluids
providing pleiotropic functions (28). Due to their heterogeneity
in the size, shape, membrane protein, and the originating cells
(29), EVs can broadly be categorized as microvesicles, exosomes,
and apoptotic bodies. Microvesicles are generated by the outward
budding of the plasma membranes with irregular shapes and a
size range of 100–1,000 nm. Exosomes are the smallest fraction
of EVs, with a diameter ranging from 30 to150 nm and formed
from the intraluminal vesicles (ILV), with the multivesicular
bodies (MVB) and released to the extracellular space upon fusion
with the plasma membrane (30). The largest fractions of EVs
are the apoptotic bodies, with a diameter range of 1 to 5µm,
which arise from the highly regulated cellular disintegration
during apoptosis (31). EVs are also differentiated based on
the molecular bioactive molecular content they encapsulated.
Exosomes andMVs encapsulate an array of cytoplasmic contents
including RNAs, proteins, and lipids (32), while apoptotic bodies
are equipped with nuclear components and cellular organelles
(33). The presence of specific membrane-associated proteins
including the tetraspanins, the CD63, CD81, and CD9, and other
proteins including ALIX and TSG101 is the hallmark of EVs (34).
Studies have suggested that the encapsulated bioactive molecules
within EVs can exert phenotypic changes and modulate the
expression of genes in the secreting and nearly and distantly
located recipient cells (35). Cells actively select the amount of EVs
and the type of bioactive molecules to shuttle depending on the
cellular physiological and environmental conditions, like stress
and diseases (36). Upon reaching the target cells, EVs can interact
with their target cells either through EVs membrane protein
interaction and the cellular receptors or through the dissolution
of the EVs protein by the enormous protease activity in the
extracellular space making the EVs release their content and act
on the receptors of the target cells. Besides, the membrane of the
EVs could be fused with the membrane of the recipient cells to
release the content of the EVs and incorporate it into the cellular
content (37).

EVs are abundantly present in virtually all reproductive
biological fluids including follicular fluid (38), oviductal fluid (39,
40), uterine fluid (41), amniotic fluid (42), and spent cell culture

media (15) and embryos culture media (43). EVs carry molecular
conservatories including mRNA, miRNAs, and proteins, which
indicate the physiological status of the originating cells (9, 10).
EVs are reported to be present in the follicular fluid of bovine (38,
44, 45), equine (46), human (47) and are essential in the transport
of RNAs, miRNAs, and protein to recipient cells during follicular
development. In bovine, the uptake of follicular EVs is reported
to be associated with the alteration transcript abundance in the
recipient oocytes (48), and granulosa cells (38), and enhanced
the cumulus expansion during in vitro oocyte maturation (44),
the rate of development of in vitro fertilized oocytes to the
blastocyst stage (49) and proliferation of granulosa cells (50).
It is not only the amount of EVs in the biological fluid that
varies depending on the physiological status of the reproductive
organ, but also the molecular cargo carried by these EVs. For
instance, a small growing follicle not only contains a higher
concentration of EVs in the follicular fluid, but also a large set of
EV-coupled miRNAs, which evidenced the molecular dynamics
during the processes of oocyte growth. Intriguingly, EVs isolated
from follicular fluid of small follicles have better potential to
support oocyte maturation cumulus expansion with inter-species
wide conserved manner (44).

One of the key factors that contribute to the expansion of
the cumulus cells by promoting the response to FSH is an
oocyte secreted factor named the cumulus expansion enabling
factor (CEEF) (51). The CEEF has been speculated to be a
combination of oocyte secreted and several other proteins,
including the oocyte-secreted GDF9 (52) and the TGFBB1
(53), which have been studied due to their positive impact on
cumulus expansion. In support of this notion, denaturation of
oocyte maturation conditioned media at higher temperature or
treatment with proteinase K completely inhibited the impact of
CEEF in inducing the cumulus expansion (54). This signifies the
fact that oocyte secreted proteins can be released as components
of the CEEF into the extracellular space. The experiment further
examined the size of the protein in the conditioned maturation
media by using a 100-kDa filter membrane and it was shown
that the flow-through component of the conditioned media
did not enhance the expansion of the cumulus cells. This
implies that the CEEF could be a protein molecule with higher
molecular weight (>100 kDa) (54). However, in another study,
it was shown that the 25 kDa TGBB1 protein partially plays
the role of CEEF (55), signifying the fact that the CEEF is
not a single protein, rather a complex of protein molecules. In
addition, the presence and activity of CEEF in follicular fluid
was investigated by supplementing follicular fluid obtained from
small and large follicles during in vitro oocyte maturation (54).
In that study, it was shown that the cumulus cells expanded
extensively in the presence of follicular fluid from the smaller
follicles, contrary to the cumulus cells cultured with follicular
fluid obtained from larger follicles. Similarly, maturation media
conditioned with mural granulosa cells of smaller follicles
resulted in elevated CEEF activity and the expansion of the
cumulus cells as opposed to the granulosa cells from the larger
follicles. This can be attributed to the higher number of FSH
receptors in small follicle granulosa cells as compared to the
large ones.
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To date, the role of EVs in shuttling the CEEF between
the oocyte and the surrounding somatic cells is not
reported. However, reports on the differential effect of EVs
supplementation from the small and large follicles on cumulus
expansion could indicate the potential role of EVs in shuttling
the CEEFs between the ovarian somatic cells and gamete and
vise versa (44). Nevertheless, further study is needed to profile
the proteome content of the EVs derived from the follicular fluid
at different stages of the follicular development, which could lead
to the identification of either known or novel CEEFs circulating
in the follicular environment.

Due to its enclosed microenvironment, the follicle is
convenient to study the EV-signaling mechanism, as the source
of the EVs and recipient cells can easily be pinpointed.
Another advantage of the follicular microenvironment is the
remarkable stability of the RNA molecules in the follicular
fluid and other reproductive biological fluid, irrespective of
the higher nuclease activity, which could be attributed to the
encapsulation in EVs (9). This makes the EVs encapsulated
RNAs promising molecular tools in the search for the diagnostic
markers of various reproductive pathophysiological conditions.
For instance, analysis of the EV-mediated miRNAs derived from
human follicular fluid and the corresponding serum samples
revealed specific miRNAs enriched in the EVs of the follicular
fluid with an important role in ovarian functions (47). The study
showed the miRNAs specifically enriched in the EVs of follicular
fluid including miR-99a, miR-100, miR-132, and miR-218 are
involved in the maturation process of the follicles, while the miR-
132, miR-212, and miR-214 negatively regulate genes known to
encode inhibitors of follicular maturation (47). Supplementation
of oocytes with EVs from follicular fluid has been shown to
alter the transcript abundance of the recipient oocyte and played
enhancing the competence role of the oocyte to reach the
blastocyst stage (49). In an attempt to determine the impact of
follicular fluid EVs on the physiology and morphology of the
cumulus-oocyte complexes (COCs) and the associated changes
in the gene expression, follicular fluid EVs derived from small
and large bovine antral follicles were supplemented to COCs (44).
The study further showed that the EVs from the follicular fluid
of smaller follicles harbor more bioactive molecules and pose a
tremendous positive impact on the expansion of the COCs and
enrichment of the COCs expansion marker genes, Ptgs2, Ptx3,
and Tnfaip6 in both bovine and mouse. Interestingly, the study
verified that supplementation of bovine follicular fluid EVs into
mouse COCs induced the expansion of cumulus cells (44). This
signifies the fact that the evolutionary conservation of the EVs
functions and opens a room for inter-species alternatives for
the remedies in reproductive pathophysiological conditions. EVs
of the follicular fluid carry miRNAs reported to be involved in
key pathways related to oocyte maturation, such as the WNT,
TGFß, MAPK, and ErbB signaling pathways (46, 47). It is also
worth noting the developmental competence of bovine oocytes
is closely associated with the EV-coupled miRNA profile of the
corresponding follicular fluid. (38). The study further revealed
the higher number of miRNAs being released via EVs from
follicular fluid, which surrounds the immature oocytes compared
to the EVs derived from follicular fluid encompassing mature

oocyte. This is in agreement with the previous finding, which
highlighted that the smaller follicles release more EVs into the
follicular fluid compared to the larger antral follicles (56). The
study further affirms that the miRNAs content of EVs from the
follicular fluid is reported to show variation according to the
stage of development. For instance, the expression of miR-204,
miR-92b, miR-328a-3p, miR-424e-3p, and miR-450a is reported
to progressively increase, while the expression of miR-19a-3p
and miR-335 showed a progressive decline in response to the
increase in the size and growth of follicles. Follicles of variable
size have been reported to have distinct sets of miRNAs (56),
which could have a differential impact on the proliferation
of granulosa cells (50). Similarly, in mare, the follicular fluid
EVs obtained from the preovulatory and the mid-estrous stage
follicles are enriched with miR-372, miR-27b, and miR-382 and
these miRNAs have an inhibitory role on genes like the Inhibitor
of DNA Binding/Differentiation 2 (ID2), which are down-
regulated in the granulosa cells of mare preovulatory dominant
follicles (57). A summary of the EV-mediated transfer of bioactive
molecules in reproductive biofluids is indicated in Table 1.

IMPACT OF ENVIRONMENTAL AND
METABOLIC STRESS ON FOLLICULAR
DEVELOPMENT AND THE INVOLVEMENT
OF EVs IN MEDIATING THE STRESS
COPING MECHANISMS

Among the determinant factors that contribute to the decline of
female fertility is exposure to both environmental and metabolic
stresses. Among the environmental stressors, oxidative (15) and
heat stress (71) is reported to impair follicular development and
function of the follicular cells. Moreover, metabolic stressors,
which enhance the accumulation of non-esterified fatty acids
in the circulation are also reported to impair the steroidogenic
function of the follicular cells (72).

Oxidative Stress
Among the stress-inducing factors that arise from environmental
and physiological insults is oxidative stress, which is a
phenomenon, where the amount of cellular ROS production
overwhelms the intrinsic production of scavenging antioxidants
(73, 74). The ROS are the most abundant forms of intermediates
generated during the oxygen consumption process (75) and are
involved in oxidative stress (76). Even though a moderate level
of ROS is beneficial for normal progression of cellular functions
(77), excessive production can surpass the natural antioxidant
system and this creates an unfitting environment for female
reproduction (78). During ovarian follicular development, there
is a complex relationship between the production of ROS and
the counterbalancing antioxidants in a stage-dependent manner
(79). For instance, during the preovulatory stage, the post-
LH inflammatory precursors generate excessive ROS, which is
important to induce ovulation (80). Among the free radicals
that lead to the excessive accumulation of intracellular ROS and
subsequent cellular damage, the H2O2 has a longer cellular half-
life and can enter into the nucleus (81). Thus, it is a widely used
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TABLE 1 | Summary of EV-mediated release of bioactive molecules and the associated biological functions.

Reproductive

biofluid/media

Bioactive molecules released

in EVs

EV-associated biological functions Species References

Follicular fluid miRNAs1,2,4,5,6,13, transcripts

associated with cumulus

expansion3, C-type natriuretic

peptide (CNP) and natriuretic

peptide receptors subtype 2

(NPR2)7, transcriptome8,9,10,

proteome11

Oocyte developmental competence1,

Post-partum negative energy balance2,

cumulus expansion3, follicular growth and

maturation4,5,6, oocyte meiosis progression7,

Alteration of bovine oviductal epithelial cells

transcriptome8, Association the transcriptome

of EVs with the neighboring mural granulosa

cells9, enhancement of meiotic resumption10,

Mediate heat-stress associated gene

expression in oocyte11, Improvement of

oocyte competence and survival under heat

shock12, predictors of IVF outcomes and

pregnancy success13

Bovine1,2,3,5,7,8,10,12,

Equine4, Human6,13,

Porcine9, Feline10

1(38), 2(45), 3(44), 4(46),
5(56), 6(47), 7(58), 8(59),
9(60), 10(61), 11(48),
12(62), 13(63)

Oviductal fluid Proteins1,2,3,4, miRNAs2,4 Embryo-oviduct cross-talk1, gamete-oviduct

interations2, Change in the Phospholipid

Composition of in vitro developed Bovine

Embryos3, Hormonal impact of the estrous

cycle on EVs secretion4, regulation of sperm

motility and survival5, regulation of polyspermy

during porcine in vitro fertilisation6,

improvement of birth rates after embryo

transfer7

Bovine1,2,3,Porcine4,5,6Mouse7 1(39), 2(64), 3(65), 4(66),
5(67), 6 (68), 7(69)

Granulosa

cells spent

culture media

miRNAs1, heat-stress associated

transcripts (HSP70, HSP90,

GRP78, and GRP94)1 and

oxidative Stress-associated

transcripts (NRF2, PRDX1, CAT,

and TXN1)2

The protective impact of EV-associated

miRNAs against heat stress1, rescuing role of

EVs against oxidative stress2

Bovine1,2 1(70), 2 (15)

Superscript numbers correspond to the references listed in the last column of the table.

free radical for the induction of oxidative stress under in vitro
experiments in various cell types. Reports showed that H2O2

induces granulosa cell apoptosis by regulating the ROS-JNK-
p53 pathway (82). Bovine granulosa cells treated with H2O2

accumulated a significantly higher amount of ROS accompanied
by reduced activity of mitochondria and elevated expression of
the stress-related transcription factor NRF2 and its downstream
antioxidant transcripts (CAT, PRDX1, and TXN1) (15). One of
the factors responsible for the impaired cellular functions of in
vitro developed oocyte is the generation of oxidative stress from
the suboptimal maturation condition, which could contribute
to the lower success of in vitro embryo production (83). The
extent that oocyte is affected by oxidative stress during in
vitro maturation process depends on the intrinsic antioxidant
properties and how fast this is replenished during the maturation
process (84). Interestingly, oocytes with intact cumulus cell
mass are endowed with higher antioxidant activity compared to
denuded ones (84).

The involvement of EV-mediated molecule transfer in
response to oxidative stress has been previously reported.
The EVs released from mouse mast cells transport protective
RNA messages to the recipient cells upon coincubation against
subsequent exposure to oxidative stress (14). In our previous
experiment, we showed that EVs released from granulosa cells
treated with H2O2 are enriched with NRF2 and antioxidant
enzymes (CAT and TXN1), signifying the fact that EVs could

partly reflect the cellular stress conditions considering the
presence of stress-associated transcripts both in the cells and
the released EVs (15). In the same study, the co-incubation
of EVs obtained from H2O2 challenged granulosa cells rescued
the recipient granulosa cells by reducing the accumulation of
intracellular ROS. This signifies the fact that stress associated
EVs contain molecular signals, which could play a protective
or rescuing role against subsequent stress. Nevertheless, the
abundance of the oxidative stress-associated transcripts like
the NRF2 and its downstream antioxidants in the recipient
cells was elevated and subsequently, reduce intracellular ROS
accumulation (15). This could be because of the fact that
pretreatment of cells with H2O2 before the supplementation
of EVs has already activated the transcription of the NRF2
signaling pathway. In a separate study, EVs obtained from cells
exposed to H2O2 were supplemented to recipient cells before
subsequent H2O2 challenge showed to have a protective impact
in the recipient cells against subsequent oxidative stress (14).
This demonstrates the fact that the timing of stress primed EVs
supplementation in relation to the timing of the subsequent
H2O2 exposure determines the transcriptional activation pattern
in the recipient cells.

Heat Stress
Environmental heat stress during summer seasons is a dominant
stressor in the dairy and beef industry that leads to impairment
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in various reproductive processes including oocyte maturation,
embryo development, gonadotropin secretion, ovarian follicular
growth, steroidogenesis, development of corpus luteum, and
uterine endometrial responses (4, 85). Summer heat damage
has a long-lasting effect on dairy cows and a period of 2–3
estrous cycles are required to fully recover from heat stress-
induced damages (4). Exposure of oocytes to high temperature
during the maturation period resulted in impairment in the
rearrangement of their microtubules and microfilaments,
damaged spindle apparatus, an increased proportion of
oocytes arrested at metaphase, the nuclear maturation (5)
and resulted in a lower rate of fertilization (6). Similarly,
oocytes collected during the summertime are reported to
have lower mitochondrial distribution compared to oocytes
collected during wintertime, which was accompanied by
the induction of oxidative stress and apoptosis (86). Heat
stress also impairs the function of granulosa cells, which in
turn compromises ovarian function and the developmental
competence of the accompanied oocytes (87). We demonstrated
the deleterious effect of heat stress on granulosa cells using
an in vitro cell culture model, in which exposure of cells to
elevated temperature resulted in reduced cellular proliferation,
increased apoptosis, increased ROS accumulation, and reduced
mitochondrial activity (88). Granulosa cells respond to heat
exposure by activating the heat shock proteins (HSP) family
and the unfolded protein response (UPR) (89, 90). Among
the heat shock protein family, the HSP70 is reported to
be significantly elevated in granulosa cells exposed to heat
stress (71).

The cellular reserve of the HSPs is also reported to be
present in the extracellular space. For instance, cells subjected
to heat stress are reported to release HSPs into the extracellular
space via EVs (12, 91, 92) and are involved in modulating the
immunological responses of the recipient cells (13). Similarly,
cells exposed to heat stress are reported to release the HSPs
into the extracellular space via EVs, which could be a reflector
of the cellular heat stress conditions (93). Cells exposed to
heat stress are reported to release EVs that could pose a
bystander effect on recipient neighboring cells. The bystander
effect can be explained by the reduced rate of apoptosis and
DNA damage in the untreated recipient cells (94). Interestingly,
the study showed that the cells supplemented with EVs from
heat-stressed cells became more resistant to subsequent heat
stress compared to the untreated counterparts. We recently
experimented on the EVs-mediated transfer of protective signals
against heat stress in bovine granulosa cells (70). Data showed
that granulosa cells subjected to heat stress (42◦C) released
a significantly higher number of EVs to the culture media
compared to the cells kept under normal temperature (37◦C).
Moreover, the EVs of the heat-stressed granulosa cells were
enriched with HSP70, HSP90, and SOD1 and tend to have
more GRP78 and GRP94 compared to the EVs of untreated
granulosa cells. Interestingly, the miRNA profile of the EVs
showed that the heat-stressed EVs are enriched with miR-1246,
which is also previously reported to be abundantly expressed
in the circulation of heat-stressed Holstein Frisian cows (95). A
recent study in bovine has evidenced that supplementation of

both the whole follicular fluid and isolated EVs from follicular
fluid reversed the damage of the heat stress on the oocyte and
improved the cleavage and blastocyst rates (62). Interestingly,
supplementation oocytes with only follicular EVs have a better
impact than the whole follicular fluid in terms of improving
cleavage and blastocyst rate. This signifies that the EVs play a
major role in reversing the damage incurred by heat stress on
the oocytes.

Metabolic Stress
The intensive selection for high milk yield in the past decades
has resulted in a significant increment in the amount of milk
per lactation per cow. However, a concomitant reduction in the
fertility traits of high yielding dairy cows was also observed (1).
The decline in fertility traits is associated with early lactation
post-partum negative energy balance (NEB) (96). Follicles
obtained from post-partum cows under NEB undergo several
unfavorable metabolic changes that affect the developmental
competence of oocytes (97, 98). Similarly, granulosa cells of
cows under NEB exhibited lower expression of genes linked
to Vitamin A and D metabolism, suggesting the detrimental
effect of metabolic stress on bovine follicular development (99).
Among the major metabolic changes in high-producing dairy
cows is the elevation of free fatty acids (FFA) in the circulation,
which are released from adipose tissues during the early post-
partum period (100). Besides the changes in the composition of
post-partum follicular fluid, cows under NEB are characterized
by the elevated concentration of the non-esterified fatty acid
(NEFA) and b-hydroxybutyrate concentrations (BHB) during
the first 2–4 weeks post-partum and start to decline from
the 6th week post-partum both in the follicular fluid and
serum (101). The concentration of palmitic (C16:0), stearic acid
(C18:0), and oleic acid (C18:1) are reported to be elevated in
the serum of cows under NEB (102). Under in vitro culture
conditions, supplementation of individual and pooled NEFA
components (C16:0 and C18:0) to bovine granulosa cells at
a dose as low as 150mM induced apoptosis and reduced
proliferation of cells, which signifies the toxic effects of NEFA
accumulation during the post-partum period on the follicular
cells in bovine (72).

We recently examined the miRNAs content of EVs derived
from follicular fluid of cows under divergent metabolic status
post-calving and results showed a massive down-regulation of
miRNAs in follicular fluid EVs of cows under NEB (45). Based
on the miRNA fingerprints carried by follicular EVs, cows
under positive energy balance post-partum closely resembled
heifers than cows under NEB conditions. Moreover, the oocytes
derived from these cows during early post-partum showed
altered epigenetic profiles compared to those derived during the
late post-partum period (103). Interestingly, the study identified
around 33,000 differentially methylated regions (DMRs) were
found to be specific to early-post-partum and these were located
within genes involved in metabolic, carbon metabolism, and
fatty acid metabolisms. However, the association of EV-coupled
molecular signatures with an altered epigenome profile of oocytes
needs further investigation.
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DYNAMICS OF EV-MEDIATED miRNAs IN
FOLLICULAR CELLS IN RESPONSE TO
ENVIRONMENTAL STRESS

One of the fundamental aspects of EVs-mediated transfer
of bioactive molecules is the balance between the molecules
remained in the cells and those released into the extracellular
space. EVs released into the body fluid could indicate the
level of intracellular hemostasis (104). Similarly, cells could
also release EVs as a mechanism to remove toxicants from
cells (105). For instance, EV-mediated release of b-catenin
through EVs led to the reduced intracellular reserve of the ß-
catenin pool, which in turn downregulate the intracellular WNT
signaling pathway (106). Nevertheless, it is arguable whether
the intracellular reserve of certain bioactive molecules will be
reduced irrespective of its enrichment in the corresponding
EVs. In addition, the exposure of cells to either environmental
or metabolic stress could potentially have a unique pattern of
release of a selected bioactive molecule. To address this, we
performed a comparison of the miRNAs profile in granulosa

cells and the corresponding EVs in relation to exposure to heat
stress (70). MiRNAs were sorted according to their expression
pattern in the heat-stressed group, where miRNAs with positive
or negative fold changes are considered as up or down-regulated
miRNAs, respectively. Accordingly, four different scenarios of
miRNAs expression in granulosa cells and EV-mediated release
were observed namely, (A) miRNAs upregulated in both the
cells and the corresponding EVs, (B) miRNAs upregulated in the
granulosa cells, but downregulated in the corresponding EVs, (C)
miRNAs downregulated in the granulosa cells, but upregulated in
the corresponding EVs, and (D) miRNAs downregulated in both
the granulosa cells and the corresponding EVs. The mechanisms
of these patterns and the selective release or maintaining of these
miRNAs could either be a reflector of the cellular homeostasis or
as mechanisms to reduce the cellular reserve of selected miRNA,
which are detrimental to the survival of cells during the exposure
to environmental or metabolic stressors. Contrary to this, the
miRNAs, which are preferentially enriched in the cells as opposed
to the corresponding EVs or vice-versa could be beneficial to
the cells to cope with the exogenous stress and contribute to the

FIGURE 1 | Hypothetical model of the miRNAs dynamics in bovine granulosa cells and the corresponding EVs in response to heat stress. Representative miRNAs

that belong to each pattern are listed. (A) MiRNAs with increasing trend both in the cellular reserve and in the released EVs. (B) MiRNAs increased in the cellular

reserve and declined in the released EVs. (C) MiRNAs depleted in the cellular reserve but increased in the released EVs. (D) MiRNAs depleted in both the cellular

reserve and the released EVs. Red arrows represent an increasing trend, while green arrows represent a declining trend.
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enhanced development of stress resistance. A hypothetical model
that describes the dynamics of miRNA abundance in the cellular
reserve and released EVs as a response to heat stress is indicated
in Figure 1.

THE FUTURE IMPLICATION OF EVs IN
MAMMALIAN FEMALE FERTILITY DURING
ENVIRONMENTAL AND METABOLIC
STRESS

The importance of EVs as molecular cargo in mediating
mammalian follicular development has been characterized in
several reproductive biofluids. Nevertheless, the functional role
of these EVs and their cargo molecules are not fully understood.
Considering the important roles of EVs in shuttling the protective
and rescuing signals in follicular cells, it would highlight the
potential usage of EVs as a means of molecule delivery, which
could be utilized for future applications to mitigate the effect
of stress on oocytes and embryo development. The molecular
characterization of the cargo of EVs with a potential impact on
oocyte and embryo development could lead to the discovery
of molecular markers for the development of stress-associated
infertility treatment strategies. Therefore, characterizing the
content of EVs released from granulosa cells and oviductal
epithelial cells after exposure to environmental and metabolic

stress could provide useful insight about the survival mechanisms
of reproductive cells and possible usage of these EVs as
supplementation into the oocyte maturation and embryo culture
medium to enhance stress-coping mechanism during oocytes
maturation and embryos development. This will be relevant to
address the issue of the qualitative and quantitative decline in the
outcome of the in vitro production of embryos, which arises from
the various stress-inducing factors under in vitro environment
including the oxygen tension and culture media constituents
compared to their in vivo counterparts.
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