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Abstract

The COVID-19 pandemic has drastically shifted the way people work. While many busi-

nesses can operate remotely, a large number of jobs can only be performed on-site. More-

over as businesses create plans for bringing workers back on-site, they are in need of tools

to assess the risk of COVID-19 for their employees in the workplaces. This study aims to fill

the gap in risk modeling of COVID-19 outbreaks in facilities like offices and warehouses. We

propose a simulation-based stochastic contact network model to assess the cumulative inci-

dence in workplaces. First-generation cases are introduced as a Bernoulli random variable

using the local daily new case rate as the success rate. Contact networks are established

through randomly sampled daily contacts for each of the first-generation cases and suc-

cessful transmissions are established based on a randomized secondary attack rate (SAR).

Modification factors are provided for SAR based on changes in airflow, speaking volume,

and speaking activity within a facility. Control measures such as mask wearing are incorpo-

rated through modifications in SAR. We validated the model by comparing the distribution of

cumulative incidence in model simulations against real-world outbreaks in workplaces and

nursing homes. The comparisons support the model’s validity for estimating cumulative inci-

dences for short forecasting periods of up to 15 days. We believe that the current study pres-

ents an effective tool for providing short-term forecasts of COVID-19 cases for workplaces

and for quantifying the effectiveness of various control measures. The open source model

code is made available at github.com/abhineetgupta/covid-workplace-risk.

Introduction

The current pandemic of COVID-19 has now led to more than 180 million cases and

more than 3.9 million deaths worldwide as of 2021–06-30 [1]. The disease is caused by

SARS-CoV-2—a type of respiratory virus. Compared to other coronaviruses like severe acute

respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome

coronavirus (MERS-CoV), it is less deadly but has higher transmissibility [2]. Due to its air-

borne nature, long incubation, and heightened transmissibility, the pandemic has endangered
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public health, especially those of workers in various types of settings. For example, there has

been a considerable number of outbreaks in meat processing facilities [3–5], offices, ware-

houses, and university campuses [6–9].

Amidst this pandemic, government and businesses have taken significant measures to miti-

gate the outbreak risk in indoor workplaces including capacity reduction, remote working,

mask wearing policy, social distancing, etc. The percentage of employers who reported a suc-

cessful shift to remote work have increased from 73% to 83%, from June 2020 to January 2021

[10]. However, more than 60% of workers in the United States economy cannot work remotely

and this percentage is even higher in emerging economies [11]. For those able to work

remotely, a survey of executives suggests that COVID-19 may propel faster adoption of auto-

mation and artificial intelligence [12], work from home may increase from 20% pre-pandemic

to 27% post-pandemic [13], and hybrid work arrangements with employees splitting time at

home and in the office will be the new normal [10, 14].

While the workforce is adapting to these significant changes, the need for ensuring the

safety of workers in the long-term is becoming more urgent. Business owners are concerned

about reoccupying their workplaces, but their expectations are far from reality. In June 2020,

80% of executives expected a return back to normal by September 2020, and 88% by December

2020 but most of these businesses continue being fully remote even in April 2021 [15]. Mean-

while, executives have been hard-pressed to make the right mitigation decisions for safe return

of their employees. In a survey of 100 executives from June 2020, 78% had implemented or

planned to implement once a day temperature checks while only 26% favored contact tracing

and 11% favored regular testing of employees, showing a preference for more convenient mea-

sures like temperature checking which is less effective due to the prevalence of pre-symptom-

atic and asymptomatic cases [15]. At the same time, information about COVID-19

transmission has continued to evolve making it difficult for businesses to choose the right miti-

gation measures to maximize safety and minimize disruptions. Businesses need to make near

real-time decisions in response to local trends of disease circulation while being resilient

against long-term changes in the pandemic. In order to make effective decisions for reoccupa-

tion of workplaces, facility managers, human resources personnel, and business decision mak-

ers need data-driven tools to help them assess outbreak risks within their facilities based on

local community conditions, and the relative benefits of different mitigation measures.

There are several differences between modeling disease dynamics in a large population and

modeling transmissions in a workplace with a small number of people. Parameters such as

probability of transmission (β, R0) are relatively easy to estimate in a large population com-

pared to smaller groups of employees in workplaces. In indoor spaces with restricted access

such as offices and warehouses, population is generally static, and properties of the environ-

ment and individual behavior have large impacts on the transmission [16, 17]. Furthermore,

an infectious pathogen can often invade and be sustained in a large population when R0 > 1,

but in small and closed populations, the disease transmission can die off quickly due to either

the depletion of susceptible population or removal of infectious population [18]. Due to these

differences, the traditional compartmental models often do not fit the purpose of modeling the

risk of outbreaks in small and closed population.

Several recent models have aimed to simulate the physics behind COVID-19 transmission

within offices, classrooms, and restaurants [19, 20]. These studies estimate the transmission

risk at the point of the transmission event, but do not provide estimation on the scale of out-

breaks. Other studies have modeled human behavior in indoor spaces using agent-based or

network-based models [21–23]. For example, a contact network model was developed to esti-

mate the cumulative incidence of COVID-19 on the Princess Diamond Cruise ship [21]. These

models utilize the unique contact network structure in their specific cases, like the interactions
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between passengers, interaction between crew members, and interactions between passengers

and crew members on a cruise ship. However, they are difficult to generalize for other loca-

tions and settings.

Recently, several models and web-based tools have also been developed to model outbreaks

in large gatherings or indoor places [24–26]. The majority of these models are deterministic. A

web-based tool called the COVID-19 Indoor Safety Guideline aims to develop safety guidelines

based on room specifications, human behavior, age group, and virus variant [25]. The study

demonstrated the impact of airflow, human behavior, and indoor environment on SARS--

CoV-2 transmission, but it did not consider the impact of local incidence rate on the introduc-

tion of the outbreaks. Another application is developed to estimate the risk that at least one

individual with SARS-CoV-2 is present in gatherings of different sizes in the United States

[27]. Their assumption of community introduction following Bernoulli trials matches that of

the present study. However, the tool does not provide the ability to assess outbreak risk in

workplaces. An agent based stochastic model called Covasim has been created to project epi-

demic trends, explore intervention scenarios, and estimate resource needs [22]. The model is

composed of a collection of open-source data-driven synthetic contact networks, like Synth-

Pops and hybrid networks. However, the study did not include information about its applica-

bility for assessing risks in workplaces with small population.

This work contributes to the body of knowledge in modeling COVID-19 outbreaks in

indoor places. It incorporates secondary attack rate (SAR) as the transmission parameter into

a stochastic contact network. By consistently accounting for uncertainties in the transmission

chain, this model enables probabilistic short-term forecasting of the outbreak risk within

workplaces with static populations. It also allows for customization based on local case rates,

control measures such as mask wearing, behaviors of employees such as interactions and

speaking activity, and environmental factors such as airflow and filtration. Additionally, we

provide guidance for parameter values appropriate for general workplaces so that the model

can be implemented widely.

The objectives of this study include—presenting a contact-network model that can be used

to forecast cumulative incidences of COVID-19 in small populations; selecting probabilistic

parameters associated with transmission dynamics and control measures to evaluate the

impact of mitigation; and validating the model with real-world examples. The design and

methodology of the stochastic contact-network model is presented in the Materials and Meth-

ods section. The validation against observations from 7 individual outbreak reports in work-

places worldwide, and against weekly reported data from over 8000 nursing homes in the

United States is presented in the Results section. The observations closely match model esti-

mates for both sets of comparisons. In the Discussion section, we highlight the primary limita-

tions of the work, and motivations for future work. Finally, we present a summary of our

conclusions.

Materials and methods

We present a stochastic contact network which emulates the introduction of COVID-19 cases

in a facility and the daily contacts among people within the facilities as the routes of transmis-

sion. The nodes in the network represent each individual, and the edges represent their inter-

actions or contacts. The occurrence of edges is stochastic and homogeneous. We only consider

the infectious, susceptible, and exposed populations in the model. The model outputs the

cumulative incidence within a facility after n days, where n� 15 is intended to be a short fore-

casting period.
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Network structure

Our model adopted a star network topology [28, 29] to represent the contacts between the first

generation and the susceptible employees. The central hub of the network represents the first-

generation cases who arrive at the workplace. Depending on the local case rates, there could be

one or several hubs, hence one or several independent star networks. Moreover, new case

introductions can occur during the forecast period, hence new hubs may be added on each

day. The edges connecting the central hub and other nodes indicate contact made between the

first-generation cases and the susceptible employees on site. Each hub draw connections with

nodes randomly based on a geometric distribution. The edges can be created for each day,

remain for the next day, or only exist for one day depending on the probability of contacts

being maintained for the next day. Successful transmission of the pathogen through edges

(contacts) is governed probabilistically by the secondary attack rate. Networks for each first-

generation case are mutually independent.

Model design

To model the transmission dynamic within a short-term period, we defined the components

of a transmission chain as below.

• Case introduction—Introduction of COVID-19 cases in a facility is defined as the time

when the first case arrived in the facility.

• Transmission chain—The process in which the virus spreads from one person to another.

In our contact network, the transmission chain is represented by series of nodes (infectious,

susceptible, and exposed individuals) and edges (contacts).

• First-generation cases—Individuals who are the starting point of a transmission chain.

These include one or more index cases that are infected outside a facility and introduce the

disease into the facility. This group is considered as the infected population.

• Second-generation cases—Individuals who are exposed to COVID-19 as a result of a suc-

cessful transmission event after coming into contact with the first-generation cases. This

group forms the exposed population. In the present model, we assume that these individuals

do not become infectious within the short forecasting period. Hence, the transmission chain

ends at second-generation cases.

The pseudocode in Algorithm 1 illustrates the design of the model. The first-generation

cases who are infected from the community can arrive at the facility on any given day. We

assume that these cases are introduced to the facility as Bernoulli trials using local daily new

case rate as the success rate. Once first-generation cases arrive, we initiate random contacts

between the infectious and the susceptible individuals. The daily contact size of the first-gener-

ation cases is randomly determined from a geometric distribution based on the average daily

contacts. The employees contacted by the first-generation case(s) are randomly chosen from

the population. Additionally, the model has a parameter to probabilistically determine how

many contacts remain as contacts for the next day.

The transition from susceptible to exposed state takes place among the employees who

make contacts with the first-generation cases based on the secondary attack rate (SAR). A ran-

domized SAR drawn from a Beta distribution is assigned to each first-generation case. The

average SAR for a workplace is determined based on mask compliance, airflow, filtration,

speaking volume, and speaking percentage.
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The required number of simulations to achieve convergence for the model depends on the

parameter values. For a wide range of parameters, we found that the average cumulative inci-

dence converges at nsim� 1000.

Algorithm 1 Model Pseudocode. Stochastic contact network model for short-term fore-

casting within facilities
Require:
pcase daily new case rate
e total employees or nodes
ndays total number of modeling days
αSAR alpha parameter for SAR Beta distribution
βSAR beta parameter for SAR Beta distribution
c�  average daily contact size
premain probability that edges (contacts) are sustained for the next

day
nsim number of simulations
for all sim 2 nsim do
Sample number of first-generation cases for ndays,
ng1≔ ðg1ð1Þ; . . . ; g1ðndaysÞÞ � Binomialðe; pcaseÞ
Initialize empty array of node indices for first-generation cases,
g1 ≔ ()
for all g1 2 ∑ ng1 do
Sample SAR for each first-generation case, SARg1 * Beta(αSAR,
βSAR)
Initialize empty array of previous day’s contacts for each first-
generation case prior to day 1, c remainð0Þg1 ≔ ðÞ

end for
for all d 2 ndays do
Sample unique indices of first-generation cases for day d, g1 =
g1 + Uniform(e, g1(d))
for all g1 2 g1 do
Sample number of contacts for each first-generation case for
day while ensuring they do not exceed total employees

nðdÞcg1
� min Geometric 1

c�þ1

� �
; e

� �

Sample indices of new contacts, c newðdÞg1 � Uniformðe; nðdÞcg1
� sizeðc remainðd� 1Þg1 ÞÞ

Total secondary contacts for day, cðdÞg1 ≔ c newðdÞg1 þ c remainðd� 1Þg1

Sample indices of second-generation cases from contacts for day
d, g2ðdÞ � BinomialðcðdÞg1 ; SARg1Þ

Sample contacts that remain consistent the next day,
c remainðdÞg1 � BinomialðcðdÞg1 ; premainÞ

end for
end for
Total cumulative incidence, casessim ≔ Unique(g1 + ∑d g2(d))

end for

Model parameters and implementation

This section describes the model implementation, and the distribution of model parameters.

Case introduction. We assume that first-generation cases are introduced into a facility

as Bernoulli trials using local daily new case rate as the success rate. Therefore, the probability

of x infectious employees arriving on any given day at a facility with e employees, and the

local daily new case rate pcase, P(x) is calculated from a Binomial distribution as P(x) = Bino-

mial(x, e, pcase). Because of the short modeling period, and possibility of test lagging and

underreported cases, we assumed the case rate to be constant throughout the modeling period,
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although a variable case rate can also be implemented. The assumption of Binomial distribu-

tion matches similar approaches used in other studies for modeling probability of case occur-

rence [24, 27, 30–32].

Secondary attack rate (SAR). Secondary attack rate (SAR) is defined as the probability of

an infection being transferred to a naive individual [33]. It is approximated as the proportion

of secondary cases induced in a contact group by the first case in the group [34–36]. In the

present model, it is the probability of getting exposed among all secondary contacts of a first-

generation case.

Multiple studies on COVID-19 outbreaks have reported a wide range of SAR across differ-

ent settings [37–43]. High values of SAR have been observed in specific settings, such as—

SAR = 53.3% during loud singing [39], SAR = 84.6% after a business meeting [44], and

SAR = 38.8% when having meals together [45]. A meta-analysis of SAR for COVID-19 con-

cluded that workplaces where close contacts are less intense and frequent tend to have lower

values of SAR (0%–5.3%) than household settings (3.9%–54.9%) [43]. These values of SAR

reflect transmission in naive populations, and we have not considered the reduction in trans-

mission due to COVID-19 vaccination in this study.

The SAR associated with each infectious individual varies because of their viral load and

course of infection [43, 46]. We incorporate this variability by sampling SAR for each first-gen-

eration case from the Beta distribution. The SAR assigned to each first-generation case

remains constant throughout the forecast period as a simplifying assumption. The Beta distri-

bution is selected because it is defined on the desired interval [0, 1] and is able to model long

tails. The distribution has two parameters: αSAR and βSAR. We expect the SAR distribution in a

population to be long-tailed, where a majority of infectious individuals exhibit low SAR or

infect few people, while a minority of individuals exhibit high SAR [43, 47]. A long-tail distri-

bution can be implemented in the Beta distribution by setting αSAR = 1. Then, the βSAR is cal-

culated from the average SAR across multiple individuals, as shown below.

bSAR ¼ aSAR
1 � SAR
SAR

ð1Þ

Multiple studies have concluded that the secondary attack rates associated with the trans-

mission of airborne pathogens vary based on particle emission and inhalation rates, airflow,

and filtration [19, 25, 48]. Here we present an approach to modify SAR� in a facility based on

these parameters.

Based on one of the studies [19], and the assumptions described in S3 Appendix, the aver-

age SAR for airborne transmission of COVID-19 depends on inhaled virions as -

SAR ¼ 1 � expð� N 0Þ

and

N 0 /
Sð1 � meÞ

l

)
N 0i
N 0j
¼

Sið1 � mei
Þ

li

lj

Sjð1 � mej
Þ

ð2Þ

where subscripts i and j represent any two sets of parameters. N0 is the total number of inhaled

virions normalized by the average infectivity threshold. me 2 [0, 1] is the mask effectiveness. S
is the virion emission at the source and is a function of speaking percentage and volume. λ is

the decay rate of virions and is a function of airflow and filtration.

PLOS ONE A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces

PLOS ONE | https://doi.org/10.1371/journal.pone.0262316 January 14, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0262316


Source emission rate. We assume that the source emission rate S is a function of speaking

percentage sp, and speaking volume sv in decibels. It was observed from case reports that talk-

ing releases 46 times more virions than breathing [19]. Other studies have concluded that

higher volume releases higher number of aerosolized particles carrying virions [25, 48]. We

represent the increase in virions based on volume by the volume multiplier sm. Then, source

emission S is described as -

S ¼ ð1 � spÞ þ 46spsm ð3Þ

Based on measurements from 10 participants, increasing the speaking volume from 70 dB

to 98 dB increased the particle emission rate from 6 to 53 particles per second [48]. Addition-

ally, the particle emission rate is directly proportional to the root mean square amplitude of

the vocalization. Since the decibel level depends on the logarithm of amplitude, the relation-

ship with emitted particles or virions q can be described as -

sv / logðqÞ

) sv ¼ CqlogðqÞ
ð4Þ

where Cq is an unknown constant, and using the above values, is computed as -

Cq ¼
98 � 70

logð53=6Þ
ð5Þ

Assuming that the ratio of 46 virions corresponds to speaking at a reference volume of 60

dB, the activity multiplier sm at an arbitrary volume level can then be computed as -

sm ¼
53

6

ðsv � 60Þ=ð98� 70Þ

ð6Þ

Decay rate. The decay rate λ is a function of air exchange rate or airflow λa (air changes per

hour or ACH), viral settling and deactivation λd = 0.62/h, and decay due to filtration λf [19].

l ¼ la þ ld þ lf ð7Þ

Mask effectiveness. The mask effectiveness parameter me combines the contribution of

masks from both source emission rate and breathing rate, and effectively reduces the number

of inhaled virions as shown in Eq 2. Based on a meta-analysis on the impact of mask-wearing

on COVID-19 transmission, the relative risk (RR) of mask wearing under non-healthcare set-

ting is RR = 56%, and for healthcare setting is RR = 30% [49]. Then mask effectiveness is

implemented in Eq 2 as the factor me = 1 − RR. More research is needed to better characterize

mask effectiveness, and studies have shown high variability of mask effectiveness for cloth

masks [50].

Reference SAR. In order to use Eq 2 to estimate SAR for any set of speaking percentage, vol-

ume, airflow, filtration, and mask effectiveness, we need a reference SARref and its correspond-

ing parameters as shown in Eq 8.

SAR ¼ 1 � expð� N 0Þ

N 0ref ¼ � logð1 � SARrefÞ

N 0

N 0ref
¼

Sð1 � meÞ

l

lref

Srefð1 � meref
Þ

ð8Þ
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Different studies have presented SAR among non-household contacts in the range of 0%-

5.3% [37, 42, 43, 51, 52]. In this study, we assume a reference SAR, SARref ¼ 5:1% as the one

associated with non-household unprotected contacts from the Germany outbreak study in a

workplace setting [37], and assume the following associated parameters—airflow λa = 2 ACH,

filtration λf = 0, speaking percentage sp = 25%, speaking volume sv = 65 dB, and mask effective-

ness me = 0. Fig 1 shows the resulting variation of SAR for different parameters. Determination

of these parameters is based on expert judgement as little information exists in literature. The

assumptions for selection of these parameters are described in S1 Appendix.

Daily contact size. Daily contact size is defined as the number of secondary contacts of

each first-generation case on each day, and are randomly sampled from a Geometric distribu-

tion supported on x� 0. Given the average daily contacts c�, the probability of daily contacts P
(c = x) is defined as -

Pðc ¼ xÞ ¼ Geometric x;
1

c�þ1

� �

8 x � 0

¼ 1 �
1

c�þ1

� �x
1

c�þ1

� � ð9Þ

The parameterization of the Geometric distribution is based on data collected by the citizen

science-based BBC pandemic study [53, 54]. The workplace contacts in the BBC study align

well with data from an independent POLYMOD study [55, 56]. Based on the BBC study, the

average daily contacts at work are c�¼ 6. The data shows that daily workplace contacts are

long-tailed and hence can be modeled with the Geometric distribution.

Additionally, we expect that employees contact some of the same people every day at work.

The model incorporated this using a parameter for the probability that contacts remain the

same the next day premain. We assumed premain = 60% based on an office study in Italy [57].

Fig 1. SAR variation. Impact of airflow, speaking volume, speaking percentage, and mask effectiveness on SAR.

https://doi.org/10.1371/journal.pone.0262316.g001
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Preventive and control measures. The contact network model presented above can be

effectively used to assess return-to-work policies in workplaces. Some examples of control

measures and their impacts on the model are presented below and in Fig 1.

• Work from home—When a percentage of employees work remotely, it reduces the number

of employees e in the workplace. This reduces the number of case introductions, and hence

cumulative incidence. With some employees working remotely, contacts could also be

reduced by the same proportion.

• Mask wearing—Masks reduce both the source emission and the breathing rate for virions,

and is implemented in the model using the parameter me. Wearing masks reduces the num-

ber of virions N0, thus reducing average SAR, and hence cumulative incidence.

• Ventilation improvement—Increasing airflow and incorporating filtration increases the

decay rate λ, resulting in reduction in average SAR.

• Vocal loudness and speaking percentage—Decreasing vocal loudness and the amount of

talking leads to lower amounts of emitted virions S. This in turn reduces average SAR.

• Social distancing—Social distancing reduces the average daily contacts c� in the model, thus

reducing cumulative incidence.

Individual outbreak reports from workplaces for model validation

One of the datasets used for validating our stochastic model was epidemioloigcal reports on

COVID-19 outbreaks in workplace-like situations, as shown in Table 1. Generally, informa-

tion on environmental settings of these outbreaks were not reported, hence instead of selecting

a single parameter value, we selected a range based on expert judgement. Table 1 summarizes

the collected outbreaks and the parameters associated with them in the model. For the Henan

Expressway outbreak, because the employees share the same residence, we used a fixed

SAR = 20% which is similar to a household SAR, hence some of the inapplicable parameters

are listed as N.A. in the table. Further description of each outbreak and the parameter selection

process is provided in S1 Appendix.

For validation, the cumulative incidence from the model were compared with the observa-

tions. For each outbreak, simulation starts from when the case introduction was reported.

Hence, we simulated cumulative incidence only for that subset of simulations with at least one

case on the first day of the modeling period. We generated two model estimates for each out-

break—lower bound and upper bound. To generate lower bound estimates, we selected the

Table 1. Outbreak reports for workplace outbreaks. Model parameters associated with outbreak reports used for validation.

Outbreak Name e pcase (per 100k) c� λa (ACH) sv (dB) sp (%) ndays premain

1. Tianjin Office [58] 906 1 4–10 1.5–4 65 5–25 10 0.4

2. Korean Call Center [8] 216 1 4–10 1.5–4 70 55–66 14 0.4

3. San Diego VA Office [9] 100 1 4–10 1.5–4 65 5–40 8 0.4

4. Singapore Conference [59] 111 1 6–12 1.5–4 70 25–40 3 0

5a. South Dakota Meat Processing Plant (First Shift) [5] 1744 1 4–10 1–11 70 5–20 14 0.4

5b. South Dakota Meat Processing Plant (Second Shift) [5] 1459 1 4–10 1–11 70 5–20 14 0.4

6. Henan Expressway [60] 103 1 2–4 N.A. N.A. N.A. 13 0.4

7a. Major League Baseball Team with Social Distancing and Mask Protocols [61] 68 60 4–8 1.5–4 65 5–25 10 0.4

7b. Major League Baseball Team without Social Distancing and Mask Protocols [61] 68 60 4–10 1.5–4 65 5–25 10 0.4

https://doi.org/10.1371/journal.pone.0262316.t001
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lower bound of average daily contacts and speaking percentage, and the upper bound of air-

flow, since this combination results in the lowest cumulative incidence; and vice-versa for the

upper bound estimates. For instance, for the Tianjin Office outbreak, the lower bound model

simulation is generated by the minimum average daily contact size c�¼ 4, the minimum speak-

ing percentage sp = 5%, and the highest airflow λa = 4 ACH. Finally, if incidences were

recorded on a daily basis in the reports, we additionally compared the temporal trends.

Weekly cases from nursing homes for model validation

Another dataset used for validating our model is the weekly COVID-19 data in nursing homes

compiled and published since May 2020 by the Division of Nursing Homes; the Quality,

Safety, and Oversight Group; and the Center for Clinical Standards and Quality at the Centers

for Medicare and Medicaid Services [62].

For our analysis, we considered data associated with facilities prior to, and including the

week when the first confirmed cases were reported. There are 8423 unique facilities in 2463

unique counties in the dataset for the analyzed period, totalling 89273 data entries. We

assumed that resident population in a facility is equivalent to the number of beds, and staff

population is 90% of the number of residents [63]. We also assumed that only staff population

may be first-generation cases in nursing homes since in general, the resident population is

expected to remain within the facility, while the staff population attends the facility each day

similar to a workplace. We incorporated this as a modification to our stochastic model such

that first-generation cases are sampled only from the staff population. We assumed the num-

ber of daily interactions in nursing homes is c�¼ 6 average contacts per person per day, and the

average SAR is SAR ¼ 5:1%. Relevant data attributes from the dataset, and data processing

steps are further described in S2 Appendix.

Results

In this section, we validate our model by comparing model estimates against observed data

from outbreaks of COVID-19 in workplaces, and nursing home facilities.

Comparisons with outbreak reports in workplaces

Table 2 summarizes the comparisons between the observations and the simulated cumulative

incidences. The model outputs include the minimum and maximum cumulative incidence

(shown as Range) across all simulations, the interquartile range (25th to 75th percentile), the

median, and the percentile of the observation within the predicted range from both the lower

bound and the upper bound models. All observations are within the ranges of model simula-

tions, except for the Korean Call Center, the first shift of the South Dakota Meat Processing

Plant, and the Major League Baseball Team outbreaks where observations exceed the lower

bound estimates. Figures showing comparisons of temporal trends for 3 of the outbreaks are

included in S1 Appendix. Overall, the current model captures the case growth rate within 14

days post case introduction for all outbreaks. The daily observations lie within the range of the

model simulations except for a few days in the Korean Call Center outbreak where the lower

bound model simulations are higher than the observations. The comparisons demonstrate that

all observations are within the range of cumulative incidences estimated from the upper

bound parameters in the current model. This is expected since the real-world outbreaks col-

lected here are mostly large-scale non-familial cluster cases, while sporadic cases are usually

not reported. As a result, we believe that the contact network model presented in this study is

reasonable for modeling short-term cumulative incidences in workplaces.
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Comparisons with weekly cases from nursing homes

In this section, we present the comparison of the model simulations with observations from

the nursing home facilities. The comparisons were made for probability of case introduction,

average 7-day cumulative incidence, and the distribution of cumulative incidence. Each run of

the model included nsim� 10000 simulations to ensure convergence of the outputs. Overall,

the model estimates agreed well with the observations from nursing homes, and are described

in detail below.

Probability of case introduction. We first compared the observed probability of case

introduction in a facility with our model estimate. Since the nursing homes data is reported on

a weekly basis, the estimated probability of at least one case being introduced in the facility in

7 days, Pest(x� 1jt = 7) is only dependent on the number of people in a facility, and the local

case rate, and is computed as -

Pestðx � 1 j t ¼ 7Þ ¼ 1 � ðð1 � pcaseÞ
esÞ

7
; ð10Þ

where es is the number of staff in each nursing home, and pcase is the daily new case rate in the

county. As mentioned in the Materials and Methods section, the following analysis only con-

sidered data associated with facilities prior to, and including the week when the first confirmed

cases were reported.

In order to calculate observed probabilities of case introduction, the data needs to be

divided into groups. Since the estimated probability is a function of the local case rate, we

binned the data by the county-level 7-day mean case rate and generated probabilities within

each bin. The data were categorized into 40 bins with approximately 2200 data entries in each

bin. Each entry corresponded to one facility for one week. Note that the same facility over dif-

ferent weeks can be categorized into different bins based on the case rate in the county for

each corresponding week. Then within each bin, the probability of at least one case introduc-

tion, Pobs(x� 1jt = 7) is computed as -

Pobsðx � 1 j t ¼ 7Þ ¼
nxbin�1

Nbin
; ð11Þ

where nxbin�1 is the number of data entries in a given bin with at least one confirmed case, and

Nbin is the total number of entries in the bin.

Table 2. Observations and model estimates for workplace outbreak reports.

Outbreak Name Iobs Lower Bound Model Upper Bound Model

%-ile range IQT median %-ile range IQT median

1. Tianjin Office 7 99.9 1–9 1–2 1 58.9 1- 55 3–10 5

2. Korean Call Center 76 N.A. 1–34 2–8 4 97.9 1–135 10–38 22

3. San Diego VA Office 5 99.9 1–5 1–1 1 45 1–55 3–11 6

4. Singapore Conference 7 99 1–12 1–2 1 74 1–55 2–8 4

5a. SD Meat Processing (First Shift) 32 N.A. 1–7 1–2 1 88.9 1–102 5–21 12

5b. SD Meat Processing (Second Shift) 6 99.9 1–7 1–2 1 26.7 1–108 5–21 11

6. Henan Expressway 6 60 1–30 2–8 5 36 1–51 4–14 8

7a. Major League Baseball Team with Social Distancing and Mask Protocols 20 N.A. 1–8 1–2 1 99.8 1–28 2–6 4

7b. Major League Baseball Team without Social Distancing and Mask Protocols 20 N.A. 1–9 1–2 1 95.2 1–43 3–10 6

Observations and model outputs of cumulative incidence for outbreaks with nsim = 5000 for each model. Iobs refers to the observed cumulative incidences;%-ile refers to

the percentiles where the observations fall within the predicted range and N.A. indicates the observation is outside the range; IQT refers to the interquartile, or the 25th

to 75th percentile range of the model output.

https://doi.org/10.1371/journal.pone.0262316.t002
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Fig 2 shows the comparison of the estimated probability, with the observed probability of

case introduction in a facility within 7 days. The abscissa is for representation only and marks

the average case rate within each bin. The estimated probabilities were computed separately

for each facility and week, and then averaged across all data entries in each bin. Additionally,

the estimated probability was computed using two different case rates for each data entry—the

7-day mean case rate, and the 7-day maximum case rate. The former represents the average of

the daily new cases per 100,000 population during the previous 7-days from the reporting date

of the facility, while the latter similarly represents the maximum.

We observe in Fig 2 that the observed probability of case introduction varies approximately

linearly on the log-log scale with the county case rate. This matches the expected behavior for

the Binomial distribution as presented in Eq 10, and hence corroborates that the assumption

for Binomial distribution for case introduction is reasonable.

We also observe in the figure that the observed probability is higher than estimated proba-

bility when using the 7-day mean case rate, and matches closely with the estimate based on

7-day maximum case rate. In the dataset, the average 7-day maximum case rate within a cate-

gory bin could be up to 6 times higher than its counterpart mean case rate. Since most of the

cases were observed in nursing homes in the early stage of the pandemic, this comparison sug-

gests that case rates in the United States could be under-reported due to limited testing capac-

ity [64, 65]. Other factors contributing to the differences between observations and estimates

could be our assumptions about the population in nursing homes, and that cases are intro-

duced in facilities only from the staff. Test lagging, long incubation periods, and reporting

delays could also contribute to these differences.

Fig 2. Probability of COVID-19 case introduction. Comparison of observed and expected probability of COVID-19 cases getting introduced in

nursing homes based on the county-level case rates. Observations include all weeks prior to and including when the case introduction was reported in

each facility. The red ticks on the x-axis mark the 7-day mean case-rate boundaries of each category bin.

https://doi.org/10.1371/journal.pone.0262316.g002
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Average 7-day cumulative incidence. The probability of case introduction is only depen-

dent on local case rates and population size, and does not impact the dynamics of in-facility

transmission. In this section, we compare the observed weekly cases in facilities with the

model estimates. The observations represent cases from both case introductions and in-facility

transmission, and these contributions cannot be differentiated.

The same dataset and binning methodology was used as described for the previous compar-

ison. Within each bin, the average of confirmed cases across all data entries was calculated.

This average encompasses the zero cases observed in facilities during the weeks prior to their

respective case introduction. This average value represents the average of observed 7-day

cumulative incidence in the nursing homes corresponding to each category bin.

For each bin, a model was run with a case rate calculated using the geometric mean of the

case rates across all data entries in the bin. The geometric mean is equivalent to taking the

average in log-space and was selected because it is more robust when bin sizes are large, mainly

in the first and the last category bins. Since each facility in a category bin can have a different

population, the average number of beds across all data entries in a bin was used as an approxi-

mation for the average number of residents in a facility for that bin. For each bin, the average

number of estimated cases was calculated by taking the average across all model simulations of

the 7-day cumulative incidence.

Fig 3 shows the comparison of the average number of confirmed cases in nursing homes

within each bin, with the average estimate of cases from model simulations for each bin.

Within each bin, the model estimates are generated with two different case rates—geometric

mean of the 7-day mean case rate, and geometric mean of the 7-day maximum case rate. The

Fig 3. Average 7-day cumulative incidence. Comparison of average confirmed cases in nursing homes prior to and including the week of case

introduction, with the model estimates of average cases in 1 week. The red ticks on the x-axis mark the 7-day mean case-rate boundaries of each

category bin.

https://doi.org/10.1371/journal.pone.0262316.g003
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observed data and both the model estimates are plotted on the same abscissa marking the geo-

metric mean of the 7-day mean case rate for each bin.

Similar to the previous comparison, we observe from the figure that the average confirmed

cases are higher than the estimated cases when using the 7-day mean case rate, and match

closely with the estimate based on 7-day maximum case rate. The same factors as described

previously are likely to contribute to this variation. Additionally, our assumptions about the

daily interactions and the SAR parameters in nursing homes could also contribute to the

differences.

Distribution of 7-day cumulative incidence. Finally, we compared the distribution of

cases in nursing homes with the distribution of cases generated from model simulations.

Given the closer correlation of observation averages and model averages for 7-day maximum

case rates, this analysis was done only based on the 7-day maximum case rates.

The comparison of the distribution of cases between observations and model estimates was

done only for facilities with at least one reported case. We divided these� 8000 facilities into 8

category bins by their 7-day maximum case rate, with� 1000 facilities in each bin. A separate

model analysis was run for each category bin using the geometric mean of 7-day maximum

case rate, and average number of beds for all facilities in the bin, as described previously. The

distribution of confirmed cases in each unique facility within a bin during the week of case

introduction were compared with the 7-day cumulative incidence outputs from the model

only for those simulations that had at least one case at the end of the 7th day. The comparison

for each of the bins is shown in Fig 4. We observe a strong correlation between the distribution

of cases across facilities and the distribution of cases based on model simulations. This con-

firms that the model presented in this study provides a good basis for estimating the distribu-

tion of cases within a workplace over a 7-day period.

A similar comparison was done for the distribution of cumulative incidence after 14 days,

with similar results, and shown in S2 Appendix. Based on our comparison with observations

from nursing homes, we conclude that the model provides reasonable estimates for spread of

COVID-19 within facilities for short forecast periods of up to 15 days.

Discussion

In this section, we present the key limitations of the current study, and motivations for future

work.

Limitations of the model

The current model has the following limitations -

• The model only keeps track of the first and second generations of infections. However, evi-

dence suggests that it is possible that multiple generations of transmission events could

occur within a short period. In the report for the Tianjin Office outbreak [58], the third-gen-

eration cases occurred on the 7th day post case introduction. However, for most outbreaks,

we expect limited transmission events within the intended short forecast period, as evi-

denced by the similarities in model outputs with observations. We have included an assess-

ment of this assumption by comparing the results with a preliminary model that includes

third-generation cases in S5 Appendix. Additionally, we expect that the underestimation of

cumulative incidence by ignoring third-generation cases is somewhat balanced by the over-

estimation due to first-generation cases being infectious for the entire forecast period. Multi-

ple studies show a highly variable infectious period distribution ranging from 5 to 20 days

depending on the viable viral load [66–69].
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Fig 4. Distribution of 7-day cumulative incidence. Comparison of the distribution of cases per 100 people in nursing homes during the

week of case introduction, and 7-day model simulations. Each subplot describes the distribution for facilities within one case rate

category bin, and for the model based on corresponding mean case rate for that bin. Vertical dashed lines represent the average cases for

the facilities and the simulations in each bin.

https://doi.org/10.1371/journal.pone.0262316.g004
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• We did not differentiate among the droplet, aerosol, and direct contact modes of COVID-19

transmission [70, 71]. There is evidence of long-distance COVID-19 airborne transmission

[72, 73]. However, the advantage of this abstraction is that it did not require consideration of

different SAR for different interactions, and allowed us to adjust SAR based on airflow and

filtration. Overall, since we are focusing on outbreaks in workplaces where people are

expected to be in close distance less frequently than in household settings, they are more

likely to be infected with aerosol particles that travel longer distances and stay longer in the

air [74–77].

• The use of air changes per hour within facilities is a simplified proxy for estimating the

effects of airflow. A study on airborne transmission risk in practical settings [20] demon-

strated that the location of vents also plays a critical role in aerosol transmission risk.

Limitations of the data

• Underreporting, undertesting, and lagging of tests are common issues in reporting of

COVID-19 data, especially prior to March 2020 when there was a lack of testing supplies for

RT-PCR tests in the United States [78, 79]. The RT-PCR screening test of COVID-19 takes

one to several days depending on the laboratory capacity [80, 81]. Additionally, it is likely

that asymptomatic individuals are not getting tested. Therefore, the case rate data used in the

model may not reflect the actual incidence rates.

• We did not explicitly assess asymptomatic cases in the current model. The proportion of

asymptomatic cases can change the implementation of SAR distribution [82, 83]. However,

this proportion is associated with numerous factors, including virus genetics [84], host fac-

tors [85, 86], generation time [32, 87], etc., and this information is not readily available in

epidemiological reports of COVID-19 outbreaks.

• Detailed temporal data on outbreaks in workplaces is scarce. There have been a small num-

ber of published epidemiological reports with comprehensive information about major out-

breaks, however to our knowledge most state-level public health departments in the United

States do not specifically publish data for workplace outbreaks. Comprehensive data collec-

tion and publication for outbreak events in various workplaces would be highly valuable for

policy makers, businesses, and researchers to facilitate disease surveillance and monitoring,

and to evaluate the transmission risk in the workplace environment.

Future work

The model presented here provides a framework to comprehensively account for the uncer-

tainties in the spread of COVID-19, so that the number of cases can be estimated for small

populations and short durations. The underlying framework can be expanded further to incor-

porate other capabilities.

• Workplaces like restaurants and retail stores can be modeled by removing the limitation of a

static population. As a result, instead of first-generation cases only being introduced in the

staff population, they can also be introduced by external visitors, for example, customers in a

restaurant.

• Heterogeneous interactions can be incorporated in the contact network, for example, to

model different extent of interactions within and outside different departments, or between
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different population groups like staff and residents in nursing homes; and to model events

like meetings and meals where many people interact at the same time.

• Heterogeneity in SAR can be incorporated for different population groups, for example, by

age, sex, presence of symptoms, and vaccination status, and for different modes of transmis-

sion, like droplet, airborne, or fomite.

• We modeled the long-tail behavior of SAR distribution using the Beta distribution. This

choice of distribution can be evaluated as more information becomes available from contact

tracing and in-depth analysis on SAR.

• Longer duration forecasts can be modeled by incorporating incubation period and time to

recovery for exposed and infectious individuals. This would enable modeling third and sub-

sequent generations of transmission, and intervention measures like quarantining and isola-

tion during the forecast duration.

• SAR and other parameters can be changed to model the impact of emerging COVID-19 vari-

ants [88, 89], and other airborne diseases.

Conclusions

We presented a stochastic contact network model to forecast the spread of COVID-19 over

short duration of�15 days, and for small populations within workplaces. The model incorpo-

rated cases arriving at a workplace from the local community, and the secondary transmission

between the infectious and susceptible populations in the facility. Introduction of newly

infected individuals was modeled probabilistically through a Bernoulli process with the success

rate as the local daily new case rate. Transmission within the facility was determined by proba-

bilistic realizations of both the number of secondary contacts for each infectious individual,

and their corresponding secondary attack rates (SAR). By running multiple simulations with

realizations from the probability distributions of these model parameters, we obtained a distri-

bution of predicted cumulative incidence within a facility over the forecast period.

The short forecast duration was chosen in this study because we expect that interventions

are often taken in workplaces soon after identification of cases, and as a result, longer duration

forecasts may have higher variability and thus be less informative for policy and decision

makers.

The model presented here was validated with respect to two different datasets. In the first

part, we evaluated whether observations of cumulative incidence from 7 real-world outbreaks

in workplaces could be estimated by the model. For all outbreaks examined, the observations

lied within the range of model simulations. In the second part, we compared the model with

weekly case reports from over 8000 nursing homes in the United States. We observed a strong

correlation between the observed probability of first-generation individuals being introduced

in the facility, and the average cumulative incidence after 7 days. We also compared the distri-

bution of cumulative incidence after 7 days, and found a strong correlation with the distribu-

tions from model simulations.

We demonstrated that the contact network model presented in this study is a simplified but

reasonable representation of the cumulative incidence of COVID-19 within workplaces for up

to 15 days and populations as small as 50 individuals. We believe that it provides a consistent

framework to account for uncertainties in disease transmission, serve as a data-driven tool for

occupational safety, and can be expanded to model outbreaks for emerging COVID-19 vari-

ants and other airborne diseases.
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The model described here is implemented in a web application, available at covid19.
oneconcern.com. The open source model code implemented in python:3 is available at

github.com/abhineetgupta/covid-workplace-risk.
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