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a b s t r a c t 

This work presents the MuscleTracker Hand Movement 

dataset, containing Surface Electromyography (sEMG) data 

from the right arm of 49 healthy subjects without neuromus- 

cular or cardiovascular issues. Subjects performed five hand 

movements—pronation with extended fingers, flexion, exten- 

sion, pronation with flexed fingers, and relaxation—while 

standing, with one hand palm-down. Data was recorded from 

two sEMG channels using Biopac MP36 (10 0 0 Hz) and Mus- 

cleTracker (512 Hz), with three and four repetitions per de- 

vice, respectively, for each movement. The dataset includes 

825 samples, along with subject details such as gender, 

age, physical condition, and, for MuscleTracker subjects, an- 

thropometric measurements. This data supports machine- 

learning development for classifying hand gestures in sEMG 

signals, with applications in prosthetics control and human- 

computer interaction. In addition, validation experiments 

were performed to validate the database and stablish a com- 

parison baseline. 
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Subject Biomedical Engineering; Machine learning; Human-computer interaction 

Specific subject area Movements of the Hand modelled from Surface Electromyography Dataset captured 

using two acquisition devices. 

Type of data Timeseries 

Data collection A total of 825.txt files with sampled signals of the forearm muscular activity from 

two channels acquired from 49 subjects. The acquisition systems recorded the 

signals in with 1.5 to 2cm between electrodes; one electrode was placed on the 

wrist extensor muscle (channel 1) and the other on the wrist flexor muscle 

(channel 2), both of the right hand. 

Data source location The data was collected at the Advanced Cyberphysical Systems Laboratory, 

Tecnológico de Monterrey, campus Guadalajara. Zapopan, Jalisco, Mexico, CP. 

45138. 

Data accessibility Repository name: MuscleTracker (MuscleTracker-Hand-Movement ) 

Data identification number: DOI: 10.5281/zenodo.10988409 

Direct URL to data: https://github.com/RQ-FA/MuscleTracker-Hand-Movement 

Related research article No 

. Value of the Data 

• The data is from two acquisition devices. One is the Biopac MP36 which is highly used by

academics and in clinic protocols. The other is an open-source and low-cost device that might

allow replicability in further acquisition processes. 

• The database was generated with an equidistant arrangement of the electrodes, contemplat-

ing that an armband may be placed in the middle of the forearm, and the information of the

conditions in which the signals were acquired make the acquisition replicable, facilitating the

replication of the experimental setup for multiple studies. 

• Anthropometric measures were taken by a certified International Society for the Advance-

ment of Kinanthropometry (ISAK) professional. 

• The continuity of the acquisition without rest between movements makes the database clos-

est to a real environment. A rest was made between repetitions, but not between movements.

• This database allows the development of machine learning models with potential applica-

tions in human computer interaction. 

. Background 

Electromyography (EMG) signals represent muscle electrical activity during spontaneous and

oluntary contractions, providing insights into nerve action potentials, the signal amplitude and

requency being the key parameters in EMG studies [ 1 , 2 ]. Amplitude ranges from 0 to 10 mV,

ypically between -5 to 5 mV, helping identify muscle activation levels and duration [ 3 ]. Fre-

uency, from 10 to 500 Hz, assesses muscle fatigue. The sEMG signals can be captured inva-

ively with needle electrodes or non-invasively through surface electrodes, known as surface

lectromyography (sEMG) [ 4 ]. These signals lack clear patterns, making diagnosis difficult, in ad-

ition, the signals are highly susceptible to noise from biological and environmental sources.

herefore, successful classification depends on accurate signal capture, effective processing, fea-

ure selection, and appropriate algorithms to detect patterns [ 5 , 6 ]. EMG has become a key tool

n understanding neurological and neuromuscular activities [ 7 ]. It is widely used to represent

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.5281/zenodo.10988409
https://github.com/RQ-FA/MuscleTracker-Hand-Movement
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Table 1 

Average duration and number of samples by class. 

Class / Acquisition system Data points Duration (s) Samples 

Biopac (10 0 0 Hz) 

Open hand in supine with extended finger 5064 ± 439 5.06 ± 0.43 89 

Wrist flexion 5165 ± 260 5.16 ± 0.26 89 

Wrist extension 5163 ± 246 5.16 ± 0.24 89 

Pronation with flexed fingers 5001 ± 266 5.00 ± 0.26 89 

Relaxation 4896 ± 559 4.89 ± 0.26 89 

Total 5058 ± 389 5.05 ± 0.38 445 

MuscleTracker (512 Hz) 

Open hand in supine with extended finger 2354 ± 267 4.59 ± 0.52 76 

Wrist flexion 2287 ± 283 4.46 ± 0.55 76 

Wrist extension 2319 ± 282 4.52 ± 0.55 76 

Pronation with flexed fingers 2370 ± 231 4.63 ± 0.45 76 

Relaxation 2440 ± 465 4.76 ± 0.91 76 

Total 2354 ± 320 4.59 ± 0.63 380 

Total 3745 ± 1397 4.83 ± 0.57 825 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

human movements and postures, aiding in the control of rehabilitation devices, prostheses, and

robots [ 8 ]. However, a major challenge remains in correlating EMG signals to specific move-

ments, especially in amputees [ 5 , 7 ]. Several methodologies have been explored to create ro-

bust models for classifying EMG signals in fields like disease diagnosis, prosthetic development,

and biomechanical analysis [ 9 ]. For example, EMG parameters help assess rehabilitation progress

and control devices like instrumented gloves for assisted mobility [ 10 ]. However, a limitation in

human-assistive robotics is the need for user-specific calibration [ 11 ]. sEMG also enables remote

control of prosthetics [ 12 ], and beyond assistive devices, EMG has been used for stress level

estimation during virtual reality games [ 13 ] and relate muscular activation to movement [ 14 ].

Many studies aim to classify hand movements for computer interfaces, but existing databases

often involve a small number of subjects (5 to 30), use nonportable devices or many electrodes,

complicating the electrode placement process and limiting free movement during experiments.

These factors hinder dataset reproducibility and further research [ 15 , 16 ]. These limitations mo-

tivated us to create and publicly share this surface electromyography (sEMG) dataset, capturing

hand movements using both portable and non-portable devices to facilitate further research. Ad-

ditionally, this dataset provides an example of combining data from multiple acquisition systems

to train machine learning algorithms. It is valuable for human-computer interaction applications,

enabling systems to interpret human gestures not commonly used in daily activities. 

3. Data Description 

The dataset consists of five classes, each representing a specific hand movement: 1) open

hand in supine with extended fingers, 2) wrist flexion, 3) wrist extension, 4) pronation with

flexed fingers (fist), and 5) relaxation ( Fig. 1 ). These gestures were chosen for being natural, neu-

tral, and easy to perform. They are distinct from common task movements, making them suit-

able for human-computer interaction. The inclusion criteria consisted in allowing only healthy

participants, with no visible neurological or musculoskeletal disorders, and aged between 18 and

37 years, regardless of race or ethnicity. 

Table 1 presents the statistical information of the data collected from the two acquisition

systems, Biopac with a sampling rate of 10 0 0 Hz and MuscleTracker with a sampling rate of

512Hz. The statistics are presented by acquisition system and hand movements. The table in-

cludes information such as the data points obtained by the acquisition system, which later were

converted in seconds (s). Additionally, it includes the number of samples for each class and its

summary, after the validation step. Thus, each class has 89 repetitions independently of the sub-

ject that performed the movements, with a total of 445 repetitions for the Biopac and 380 for
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Fig. 1. Hand positions during movements and electromyography signal; the red signal is related to channel 1 (wrist extensor), and the black signal corresponds to channel 2 (wrist flexor). 
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Table 2 

Statistics of the subjects which signals were acquired with the MuscleTracker device. NA: Not Applicable. 

Value Female Male Total 

Age (average) 25.60 ± 4.131 24.69 ± 4.67 25.00 ± 4.42 

Arm length (cm avg.) 31.00 ± 2.17 32.65 ± 2.05 32.13 ± 2.22 

Forearm Length (cm avg.) 25.25 ± 0.94 27.34 ± 1.99 26.68 ± 1.98 

Wrist diameter (cm avg.) 18.73 ± 0.53 16.60 ± 1.08 17.27 ±1.09 

Arm diameter (cm avg.) 28.83 ± 3.42 31.73 ± 3.30 30.81 ± 3.60 

Physical Activity (yes/no) 0% 92% 63% 

Gender 31% 63% NA 
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he MuscleTracker, this gives a total of 825 repetitions in total for the dataset with and average

uration of 4.83 ± 0.57 seconds. 

The repository ( Fig. 2 ) contains three main folders: Code, Data, and Additional Information.

he “Code” folder includes scripts to replicate the experiments, with the Main.m file needing

he folder path and data parameters to run the experiments; detailed guidelines are provided in

he file’s comments. A linked submodule (EMG-Feature-Extraction-Toolbox @ca1e67c) includes

he feature extraction methods used. The “Models” folder provides instructions for training and

alidating machine learning models to classify hand movements. The “Data” folder contains the

ataset files from Biopac and MuscleTracker. 

The “Metadata.csv” file contains anthropometric data for subjects recorded with the Mus-

leTracker device. This includes: (i) participant ID (1 to 19), (ii) age, (iii) physical activity, (iv)

ender (Male or Female), and (v) anthropometric measurements in centimeters. Table 2 summa-

izes the participants’ data by gender, including age, arm length, forearm length, wrist diameter,

rm diameter, and physical activity statistics. These measurements provide useful information

or future studies. 

The data is organized into text files with values separated by commas, where each row rep-

esents a datapoint of the sEMG signal and columns 1 and 2 correspond to the two channels.

ach file contains the signal for a specific subject, hand movement, and repetition. The naming

onvention (s_r_m.txt or s_r_m_p.txt) simplifies identification and retrieval of the data. In this

ormat, s represents the subject number, r indicates the movement repetition (1 to 4), and m

enotes the movement (1 for pronation with extended fingers, 2 for extension, 3 for flexion, 4

or pronation with flexed fingers, 5 for relaxed hand). The optional p indicates a partition of the

ample. The data is also partitioned into three subsamples to capture before and after movement

ransitions. 

. Experimental Design, Materials and Methods 

The samples were captured using two acquisition systems. The first was the Biopac MP36

BIOPAC SYSTEMS, U.S.A.), a physiological signal acquisition system offering flexible filtering op-

ions through hardware and software, though these options were not used in this study. The

econd system, MuscleTracker, is a portable device with one sEMG channel and gain adjustment

hrough its software. The “MuscleTracker Interface” was developed as a graphical user interface

o manage patients, check equipment status, perform data acquisition, and provide signal visu-

lization over time. It saves data in CSV or TXT format. However, the device can only capture

ne signal at a time, so two devices were used. A preview of the hardware and software used

or acquiring and processing the signals is listed below in Table 3 , for reference. 

The signals were processed using a computer with an AMD Ryzen 7 3700 × 8-Core CPU,

omplemented by 16.0 GB of RAM and a Nvidia GeForce RTX 3080 Ti GPU implementing the

oftware in Python (version 3.9.7) and Matlab (R2022b). Sklearn, scipy, NumPy, pandas, OS,

atplotlib, statistics, seaborn, Keras, TensorFlow, as well as the Statistics and Machine Learn-



R.Q. Fuentes-Aguilar, D. Llorente-Vidrio and L. Campos-Macias et al. / Data in Brief 57 (2024) 111079 7 

Table 3 

Resources used for the acquisition and pre-processing of the signals. 

Resource Type 

CPU AMD Ryzen 7 3700X, 8-Core 

RAM 16.0 GB 

GPU Nvidia GeForce RTX 3080 Ti 

Programming languages Python (version: 3.9.7), Matlab (R2022b) 

IDE Spyder, Matlab 

Toolboxes Sklearn, scipy, NumPy, pandas, os matplotlib, statistics, seaborn, keras, 

tensor-flow, statistics and machine learning toolbox, Signal processing toolbox. 

Acquisition systems BIOPAC MP36, MUSCLETRACKER 

Fig. 3. Location of the electrodes for the two channels. Channel 1 was placed in the wrist extensor muscle and channel 

2 in the wrist flexor muscle. Based on the SENIAM guide (Surface ElectroMyoGraphy for the Non-Invasive Assessment of 

Muscles, seniam.org ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing Toolbox and Signal Processing Toolbox. The acquisition systems employed in the study are

the BIOPAC MP36 and MUSCLETRACKER. 

The acquisition systems recorded signals in 2 channels, with electrodes placed 1.5 to 2 cm

apart. The electrodes, with 0 to 1 M Ω impedance, ensured signal quality and stable skin contact.

One electrode was placed on the wrist extensor muscle (channel 1) and the other on the wrist

flexor muscle (channel 2) of the right hand (See Fig. 3 ). This setup enabled simultaneous signal

capture from both muscles during hand movements. Subjects stood with their forearm raised in

a supine position during acquisition. 

The acquisition procedure had three stages: preamble, preparation, and acquisition. In the

preamble, volunteers were briefed on the study’s background, methodology, and objectives, fol-

lowed by signing an informed consent form. Anthropometric measurements, including arm and

forearm lengths and arm and wrist diameters, were taken in centimeters. In the preparation

stage, volunteers’ right forearms and elbows were shaved and sanitized, and electrodes were

placed after performing wrist flexion and extension to highlight muscle activity ( Fig. 3 ). Ground

electrodes were fixed to the elbow. During acquisition, volunteers stood with arms extended

horizontally while following instructions. The sequence began with an open hand in a supine

position for five seconds, followed by wrist flexion, wrist extension, pronation with a fist, and

finally relaxation. Biopac acquisitions were repeated three times, and MuscleTracker four times

per volunteer ( Fig. 4 ). 

http://seniam.org
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A marker was placed in the signal every 5 seconds to guide the labeling, then adjusted based

on visual characteristics of the signals. For example, larger amplitudes in channel 1 indicated

wrist extension, while wrist flexion showed the opposite. This method helped divide and la-

bel each of the 25 signals into subsets. A file was generated for each subject, repetition, and

movement, resulting in five files each. Then, a validation step discarded signals with motion ar-

tifacts or electrode detachment issues. As a result, three subjects from the initial 22 acquired

with MuscleTracker and one repetition from a Biopac subject were discarded to ensure quality.

A statistical analysis of the data acquired indicates that each class has 89 repetitions for the

BIOPAC and 76 for the Muscle Tracker with a mean duration of 5.05 ± 0.38 s and 4.59 ± 0.63 s,

respectively; Giving 825 repetitions in the database ( Fig. 5 ). 

4.1. Machine learning experiments 

Machine learning techniques were evaluated on the dataset to classify hand movements and

establish a baseline comparison. The task involved three stages: pre-processing, feature extrac-

tion, and inference ( Fig. 3 ). Pre-processing included filtering and normalization. A fourth-order

Butterworth filter (20-50 Hz) and a 60 Hz Notch filter (quality factor of 30) were used to reduce

noise. Then, zero-center normalization was applied to standardize amplitude variability across

subjects, setting the mean signal to 0. This was done independently for each channel, aim-

ing to improve model learning accuracy. These pre-processing steps ensured the signals were

prepared for analysis and classification, although further analysis is needed to validate this ap-

proach. Three feature extraction techniques were used, and their features were concatenated

into a feature vector: classical, Fourier-based, and Wavelet-based extraction. Traditional meth-

ods focus on statistical and time-domain features from the sEMG signals, including zero cross-

ing, waveform length, mean absolute value, and interquartile range [ 17 ]. Fourier-based extraction

transforms the signals into the frequency domain, calculating features like mean, median, and

peak frequency from the spectrum (1-500 Hz, with a 10 0 0 Hz sampling rate), providing insights

into the dominant frequencies. Wavelet-based extraction analyses time-frequency features using

wavelet transform, specifically the db2 Wavelet from the Daubechies family at six decomposi-

tion levels. Energy features from approximation and detail coefficients, as well as terminal nodes,

compose the features [ 18 ]. 

Common classification models, including Fine KNN, Neural Network (Wide), SVM (Support

Vector Machine Linear), SVM-Q (Quadratic, Order 2), and SVM-C (Cubic, Order 3), were used in

the third stage. KNN employed Euclidean distance with 1 neighbor and equal distance weight.

The Neural Network had 100 hidden layers, ReLU activation, no regularization, and a 100-

iteration limit. SVM models used a box constraint of 1, auto kernel scale, and different orders

(1 for linear, 2 for quadratic, 3 for cubic). The experiment evaluated the impact of channels and

normalization on model performance, using accuracy as the metric due to the balanced dataset.

The pre-processing conditions included no pre-processing (NP), filtering, and zero-center (ZC)

normalization. Models were tested with channel 1, channel 2, and combined features from both

channels. A 10-fold cross-validation (k = 10) was performed to assess model performance and

prevent overfitting. The variables of the experiments are shown in Table 4 . 

No significant difference was found between raw and filtered signals (T = 0.76, p = 0.874),

indicating that feature extraction is equally effective from raw or filtered signals. However, nor-

malization negatively impacted accuracy (T = -5.35, p = 0.00), and normalized, filtered signals

further reduced accuracy (T = -7.65, p = 0.00). Combining both channels increased accuracy by

14% over channel 2 (T = 57.26, p = 0.00) and 11% over channel 1 (T = 45.88, p = 0.00). Using

both channels outperformed individual channels, ranking first, followed by channel 1, and lastly,

channel 2. Among the models, SVM Linear had the lowest accuracy, while SVM-Cubic, Neural

Network, and SVM-Quadratic achieved the highest, with a mean accuracy of 0.81 across param-

eters and 0.845 ± 0.07 without normalization using both channels. The results are consistent

across channels and pre-processing methods, as seen in Table 5 . 
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Fig. 5. Diagram of the technical validation methodology, comprising three steps: pre-processing, feature extraction, and inference. B: Butterworth, N: Notch, KNN: k nearest neighbors, 

NN: Neural Network; SVM: Support Vector Machine. 
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Table 4 

Controlled variables that can influence the results. 

Variable Level 

Normalization Without normalization, zero-cross. 

Filtering Butterworth + Notch. 

Features Traditional, Fourier-based, Wavelet-based. 

Models Fine KNN, Neural Network (Wide), SVM (Linear), SVM-Q (Polynomial, Order 2), and SVM-C 

(Polynomial, Order 3). 

Channels Channels Channel 1, Channel 2, combined channels. 

Replication 10-fold cross-validation. 

Table 5 

Accuracy obtained of the models for classifying the five movements comparing the use of the channels and pre- 

processing. WN: Without normalization, ZC: Zero Center normalization; B: Butterworth filter; N: Notch filter. 

Model WN-WF Filtered ZC B + N + ZC Total (Model) 

Channel 1 

SVM-Q 0.752 ± 0.112 0.750 ± 0.113 0.705 ± 0.132 0.722 ± 0.125 0.732 ± 0.122 

SVM-C 0.761 ± 0.109 0.772 ± 0.096 0.738 ± 0.124 0.748 ± 0.118 0.755 ± 0.113 

SVM 0.722 ± 0.116 0.729 ± 0.111 0.695 ± 0.122 0.706 ± 0.121 0.713 ± 0.118 

NN 0.755 ± 0.111 0.762 ± 0.099 0.722 ± 0.129 0.729 ± 0.127 0.742 ± 0.118 

KNN 0.734 ± 0.129 0.733 ± 0.113 0.674 ± 0.148 0.681 ± 0.137 0.706 ± 0.135 

Total 0.745 ± 0.116 0.749 ± 0.108 0.707 ± 0.133 0.717 ± 0.128 0.729 ± 0.123 

Channel 2 

SVM-Q 0.705 ± 0.113 0.701 ± 0.116 0.683 ± 0.129 0.707 ± 0.122 0.699 ± 0.121 

SVM-C 0.740 ± 0.118 0.736 ± 0.114 0.722 ± 0.118 0.730 ± 0.115 0.732 ± 0.117 

SVM 0.669 ± 0.146 0.685 ± 0.134 0.681 ± 0.124 0.680 ± 0.127 0.678 ± 0.133 

NN 0.735 ± 0.119 0.732 ± 0.117 0.700 ± 0.136 0.716 ± 0.120 0.721 ± 0.124 

KNN 0.721 ± 0.128 0.704 ± 0.135 0.657 ± 0.155 0.671 ± 0.142 0.688 ± 0.143 

Total 0.714 ± 0.128 0.712 ± 0.125 0.689 ± 0.135 0.700 ± 0.128 0.704 ± 0.129 

Combined 

SVM-Q 0.845 ± 0.076 0.847 ± 0.078 0.846 ± 0.076 0.847 ± 0.077 0.846 ± 0.077 

SVM-C 0.845 ± 0.079 0.845 ± 0.079 0.843 ± 0.083 0.845 ± 0.078 0.844 ± 0.080 

SVM 0.775 ± 0.097 0.774 ± 0.097 0.777 ± 0.096 0.774 ± 0.097 0.775 ± 0.097 

NN 0.833 ± 0.096 0.835 ± 0.091 0.841 ± 0.079 0.835 ± 0.087 0.836 ± 0.088 

KNN 0.834 ± 0.089 0.834 ± 0.090 0.835 ± 0.094 0.833 ± 0.087 0.834 ± 0.090 

Total 0.826 ± 0.092 0.827 ± 0.091 0.828 ± 0.090 0.827 ± 0.090 0.827 ± 0.091 

General 0.762 ± 0.123 0.763 ± 0.119 0.741 ± 0.136 0.748 ± 0.129 0.753 ± 0.127 

Table 6 

Ablation study for the features used to classify the hand movements. 

Excluded KNN NN SVM SVM-Q SVM-C Total 

None 0.868 ± 0.015 0.863 ± 0.008 0.804 ± 0.008 0.874 ± 0.016 0.872 ± 0.007 0.856 ± 0.029 

Fourier 0.740 ± 0.021 0.733 ± 0.018 0.613 ± 0.028 0.760 ± 0.028 0.744 ± 0.026 0.718 ± 0.059 

Wavelet 0.734 ± 0.014 0.656 ± 0.034 0.575 ± 0.021 0.693 ± 0.049 0.710 ± 0.021 0.675 ± 0.060 

Classic 0.594 ± 0.035 0.600 ± 0.022 0.493 ± 0.022 0.628 ± 0.025 0.618 ± 0.024 0.577 ± 0.055 

Total 0.734 ± 0.100 0.713 ± 0.101 0.624 ± 0.115 0.738 ± 0.096 0.736 ± 0.094 0.709 ± 0.111 

 

 

 

 

 

 

 

 

An experiment was conducted to evaluate the classification models’ performance when sub-

sets of features were excluded from the feature extraction step. The sEMG signals were not pre-

processed, as previous results showed this had minimal impact. Both acquisition system chan-

nels were used. Table 6 presents the results when certain feature extraction methods were ex-

cluded during training and validation. The highest accuracy was achieved when no features were

excluded, with SVM-Q performing best, followed by SVM-C. Excluding Fourier features had the

least effect (T = -25.56, p = 0, difference = -0.138), followed by wavelet features (T = -17.14,

p = 0, difference = -0.181). The removal of classic features had the greatest negative impact
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T = -25.56, p = 0, difference = -0.269). These results establish a baseline for future compar-

sons with this database ( Table 6 ). 

imitations 

Due to the data acquisition setup for MuscleTracker, signals from the two channels were

ecorded on separate computers, requiring manual synchronization. This may introduce slight

rrors in aligning the signals. Additionally, anthropometric measurements were not initially

lanned in the study design, so they are only available for the subjects recorded with Muscle-

racker. The absence of these measurements for other subjects may limit the ability to generalize

he findings to a wider population or to accurately model the biomechanical dynamics involved.
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