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Abstract

Statistical analysis of medical data aims to reveal patterns that can aid in deci-

sion making for future cases and, hopefully, improve patient outcomes. Large

and bias-free datasets, such as those produced in formal randomized clinical

trials, are necessary to make such analyses as reliable as possible. For a host of

reasons, randomized trials are, unfortunately, relatively uncommon in veteri-

nary medicine and surgery, implying that less ideal datasets (mostly observa-

tional data) must form the basis for much of our decision making regarding

treatment of individual patients under our care. In this review, we first

describe the common shortcomings of many observational veterinary datasets

when viewed in comparison with their optimal counterparts and highlight

how the deficiencies can lead to unreliable conclusions. We illustrate how

many of the interpretative problems associated with observational data, pre-

dominantly various forms of bias, are not solved, and may even be exacer-

bated, by statistical analysis. We emphasize the need to examine summary

data and its derivation in detail without being lured into relying upon P values

to draw conclusions and advocate for completely omitting statistical analysis

of many observational datasets. Finally, we present some suggestions for alter-

native statistical methods, such as propensity scoring and Bayesian methods,

which might help reduce the risk of drawing unwarranted, and overconfident,

conclusions from imperfect data.

1 | INTRODUCTION

Key aims of veterinary clinical research are to determine
whether medical and surgical interventions are effective,
to communicate this information to other veterinarians,
and thereby provide evidence-based advice to owners.
Ideally, evidence regarding comparative efficacy is
derived from carefully designed clinical trials, in which

cohorts of patients are recruited prospectively, randomly
allocated to different treatments, and outcomes are
recorded by blinded observers. Such formal trials also
include prestudy sample-size calculations to ensure suffi-
ciently high power for the results to be robust (see http://
www.consort-statement.org/).1

Unfortunately, there are many reasons why it is not,
and, for some conditions, never will be, possible to
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conduct randomized clinical trials (RCTs) for every veter-
inary procedure, including lack of clinical trial units
(or even insufficient personnel to be able to ensure blind-
ing), the extended timeframe needed to accrue the neces-
sary number of cases, and widespread veterinarian
resistance to randomization. Because of these obstacles,
much veterinary clinical research relies instead upon
analysis of observational, predominantly retrospective,
data that do not meet the key design criteria for a reliable
clinical trial (ie, random allocation of the intervention,
inclusion of a comparison group, blinded recording of
outcome). These studies can be helpful in clinical deci-
sion making but they unfortunately include numerous
implicit pitfalls – notably a high risk of bias – and there-
fore a high risk of reaching erroneous conclusions. Such
errors not only impede clinical veterinary progress but
can also result in unnecessary morbidity and mortality,
as has happened in human medicine in the past.2 To
minimize this hazard it is necessary to be aware of these
pitfalls and the risk that they may be compounded by
inappropriate statistical analysis.

As reviewers for Veterinary Surgery and other jour-
nals, we frequently encounter manuscripts containing
many statistical tests, often apparently aiming to con-
vince readers that one treatment is superior, or that one
group of patients has a different prognosis, from another.
Of course, these are important clinical questions but, as
we discuss here, poorly designed statistical testing on
observational datasets will not achieve that aim.

2 | BIAS AND CONFOUNDING IN
CLINICAL OBSERVATIONAL DATA

Randomized clinical trials are designed to eliminate bias
as far as possible. In this context, bias means systematic
deviation of results or inferences from the truth. Methods
to reduce bias include randomized and blinded allocation
to treatment and assessment of outcome by a blinded
observer (the term “blinded” metaphorically refers to the
practice of drawing a blind over a window). By definition,
observational studies do not include these features and
are therefore more at risk of bias. Nevertheless, observa-
tional studies can provide valuable information, but great
care is required in interpretation.

2.1 | Sources of bias in observational
studies

A disadvantage of many veterinary observational studies
is the use of retrospective data. Retrospective data are
readily available and inexpensive to obtain but they

inevitably contain many more sources of bias. Bias can
be classified in many different ways but here we list the
categories used by Cochrane (www.cochrane.org): selec-
tion bias, performance bias, detection bias, attrition bias,
reporting bias, and other bias (Table 1).

TABLE 1 Types of bias most encountered in clinical studies/

trials. Adapted from: Chapter 8 Assessing risk of bias in included

studies, Cochrane Handbook (https://handbook-5-1.cochrane.org/

chapter_8/8_4_introduction_to_sources_of_bias_in_clinical_

trials.htm)

Bias type Definition Example

Selectiona Systematic
differences in
baseline
characteristics
between groups

Nonrandom
allocation

Clinician

Owner selection

Selection by
demographic

Performancea Systematic
differences
between groups in
overall medical
care

Diagnostic
investigation

Intensity of follow up

Prescribed
medications

Detectiona Systematic difference
between groups in
how outcomes are
determined

Nonblinded
assessment
(“observer bias”)

Less complete
examination of one
group

Different chronology
between groups

Recall bias (esp. case-
control studies)

Attritionb Systematic
differences
between groups in
loss to follow up

High death rate in
one group

Incomplete capture
of recovery in more
slowly successful
therapies

Reporting Systematic
differences
between what is
reported and what
remains
unreported

Incomplete
disclosure of results

aRandomized allocation, allocation sequence concealment and blinded
outcome assessment (preferably also including blinding owners) will

eliminate many of these biases in studies with large sample sizes.
bMissing data are common in retrospective studies and constitute attrition
bias for which it is difficult to adjust, because it is difficult to quantify, and it
is often of unknown magnitude. Missing data often derive from cases that
have unusual outcomes, such as individuals taking a long time to respond or

having complications, and so omission is especially likely to cause bias.

1044 JEFFERY ET AL.

http://www.cochrane.org
https://handbook-5-1.cochrane.org/chapter_8/8_4_introduction_to_sources_of_bias_in_clinical_trials.htm
https://handbook-5-1.cochrane.org/chapter_8/8_4_introduction_to_sources_of_bias_in_clinical_trials.htm
https://handbook-5-1.cochrane.org/chapter_8/8_4_introduction_to_sources_of_bias_in_clinical_trials.htm


2.2 | Confounding

Confounding factors are often associated with observa-
tional study groups. Unlike other types of bias that can
result in the appearance of associations that are not true,
confounding describes an association that is real but mis-
leading (Figure 1). In the absence of randomization, it is
possible, or even likely, that some aspects of baseline data
will differ systematically between comparator groups.
Confounding is said to occur if a variable is associated
with both the exposure (ie, treatment) and the outcome,
but is not on the causal pathway (from exposure to out-
come). This confounding can happen because of direct
associations between outcome, treatment effect, and con-
founder (Figure 1) but also, in an observational study,
through an imbalance in the frequency of the confounder
between the compared groups because of the way treat-
ments are prescribed. This form of confounding is some-
times referred to as “confounding by indication.” For
instance, following arytenoid lateralization surgery, a
proportion of dogs in a specific hospital are admitted to
the intensive care unit (ICU) and the remainder are kept
in regular clinic wards. An observational study deter-
mines that there is a higher death rate in the dogs admit-
ted to ICU. Again, admittance to ICU is a possible cause
of death but it is much more probable that there is con-
founding by indication: dogs are not admitted to ICU
randomly, and so are more likely to become ICU patients
if they show various risk factors for poor outcome. That
those dogs then have a higher proportion of deaths
than those in regular wards does not indicate that
ICU is unsafe! It is also important to note that such

undermining of the assumption of random (and therefore
equal) distribution of measured and unmeasured prein-
tervention variables will lead to bias in outcomes of sta-
tistical testing (see below).

3 | STATISTICAL POWER, EFFECT
SIZE AND SAMPLE SIZE

Power in statistics commonly refers to the probability of
detecting an effect if it were truly there. However, it is
less well recognized that low-power studies are also
more likely to falsely “detect” effects that are not there.3

It is therefore probably more helpful to think of low
power as producing results that are highly susceptible to
the play of chance. For example, it is intuitive that small
samples are much more likely to produce extreme
results, such as a series of 100% heads in 4 rolls of the
dice than in 40 rolls (or samples). Increased sample size
is the most straightforward means to increase the power
of a study.

Small data sets imply low statistical power (and there-
fore less reliable conclusions), so clinical research studies
should be carefully planned beforehand to ensure that
sample populations of appropriate size are acquired. Pre-
study sample-size calculation need not be limited to
experimental, prospective study designs but can also be
included in retrospective studies. For instance, it would
be possible to ask a question (before examining the data)
about differences in serum alanine aminotransferase
(ALT) activity between dogs with different types of liver
shunt and analyze already available data. Data on stan-
dard deviations of this measurement are readily available
and the researcher can specify the difference magnitude
(in mean value) between groups it might be important to
detect. Although these 2 statistics are sufficient for a sam-
ple size calculation it is also necessary to be cognizant of
the clinical meaning of any detected difference. Although
it is straightforward to calculate the sample size required
to detect a difference of a specific magnitude between
groups, it is also important to consider the clinical impli-
cations of finding such a difference. If the sought-for dif-
ference is so small as to be clinically unimportant then
the sample size will be unnecessarily large. On the other
hand, sample sizes calculated to detect very large differ-
ences may not be that helpful either because, first, very
large differences are often implausible (it is medicine, not
magic!) and, second, powering to detect only large differ-
ences implies the likelihood of overlooking smaller differ-
ences between treatment groups that may also be
clinically meaningful. In this second instance it would be
preferable to increase the sample size to ensure detection
of any difference that might have clinical impact.

FIGURE 1 Example of confounding bias. In an observational

study, it is found that a larger proportion of dogs undergoing valve

replacement therapy are fed on premium dogfood than in a control

group. Although it is possible, the simple explanation of causality

(black arrow) is much less likely than the alternative explanation of

confounding by owner disposable income (blue arrows). Owners of

dogs presented for this type of expensive surgery will

disproportionately have high disposable income and are therefore

also more likely to feed their dogs on expensive dogfood. The risk

of confounding in this example is clear but in many real-life

examples the possibility is often much more easily overlooked
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In RCTs, the power of the study is predetermined by
the investigators and is usually set to be at least 80%-90%,
meaning that, if there was truly to be an effect of the
intervention (of the specified magnitude), there would,
on average, only be a 10%-20% chance of overlooking
it. It is notable that human RCTs with this level of power
commonly enroll thousands of patients (depending on
the effect size that is sought), hinting that the power of
many veterinary observational studies, although largely
unknown, is probably extremely low. As a comparison,
post hoc estimates of power of “blue sky” bench research
in neuroscience typically range from 8% to 30%,3 and it is
likely that many observational studies without sample
size calculations in veterinary medicine would have simi-
lar power, meaning that the chance of reliably identifying
true effects is low. This lack of power is a likely explana-
tion for the many contradictory conclusions drawn from
published studies on risk factors for a poor outcome after
a specific surgery even when findings have been desig-
nated “statistically significant.” The factors that are
“detected” in such low-power studies more likely simply
reflect the play of chance in that specific dataset and may
be strongly influenced by selection and allocation bias
associated with lack of randomization.

4 | IMPORTANCE OF EFFECT SIZE

In hypothesis testing (see below), effect size, power, and
sample size are interrelated. If an effect size is large and
is detected with little variability within the study popula-
tion, then the power of a study may be high even with a
small sample size. Although choice of study power is a
key determinant of necessary sample size, it is also
dependent on the magnitude of the intervention effect
and its variability. In clinical research, the effect size is
the magnitude of treatment effect on the outcome of
interest, usually presented as a summary value, such as
mean, median, odds ratio, etc., together with an estimate
of how precisely that summary figure is known. For
instance, an effect size might be that the odds ratio for
surgical wound infection for dogs undergoing standard
open surgery versus laparoscopic ovariectomy is 2.2 (95%
CI: 0.8-3.6). Alternatively, the serum ALT activity in dogs
with intrahepatic portosystemic shunts might be a mean
of 40 units higher than that in dogs with extrahepatic
shunts, with a standard deviation of 20.

Although infrequently used in veterinary medicine,
effect sizes in human medicine, especially clinical trials,
are often summarized as the “number-needed-to-treat”
(NNT) to achieve a specific end point. This measure is
valued because it translates study results into a readily
useable answer for everyday practice, although it is

necessary for it to be interpreted in conjunction with the
baseline risk of the event of interest. A recent study on
treatment of intervertebral disc herniation in dogs
provides a veterinary example: Martin et al. (2020)4 cal-
culated that 14 dogs (ie, the NNT) presenting “deep
pain-positive” needed to be taken to surgery on the same
day (rather than the next day) for one to not become
“deep pain-negative” within the following 24 hours. They
also reported a wide 95% confidence interval for the NNT
(of 7-106) indicative of considerable uncertainty about
the magnitude of effect.

5 | NULL HYPOTHESIS
STATISTICAL TESTING OF
OBSERVATIONAL DATA

5.1 | What does null hypothesis testing
detect?

Conventional null hypothesis statistical testing aims to
evaluate how well the results fit with the null hypothesis
of no difference between tested groups, and is formally
stated as: “If the null hypothesis is correct, how likely
would it be to obtain these, or more extreme, results were
the experiment to be repeated an infinite number of times?”
However, this statistical testing relies upon many
assumptions, one of which is that, for a study evaluating
a therapeutic intervention, the 2 sample groups have
been randomly allocated to different treatments. In an
RCT, assuming that the trial is conducted properly, dif-
ferences in outcome can then reliably be attributed to dif-
ferences in treatment.

In contrast, most manuscripts submitted to veterinary
journals do not report findings from an RCT. It is there-
fore often questionable whether the implicit assumptions
inherent in statistical testing have been met. For these
reasons, care must be taken when interpreting statistical
tests applied to observational data. The P value that
results from conventional null hypothesis statistical test-
ing is an indication of the probability that the data are
compatible with the null hypothesis. In such testing, the
null hypothesis assumes that there is no systematic differ-
ence between the 2 compared groups, apart from the fac-
tor of interest (e.g., surgical therapy). This assumption is
clearly contravened in most sets of observational data
because of the many sources of bias. For instance, the
treatment groups might have been selected in some
way (ie, selection bias – see above) that is inconsistent
with the null hypothesis, or are distorted by inadvertent
confounding with other important factors. This implies
that there is frequently an a priori reason for diffe-
rences between groups that has nothing to do with the
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treatment under investigation. The extent to which an
observational dataset is subject to bias (e.g., assessment of
outcome by a nonblinded observer) is a matter of inter-
pretation by the reader and cannot be unraveled by statis-
tical testing.

It is frequently assumed in conventional statistical
testing that a P value of less than a specific value (con-
ventionally P < .05) can be used to distinguish real or
important effects from false or meaningless effects. This
is patently absurd, for many reasons, not least that the
value of .05 is largely arbitrary. Fisher (an originator of
the P value) simply suggested a variable reaching that
level of “significance” was an interesting finding, not a
delineator between true and false.5,6 There is always a
need to look at the results in more detail, including the
absolute size of the difference between groups, how pre-
cisely that difference has been estimated, and what that
difference (or range of difference) would mean clinically.
The P value is dependent not only on the size of the dif-
ference (and its variability) but also on the number of
samples that have been analyzed. Large samples can
therefore detect small differences that may be clinically
unimportant.

5.2 | Using statistical testing with
multiple variables

Statistical testing has most value when it has been
planned into a study from the beginning, with carefully
preplanned and limited analyses and appropriate sample
sizes calculated beforehand. Possible exposure
(or confounding) variables should also be considered dur-
ing the study design process. For example, in a compari-
son of postoperative infection rates between 2 different
surgical techniques that are not randomly allocated, it
might also be important to consider the age and weight
of each patient as well as other possible factors. However,
when data are analyzed in this way there is “fragmenta-
tion” of the individuals into an often large number of
possible categories, meaning that each category may con-
tain few – or even zero – individuals. For instance, if we
are examining the effects of treatment, but also allowing
for effects of age and weight in 3 categories each, plus
experienced versus resident surgeon, we now have
36 (2 � 3 � 3 � 2) individual categories This then
implies that, unless the dataset is large, many of these
categories will contain few data points, meaning that esti-
mates of the effect of specific variables (and even more
so, specific combinations of variables) will become highly
susceptible to chance effects. In a low power study in
which there have been few events (e.g., infection, death)
recorded and many variables are entered into the

regression equation, it is highly possible that the small
number of events will associate with one of the multitude
of variables simply by chance. Indeed, this alone is likely
to account for the large number of variables that have
been associated with poor outcomes after (for instance)
treatment of portosystemic shunt in dogs and the fact
that there are few reports that agree in their conclusions.
Similarly, there are many conflicting reports regarding
whether splenectomy is a risk factor for gastric dilatation
volvulus (GDV) and therefore uncertainty about whether
to recommend routine gastropexy following splenec-
tomy.7 For both study questions, almost all relevant stud-
ies are of low power and so the results of each of them is
unreliable (although some may also, by chance, identify
an important risk factor), thereby generating an (artifi-
cial) conflict that can be confusing and demoralizing for
clinicians.

When entering a series of variables into a logistic
regression analysis, it is important to keep focus on esti-
mating the effect of the primary variable of interest and
ensure that there are – by a rule-of-thumb – at least
10 outcome events (e.g., infections) for each entered vari-
able (and even this number is not necessarily sufficient to
ensure adequate power). To fulfill this objective, it is nec-
essary to define, before the study is commenced, a clear
clinical question and hypothesis. Addressing multiple
hypotheses is problematic because it is a reflection that
the study was not hypothesis driven but more exploratory
driven, thereby implying that the conclusions should be
treated with more caution. In that respect, the “patient/
population, intervention, comparison and outcomes”
(PICO) model is very useful to design the study question
(https://libguides.mssm.edu/ebm/ebp_pico). Even in this
scenario there may be better ways (e.g., the NNT
described previously or the alternative analyses described
below) to examine these data than traditional null
hypothesis significance testing because the effect size is a
more important result. The key thing that we want to
know as clinicians is how effective a therapy is, not nec-
essarily whether one treatment is “statistically superior”
to another.

5.3 | Multiplicity

Using a P value of .05 implies that there will, on average,
be 5 out of 100 (5%) “significant” findings purely due to
chance, even when the null hypothesis is correct. Whilst is
straightforward to deal with the possibility that, at a
P value of .05, 1 of 20 significant outcomes will result
purely from chance, it does rapidly become more prob-
lematic if multiple comparisons are made, because it
causes an accumulation of false positives. For instance, if
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10 comparator tests are done and P < .05 is used as an
alert for an interesting result, then there is a 50% chance
of at least one P value being <.05 through chance alone,
even when all the assumptions for the test have been met
and the null hypothesis is correct. Multiple testing of this
type also suggests that the researcher did not have a clear
hypothesis in mind when conducting the analysis
because otherwise there would not be the multiple
hypotheses implied by the multiple statistical testing or
worse, hypotheses have been derived from the results (ie,
“hypothesizing after the results are known,” also known
as “HARKing,” which is recognized as a form of research
misconduct).8

Multiple testing for exploratory purposes is, of course,
an important part of scientific discovery, but it is critical
that it is presented as such and not as hypothesis-testing
work, because otherwise inappropriate clinical decisions
might be made. There are several methods for dealing
with the risk of type I error associated with multiple test-
ing, the most well known of which is the Bonferroni cor-
rection, which is a mathematical solution that can be
applied to P values after testing. However, it does have
many drawbacks and can be overly conservative. In addi-
tion, it is often confusing to read manuscripts in which
the correction has been applied. An alternative method,
the Benjamini-Hochberg procedure,9 is probably more
useful for determining which in a series of exploratory
statistical analyses might be worth pursuing further.

6 | RECOMMENDATIONS FOR
ANALYSIS OF
OBSERVATIONAL DATA

Thus far, we have made many complaints – but how can
these problems be avoided? The first question might be
whether statistical analysis adds anything useful to what
might be gleaned simply by closely examining the data.
Often, the statistical analysis adds nothing useful and
might even lead readers astray. For instance, when con-
fronted with a set of data without statistical analyses or
P values, readers will usually examine in more detail how
the data were collected, whether there were major differ-
ences between groups, and question more closely
whether comparisons are valid or might be compromised
by bias or confounding etc. Often, if we are interested in
whether there is a major difference in observational data
outcomes between 2 comparator groups then the P value
will add little, in the absence of confirmatory data
(which, by definition, would not be available). Similarly,
if the assumption is made that the datasets were collected
with limited bias (which statistical testing cannot con-
firm), readers would naturally recommend the treatment

with the best outcome, whether or not a P value is
attached. As discussed above, the P value cannot be used
to confirm that there is no bias, or limited bias, or con-
founding in the data.

Lastly, as an alternative there is Bayesian analysis,
which evades the problems associated with repeated test-
ing and, in contrast to null hypothesis testing, can be
used to evaluate the strength of evidence in favor of a spe-
cific statistical model, including the null. Bayesian analy-
sis relies on a very simple concept: that the likelihood of
a specific hypothesis being true depends upon the
amount of data in support. This type of conclusion is
what many researchers want null hypothesis statistical
testing to provide, even though it cannot.

7 | ASSESSING STATISTICAL
ANALYSES FOR OBSERVATIONAL
STUDIES IN PUBLISHED
MANUSCRIPTS

The first recommendation for evaluating statistics associ-
ated with observational studies is to assess the results as
a weighing up of evidence. It is important to consider
that observational, especially retrospective, data will pro-
duce evidence that is “gray” but of variable shades. It will
almost always be useful information but it would be rare
for this type of study alone to definitively answer a
research question. The process of evaluation is to deter-
mine whereabouts on the gray scale the evidence lies.
Scrutiny of the article will enable a balanced conclusion
to be drawn, bearing in mind the many errors that have
been made in human medicine from overreliance on
analysis of observational data.

The first part of this process is to examine the mate-
rials and methods section to determine how likely it is
that fair comparisons between groups can be drawn. For
studies looking at therapeutic interventions, this is best
done by comparison of the methods with the ideal of the
RCT (as described in the CONSORT [Consolidated Stan-
dards of Reporting Trials] guidelines- www.consort-
statement.org) and examining the summaries of the
demographics of the compared patient populations,
which is usually contained in the results section.

The second recommendation is to concentrate on the
data (usually in the form of summary statistics) rather
than the inferential statistical tests. Researchers therefore
need to make sure that such information is available in a
table in the manuscript itself and, preferably, also include
the raw data as supplementary material. In scrutinizing
the results, the most important aspect is to examine the
effect size and the precision of its estimation. How much
difference is there between the tested groups? Is this
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difference enough to be meaningful when dealing with
real-life patients? For instance, an effect size of 5 beats
per minute when comparing the effect of 2 drugs on
heart rate is not likely to be important.

As an associated assessment, it is necessary to look at
the precision of the estimate of effect. This can be exam-
ined by looking at the estimates of variation, often most
usefully assessed by the 95% confidence intervals. Low
power studies may suggest evidence of a treatment effect –
say a point estimate of an odds ratio of 5.4 – and even have
a 95% CI that does not incorporate the null value (1.0),
suggesting statistical significance at P < .05. However, if
the 95%CI values for the odds ratio is wide – say 1.1 to
10.9 – it would suggest that the study has low power and
so the magnitude of effect is rather uncertain. On the other
hand, the data are compatible with the possibility that the
effect might be as large as an odds ratio of nearly 11, which
would almost certainly be of clinical importance.

Lastly, it is preferable to not take too much notice of a
P < .05 unless the study is appropriately powered, and
with limited evidence of bias and confounding – for
instance if assured of randomization of treatment. It is
surprisingly easy to be led astray by statistical testing and
jump to the easy conclusion. Frequently, consideration of
the raw data frees your mind to look at the real story.10

For instance, if confronted with a P < .05 for comparison
of death rates between medical and surgical therapy for a
specific condition, it is often useful to probe the details of
exactly how allocation of those 2 treatment options was
determined. This choice is usually a clinician's recom-
mendation, and so is likely biased. For these reasons, it is
important to recognize that the value of a study might
not be enhanced by statistical testing, and may even have
detrimental effects in determining the true value of
published data.

8 | ALTERNATIVES TO
STANDARD ANALYTICAL
TECHNIQUES

Although null hypothesis statistical testing has dominated
scientific and medical literature for many decades, it does
have a multitude of shortcomings, many of which are
highlighted here. In medicine and surgery, it is usually
important to have an idea of how reliably we know the com-
parable effectiveness of 2 competing therapies, and conven-
tional statistical testing is not good at providing that
information from observational data. Statistics, such as
mean, standard deviation, median survival, and odds ratios,
provide summary information on effect size but are often
difficult to interpret on their own in observational studies
because of the numerous possible confounding factors.

Although it must be emphasized that statistical
methods cannot extract bias from data, there are some
recent developments in statistics and in the availability of
statistical software that might aid in producing more real-
istic and clinically meaningful estimations of effect in
observational studies that move away from the rigid
bright-line decision making that is often associated with
traditional null hypothesis statistical testing. For instance,
propensity scoring11 and related statistical methods pro-
vide a means by which 2 observational groups can be com-
pared, while allowing for numerous covariates (possible
confounders and effect modifiers) to be included in the
analysis. This type of analysis aims to reduce bias effects
by including the various factors (covariates) that might
determine allocation, outcome, or both. Notably, the
results focus on effect sizes, rather than whether a treat-
ment is “significantly different” from another. As an exam-
ple, a comparison of the incidence of wound breakdown
following suture or wire closure of sternotomy incisions in
dogs was able to conclude that there was likely little differ-
ence in probability of failure between methods.12 How-
ever, the 95% confidence intervals on the estimate
indicated that the data were compatible with the possibil-
ity that there might be as much as a 10% lower rate of
complications associated with sutures. This result is clearly
important information for a clinician: either method of
closure is an appropriate choice but if there is any uncer-
tainty it is probably best to choose suture. Such a conclu-
sion is of far more value than just saying that one therapy
is “significantly” better than another – especially because,
as noted above, significance is dependent upon the sample
size. This “treatment effects” analysis provides an auto-
matic limit to interpretation because of the inclusion of
the 95% CI, which is dependent upon the sample size
(larger sample corresponds with narrower 95%CI).

Similar emphasis on effect size and the likelihood of
achieving such effects is also an inherent component of
Bayesian analyses. The process involves examining the
“posterior probability” (ie, how likely the hypothesis is to
be true after the experiment), having started with a “prior
probability” (ie, how likely the hypothesis was before the
experiment). The ratio between these probabilities is deter-
mined by the weight of evidence provided by the experi-
ment compared with what was available before. Until
recently, the practical computational problems associated
with these calculations and the lack of user-friendly
software has hindered the widespread adoption of Bayes-
ian analysis but, fortunately, these obstacles are beginning
to be broken down. Appropriate software is becoming
more widely available, such as that provided by the R
Foundation (https://www.r-project.org/foundation/) (free
of charge), Stata (StataCorp, College Station, TX; paid sub-
scription required), or JASP (Jeffreys’s Amazing Statistics
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Program) (https://jasp-stats.org/). The latter might be espe-
cially attractive to veterinary surgeons wishing to dip their
toes into Bayesian analysis because it is available as a free
download and comes with an extensive instruction man-
ual (https://jasp-stats.org/2020/05/19/bayesian-inference-
in-jasp-a-new-guide-for-students/). This software can carry
out straightforward Bayesian analyses that will often pro-
vide more directly useful statistical conclusions than stan-
dard null-hypothesis statistical testing.

A major advantage of Bayesian analysis is that it is not
hindered by repeat testing because the problems with mul-
tiplicity mentioned above do not apply.13 It is therefore
possible, and even desirable, to repeatedly test the data as
it is collected. This method is commonly used in modern
human clinical trials. As an outcome, it will produce a
point estimate of effect size, together with a “credible
interval” (the Bayesian equivalent of the confidence inter-
val). As would be expected, with little data the credible
interval will be wide, but then it narrows as more data are
accrued. An example of how this can be valuable is pro-
vided by the analysis of effects of durotomy in dogs pub-
lished in Veterinary Surgery14 in which the recovery to
walk again after becoming deep pain negative following
thoracolumbar intervertebral disc herniation and undergo-
ing durotomy was estimated at 71% with a 95% credible
interval of 52% to 87%. It was also possible to determine
how likely this procedure was to produce an outcome
superior to selected cutoff points, such as the ~55% recov-
ery expected after routine decompressive surgery.15

The question of prior probability is simultaneously
both more and less complicated! Bayesian analysis is
undoubtedly more powerful if the prior probability can
be computed accurately but, in real life this does remain
difficult. For instance, what is the expected probability of
a normal lifespan in a dog treated conservatively for por-
tosystemic shunt, and at what level of certainty do we
know this information? The problem for both these items
is that the studies to provide this information are obser-
vational and may not reflect the true value and so it may
be difficult to defend (in a publication) a specific choice
of prior probability. The simple, and commonly applied,
way out of this dilemma is to simply use what is referred
to as a “noninformative prior.” This means applying a
mathematical formula that implies that we just do not
know what the outcome of the experiment is likely to
be. This, of course, does weaken the impact of being able
to apply previous knowledge, and implies that the out-
come will more closely match that determined by con-
ventional null hypothesis testing. However, it is more
likely to find favor with readers and has the benefits of
providing “Bayesian answers” (ie, how likely is the spe-
cific tested hypothesis to be true based on these data?) as
contrasted with answers provided by null hypothesis

testing (ie, how unlikely is the null hypothesis?). As men-
tioned above, Bayesian analysis also permits further
experimental data to be incorporated into the analysis as
it is accrued, thereby generating progressively more pre-
cise estimates of effect (or lack of effect).

9 | CONCLUSION

It is important to be aware of the limitations and spuri-
ous results that can be generated by analysis of (espe-
cially, small) clinical observational datasets and the
potential errors in patient care that they may induce. We
need to be realistic and acknowledge that large RCTs are
not always going to be possible for every condition but,
instead of repeatedly falling into the same traps (as our
colleagues in human medicine have previously done), we
should consider redefining which statistical tests and
methodology are most useful in guiding clinical decisions
from observational data sets.

It is also important to realize that some of the choices
in methodology of veterinary clinical research (eg, choos-
ing observational data analysis, single center analysis, or
short case series) might be driven by nonscientific impera-
tives such as satisfying board credentials that limit the
appetite of clinicians for longer term prospective studies. It
may be timely to reconsider how these imperatives influ-
ence the type and impact of clinical veterinary research
and whether adjustments could then lead to greater oppor-
tunities to conduct larger, multicenter, observational retro-
spective or prospective, especially RCT, investigations.
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