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Abstract: High-grade serous ovarian cancer is a deadly disease that can originate from the
fallopian tube or the ovarian surface epithelium. The PAX (paired box) genes PAX2 and PAX8
are lineage-specific transcription factors required during development of the fallopian tube but not in
the development of the ovary. PAX2 expression is lost early in serous cancer progression, while PAX8
is expressed ubiquitously. These proteins are implicated in migration, invasion, proliferation,
cell survival, stem cell maintenance, and tumor growth. Hence, targeting PAX2 and PAX8 represents
a promising drug strategy that could inhibit these pro-tumorigenic effects. In this review, we examine
the implications of PAX2 and PAX8 expression in the cell of origin of serous cancer and their potential
efficacy as drug targets by summarizing their role in the molecular pathogenesis of ovarian cancer.

Keywords: high-grade serous ovarian carcinoma (HGSC); PAX2; PAX8; cell of origin; ovary;
fallopian tube

1. Introduction

In 2017, there were 22,440 new cases of ovarian cancer and 14,080 deaths [1]. Ovarian cancer is
the fifth leading cause of cancer related death in women and the most lethal gynecological malignancy.
High-grade serous carcinoma (HGSC) accounts for 80% of ovarian cancer cases and it is the deadliest
histological subtype of epithelial ovarian cancer (EOC). This high mortality rate is due in part to
the insidious nature of the disease, as the majority of cases are detected at an advanced stage with
distant metastases. Symptoms of HGSC, such as abdominal pressure, bloating, and urinary frequency,
are non-specific and do not present until after the tumor cells have metastasized and obstructed
organs in the peritoneum. Current treatment strategies at this late stage include surgical debulking
followed by chemotherapy with platinum and taxane drugs. While tumors are initially responsive
to chemotherapy, the 5-year survival rate remains poor because of drug resistance and subsequent
patient relapse. Patients with chemoresistant disease may receive chemotherapy in combination with
targeted therapy against PARP (Olaparib) or VEGF-A (Bevacizumab) [2,3].

While it was originally believed that the ovary was the primary site of HGSC development,
accumulating histologic, molecular, and animal model evidence suggests that the majority of cases
originate from the fallopian tube epithelium [4–7]. The PAX (paired box) genes PAX2 and PAX8 are
lineage-specific transcription factors that are involved in epithelial development of the fallopian tube
but not the ovary [8,9]. PAX8 is expressed in HGSC tumors derived from both the fallopian tube
and ovarian surface epithelium (OSE), at least in murine models where the source of the tumor is
experimentally derived. In regard to the other histotypes of EOC, PAX8 shows high expression in
clear cell and endometrioid tumors and reduced expression in mucinous tumors [10–12]. PAX2 is lost
early in the molecular progression of fallopian tube derived cancer and is absent in ~85% of HGSC.
PAX2 is detected in clear cell and mucinous tumors and absent in most endometrioid tumors [13–16].
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Studying PAX2 and PAX8 in this context provides valuable insight into the site of origin of ovarian
cancer and the tumorigenic properties that make the PAX proteins promising drug targets for treatment
of HGSC.

2. Site of Origin of HGSC

The origin of HGSC has perplexed researchers for decades and it is now known that HGSC can
originate from the fallopian tube epithelium as well as the OSE. Since PAX2 and PAX8 are expressed in
the fallopian tube, and PAX8 expression is maintained in HGSC, the expression and regulation of PAX
proteins may help to explain the source of ovarian cancer. The OSE was historically believed to be
the site of origin of serous carcinoma based on the incessant ovulation hypothesis. This hypothesis
suggests that during ovulation, fragments of the OSE get trapped within the wound created by follicle
rupture, forming an ovarian cyst [17]. The epithelium trapped within the cyst has direct contact
with the stroma and therefore has increased exposure to the stromal microenvironment, including
growth factors and cytokines [18]. As a result, cells within an ovarian cyst have a higher likelihood
of transforming into tubal-like cells that express markers of ovarian cancer, including PAX8, CA-125
and E-cadherin [18,19]. This hypothesis is supported by epidemiological data showing pregnancy and
oral contraceptive use, both of which decrease the number of ovulatory cycles, are correlated with
a decrease in ovarian cancer risk [20,21].

The OSE is unique to the female reproductive tract in that it is formed embryologically
from the mesodermally derived colemic epithelium. In contrast, other components of the female
reproductive tract, including the fallopian tube, cervix, and uterus, are Müllerian-derived structures.
These Müllerian-derived structures express PAX8, while the OSE does not. This difference in embryonic
origin has implications for adult cells. The adult OSE contains a mix of epithelial and mesenchymal-like
cells that appear to be less differentiated than the rest of the female reproductive tract. These cells do
not express molecular markers characteristic of epithelial cells, including CA-125 and E-Cadherin, but
rather express mesenchymal markers, including keratin and vimentin [18]. Serous tumors that are
derived from the OSE, however, obtain expression of these epithelial markers as well as phenotypic
characteristics of the epithelium, including papillary serous structures [22]. Thus, in mouse models,
HGSC can experimentally originate from the OSE.

The differentiated serous histology of HGSC is an interesting paradox since most cancers are less
differentiated than the tissue of origin. Cheng et al. hypothesized that the OSE is an incompletely
differentiated tissue type that can differentiate during oncogenic transformation through expression of
HOX genes [23]. HOX genes are tightly controlled genes involved in developmental programming
of the Müllerian duct, but they are not expressed in development of the OSE. This is similar to
the PAX8 gene, which is expressed in the fallopian tube and in serous tumors, but not in the
OSE. By experimentally expressing Hoxa9, researchers observed the OSE formed serous papillary
tumors. The OSE may also harbor a stem cell niche within the transitional zone of the ovarian
hilum that has increased tumorigenic properties. Researchers experimentally demonstrated that cells
within the ovarian hilum express stem cell markers that contribute to regeneration of the OSE [24].
Importantly, these stem cells had greater transformative ability after conditional inactivation of p53
and RB1. It would be interesting to examine whether these stem cells also gained developmental
markers, such as HOXA9 or PAX8 that would induce differentiation to a serous histotype.

Increasing evidence indicates that the fallopian tube epithelium serves as the main site of origin of
HGSC. Under this scenario, serous tumors found on the ovarian surface are secondary metastasis from
the fallopian tube, and thus resemble this lineage history. Piek et al. presented the first clinical evidence
supporting this hypothesis by identifying pre-neoplastic lesions with increased staining for p53 and
Ki67 in the fallopian tubes of BRCA-positive women who are predisposed to developing ovarian
carcinoma [5]. Identical p53 mutations were identified in the precursor lesions of the fallopian tube
and in concurrent ovarian carcinomas [6,25]. Molecular profiling of serous tumors identified a gene
signature in HGSC tumors that more closely correlated with the normal fallopian tube epithelium than
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the normal OSE [26,27]. Clinically, bilateral salpingectomy reduced the risk of serous carcinoma by
61% and prophylactic salpingo-oophorectomy in BRCA-positive women reduced the risk of serous
carcinoma by 80% [28,29]. Therefore, the current recommendation states that BRCA-positive women
after child bearing age should undergo prophylactic salpingo-oophorectomy [30].

The fallopian tube origin for ovarian cancer is further supported by multiple animal models.
Immortalized fallopian tube secretory epithelial cells are transformed into HGSC through H-RasV12

mutation or c-Myc expression [31]. Dicer-Pten deletion from the reproductive tract resulted in HGSC
formation, even after bilateral removal of the ovaries, demonstrating that these tumors originated
in the fallopian tube [7]. Pax8 promoter-driven deletion of Brca, Tp53, and Pten in the fallopian
tube also led to HGSC development [32]. Since a common molecular alteration in these models is
loss of Pten, Russo and colleagues examined the effects of Pten loss alone from the fallopian tube
epithelium. Homozygous loss of Pten was sufficient to drive the development of borderline serous
and endometrioid carcinoma that could metastasize to the ovary [33]. Interestingly, in a cell-based
model, Pten loss in combination with Kras mutation formed highly aggressive tumors, while addition
of constitutively active Akt attenuated this phenotype [34]. Research from the Cho laboratory
demonstrated how serous carcinoma progresses from serous tubal intraepithelial carcinoma (STIC)
to HGSC using various combinatorial deletions in Rb1, Brca1, p53, Nf1 [35]. These tumor models
derived from the fallopian tube epithelium provide researchers with the tools to study the molecular
progression from pre-neoplastic lesion to aggressive serous carcinoma.

Careful examination and sequencing of patients with HGSC paints a more nuanced picture of
the cell of origin debate. Laser-capture tumor microdissection of multiple anatomic sites in patients
with HGSC showed an identical p53 mutation at all sites [36]. The metastatic trajectory of HGSC was
elucidated using phylogenetic clustering that compared tumor mutations to a patient’s germline DNA.
While the majority of patient tumors clustered in the “basal STIC” category, with the STIC showing
the highest similarity to germline DNA, some tumors showed “STIC metastases”. These findings
call into question the assumption that the presence of STICs is always evidence for a fallopian tube
origin for HGSC. A separate evolutionary analysis study that sequenced STICs, ovarian cancer, and
metastases in nine patients found tumor-specific alterations in p53, BRCA1, BRCA2, or PTEN to be
present in STICs [37]. This finding implies that in the majority of cases, mutations that drive HGSC
occur early, before metastasis to the ovary. In a proteomic study of HGSC cell lines and patient tumor
samples, 26 ovarian cancer cell lines and five HGSC tumors were grouped into three distinct categories:
epithelial, clear cell, and mesenchymal [38]. While most cell lines and tumors in this study clustered in
the epithelial group, suggesting a fallopian tube cell of origin, the authors identified a subset of cell
lines and one HGSC tumor that grouped in the mesenchymal category, suggesting an ovarian cell of
origin [38]. This demonstrates HGSC may arise from both the fallopian tube and OSE or that cells may
acquire markers during tumorigenesis that resemble different tissues.

PAX2 and PAX8 are expressed in the fallopian tube epithelium, however, PAX2 is lost in ~85%
HGSC and it has been shown that mutant p53 and loss of PTEN represses PAX2 expression in a fallopian
tube-derived mode of ovarian cancer [39]. On the contrary, PAX8 is expressed in 85–90% of HGSC and
is a widely used biomarker for HGSC [4,16,40]. PAX2 and PAX8 are differentially regulated in HGSC
and it will be interesting to know whether loss of PAX2 during HGSC progression leads to dependence
of HGSC on PAX8. Thus, studying the shared regulatory mechanisms of PAX2 and PAX8 expression
between the fallopian tube and ovary will be essential to developing effective treatment therapies until
the site of origin of a patient’s tumor can be definitively identified.

3. Role of PAX2 and PAX8 in Development and Adult Tissues

The PAX genes are a set of developmental transcription factors that are key regulators for proper
tissue formation and cellular differentiation [41]. This is convincingly supported by mouse models
with Pax gene deletions. PAX2 is required for mesenchymal-to-epithelial transition of the intermediate
mesoderm into the epithelial structures of the inner ear, kidneys, ureters, Wolffian and Müllerian
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ducts, including the oviducts, uterus, and vagina [42]. Mice with Pax2 homozygous mutation do not
develop these structures. Research has shown that Pax2 is a tissue-specific epigenetic regulatory gene
that ensures proper temporal and spatial development of these epithelial structures. The Hashino
laboratory demonstrated that in progenitor cells of the inner ear, the histone demethylase LSD1 recruits
the NuRD co-repressor complex to bind and repress PAX2 target genes. This inhibition ensures
tight temporal control of PAX2-regulated genes. Once cells enter the differentiated state to become
epithelial cells, LSD1 and the NuRD complex are released from the PAX2 binding site, and transcription
can occur. This switch from progenitor intermediate mesoderm to differentiated epithelium is
irreversible and is maintained over rapidly dividing cell populations through PAX2-regulated
epigenetic modifications [43]. Research from the Dressler laboratory demonstrated that PAX2
promotes assembly of the histone H3K4 methylation complex by recruiting PTIP (PAX transcription
activation domain interacting protein) at PAX2 binding elements [44]. This histone modification is
associated with active promoters and increased transcription. PTIP deletion inhibits histone H3K4
methylation, even though PAX2 still binds to the chromosome. These data suggest that PTIP regulates
epigenetic modifications required for activation of PAX2 targets that are essential for development and
maintenance of epithelial structures.

PAX2 expression persists in adult reproductive tissues (epididymis, vas deferens, oviduct), ureters,
bladder, kidneys, and mammary glands [45]. Cai et al. demonstrated that PAX2 levels are osmotically
regulated [46]. Exposing medullary epithelial cells in vitro to high levels of NaCl increased PAX2
levels, while reducing in vivo renal inner-medullary interstitial NaCl levels decreased PAX2 levels.
This increase in PAX2 appears to protect against cell death induced by osmotic stress. The stem cells of
the mammary duct also express PAX2 where it may protect against apoptosis [47]. This is supported by
research in C. elegans which demonstrates PAX2/5/8 can upregulate transcription of the anti-apoptotic
Bcl2 [48].

PAX8 is a closely related paralog to PAX2 that is expressed during embryogenesis in the thyroid,
metanephros, central nervous system, and Müllerian duct. Inactivation of the Pax8 gene in mice leads to
complete loss of thyroid follicular cells, severe growth retardation, and death in the perinatal period [49].
Providing exogenous thyroid hormone to Pax8−/− mice rescued the hypothyroid phenotype, but these
mice remained infertile due to nonfunctional uteri and closed vaginal openings [50].

PAX8 continues to be expressed in the adult kidneys, cervix, endometrium, fallopian tube, seminal
vesicle, epididymis, thyroid, pancreas, and lymphoid cells [10,51]. There is also evidence that a subset
of cells in the OSE express PAX8, but further research will need to examine the mechanism for this
acquired expression [51,52]. The majority of our understanding of PAX8 function in adults is based
on studies in the thyroid. Zannini and colleagues demonstrated that PAX8 is required for expression
of the thyroid-specific genes: thyroglobulin, thyroperoxidase, and sodium/iodide symporter [53,54].
Interestingly, ChIP-Seq demonstrated PAX8 tends to bind in intronic regions (82%) over 5’-UTR
regulatory regions (2%) [55]. This suggests PAX8 may bind alternative promoters or ncRNAs that
regulate gene expression. Additionally, immunoprecipitation studies demonstrated that PAX8 binds
CTCF and SP1, both of which are involved in chromatin remodeling [55]. These data suggest PAX8
functions both to directly increase transcription and to remodel the chromatin landscape.

4. Role of PAX2 and PAX8 in HGSC

Examining the histologic and molecular events that give rise to serous carcinoma is crucial to
understanding the drivers of ovarian cancer. Secretory cell outgrowths (SCOUTs) are precursor lesions
of serous carcinoma that can be found in the proximal and distal fallopian tube. Normal fallopian
tube epithelial cells express high levels of PAX2 but approximately 90% of SCOUTs have lost PAX2
expression [16]. Almost all serous tumor cells also have mutation in the tumor suppressor p53, yet only
25% of SCOUTs have p53 mutation that can be detected histologically [16,56]. SCOUTs located at the
fimbrial edge with p53 mutation are coined ‘p53 signatures’ [16]. Cells with the p53 signature have
PAX2 loss, suggesting a step-wise progression from PAX2 loss to p53 signature to STIC to metastatic
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serous carcinoma. This progression has been extensively researched, and there are many excellent
reviews detailing these findings [4,30,57,58].

Through molecular characterization of SCOUTs, Ning and colleagues demonstrated that PAX2
loss is associated with an increased stem cell phenotype [59]. They show through in vitro culture of
SCOUTs that these cells can differentiate into both ciliated and basal cell histotypes. PAX2 knockdown
in fallopian tube epithelial cell lines increased expression of the stem cell markers CD44 and SCA1
and decreased the capability of these cells to form differentiated epithelial luminal structures [60].
Modi et al. demonstrated in murine oviductal epithelial cells that Pax2 loss and p53 mutation
increased proliferation and migration, but was insufficient to drive tumorigenesis [39]. This is
consistent with human histological findings that p53 signatures are benign secretory outgrowths.
ChIP analysis revealed wild type p53 enhances Pax2 transcription while mutant p53 decreases Pax2
transcription, suggesting a mechanism for sustained Pax2 loss in neoplastic lesions [39]. Interestingly,
cells lost Pax2 expression in a fallopian tube model of ovarian cancer derived through loss of Pten [39].
Re-expression of Pax2 inhibited the tumorigenic properties of these cells and prolonged survival
(Figure 1). Alternatively, Pax2 expression in a spontaneous OSE derived model of HGSC (called
STOSE) reduced proliferation and metastasis by increasing COX2 and reducing HTRA1 expression [61].
Taken together, these findings suggest Pax2 loss is an early molecular event in ovarian cancer
progression that predisposes cells to further mutations that can drive tumorigenesis, regardless of
cell of origin. Further research should examine the mechanistic requirement for Pax2 loss in HGSC
progression, especially considering that there is increased hypomethylation and activation of Pax2
in endometrial and renal carcinoma, yet The Cancer Genome Atlas (TCGA) does not find increased
methylation at this locus in HGSC tumor samples [47,62,63].
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Figure 1. PAX2 and PAX8 regulate tumor formation in HGSC in an opposing manner. Serous tubal
intraepithelial carcinomas (STICs) express PAX8, but not PAX2. Similarly, epithelial cells in cortical
inclusion cysts express PAX8. HGSC tumor cells express PAX8 and it has been experimentally shown
that PAX8 reduction decreases characteristics that enhance tumor formation. PAX2 is not expressed in
HGSC and re-expression of PAX2 inhibits the tumorigenic properties of tumor cells.
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Pathologists have used PAX8 for decades as a histologic marker to define HGSC,
but a genome-wide RNA interference screen of cancer cell lines was the first to identify the importance
of PAX8 in ovarian cancer [64]. PAX8 was the top-ranked differentially expressed gene in the screen
between ovarian and non-ovarian cancer cell lines. PAX8 knockdown reduced proliferation, migration
and invasion and increased apoptosis in ovarian cancer cells [65]. Pax8 was shown to directly bind
and increase the transcription of p53, which then increased p21 to induce proliferation [66]. Pax8 also
promoted tumor cell growth by increasing transcription of the cell cycle regulator E2f1 through
direct binding to the E2f1 promoter in a complex with the RB protein [67]. In thyroid follicular
carcinoma, a translocation event results in PAX8-PPARγ1 fusion [68], but this genetic event is not
observed in HGSC (regulation of PAX2 and PAX8 in specific cancers is summarized in Table 1).
To better understand the mechanism of PAX8 oncogenesis in HGSC despite its normal expression
in the fallopian tube, several research groups have examined the role of PAX8 in the ovary and
fallopian tube. Serial passaging of the normal OSE transforms cells into serous carcinoma with
PAX8 expressed [22]. Loss of LKB1 and PTEN in the OSE also leads to a HGSC cell line with
acquired PAX8 expression [69]. Rodgers and colleagues demonstrated that forced PAX8 expression
in normal OSE increases proliferation, migration, and epithelial-mesenchymal transition through
upregulation of the FOXM1 pathway [70]. Correspondingly, PAX8 knockdown in three human HGSC
cell lines decreased expression of FOXM1, decreased proliferation, and increased apoptosis [70].
Reducing PAX8 expression in the normal fallopian tube, however, did not produce noticeable
phenotypic effects, suggesting that targeting PAX8 pharmacologically would not affect normal tissues.
These phenotypic observations were corroborated by Elias and colleagues who performed an RNA
sequencing experiment demonstrating few transcripts altered in the fallopian tube but increased
transcript alterations in serous tumors after PAX8 knockdown. The authors suggest alterations to
the PAX8 cistrome are responsible for changes in gene expression leading to HGSC derived from the
fallopian tube. The PAX8 consensus binding motif is altered between the fallopian tube and serous
tumor cells that may affect downstream regulated genes. Elias et al. show differential association
between PAX8 and Yes-associated protein (YAP1), a major downstream regulator of the evolutionarily
conserved Hippo pathway that regulates organ size, cell proliferation, and apoptosis [71]. Interestingly,
ChIP-Seq identified PAX8 mostly binds at non-promoter sites and is enriched at super-enhancers,
where PAX8 can globally regulate genes involved in tumorigenesis [72]. Taken together, these findings
suggest PAX8 could be targeted for drug development to reduce proliferation, migration and survival
of tumor cells while leaving other organs unaffected (Figure 1).

Table 1. Mechanism of PAX2 and PAX8 regulation in specific cancer types.

Cancer Type PAX2 Regulation PAX8 Regulation References

HGSC Transcriptional downregulation No change [39]
Endometrial Promoter hypomethylation No change [62]

Thyroid No change PAX8-PPARγ1 fusion [68]
Renal Promoter hypomethylation Increased protein levels [63,73]

Wilms tumor Transcriptional upregulation Transcriptional upregulation [74,75]
Breast Transcriptional upregulation No change [76]

Glioma Transcriptional upregulation Transcriptional upregulation [77,78]

5. Clinical Strategies to Target PAX2 and PAX8

Ovarian cancer is a heterogeneous disease with few common molecular alterations [56].
Developing therapeutic strategies that target common molecular alterations, such as loss of PAX2 or
gain of PAX8, may produce greater therapeutic benefits. A promoter activation screen identified
luteolin as a small molecule that restores PAX2 expression in cells with wild type p53 [39].
Luteolin could be taken as a preventative supplement to decrease the occurrence of SCOUTs, but it
would be ineffective in treating serous tumors with p53 mutation. Further screens or combination
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therapy studies should be performed in HGSC cells to identify molecules that increase PAX2 in
tumors. The effect of these molecules on the homologue PAX8 should also be explored. Molecules
that increase expression of PAX2 may also increase expression of PAX8, which could then increase
the aggressive properties of a tumor cell. Therapies that reduce transcription of these PAX proteins,
however, may significantly mediate the deleterious effect of PAX8 while maintaining the already
decreased PAX2 levels.

PAX8 seems to have little functional effect in the fully differentiated adult fallopian tube,
but mediates several tumorigenic effects in HGSC, including proliferation, migration, angiogenesis,
and apoptosis [65,70–72,79]. Reducing PAX8 levels or disrupting the transcriptional activity of PAX8
may inhibit these pro-cancerous effects while leaving the normal fallopian tube epithelium unaffected.
Using a virtual screen that modeled paired domain binding to DNA, Grimley and colleagues identified
small molecules that disrupt binding of the paired domain of PAX2/5/8 to DNA [80]. Other potential
drug targets include the adapter proteins that bind to the chromosome in a complex with PAX8.
PAX8 requires interactions with YAP1, CTCF and SP1 to initiate transcription, as discussed earlier.
Disrupting these interactions may mediate the deleterious effects of PAX8 in serous carcinoma.

6. Concluding Remarks

Proper temporal and spatial expression of the PAX protein family is essential for embryonic
development. PAX2 and PAX8 are co-expressed during mesenchymal-to-epithelial transition of the
Müllerian duct and they continue to be expressed in adult structures, such as the fallopian tube.
These proteins maintain a regenerative stem cell population in adult tissues. In HGSC, PAX8 provides
growth advantages by enhancing the proliferative, migratory, and survival capabilities of cancer cells
from the fallopian tube and ovary. The OSE does not normally express PAX8, yet it acquires PAX8
expression during malignant transformation in certain mouse models. More work is required to tease
apart the role of PAX8 in tumors derived from the fallopian tube or OSE. PAX2 is a homolog of PAX8
that has been shown to impart similar growth advantages, yet tumors derived from the fallopian tube
epithelium lose PAX2 expression during malignant transformation. Further research is required to
understand the importance and regulatory machinery that leads to PAX2 loss and PAX8 dependence
in HGSC.

Identifying drug targets for novel cancer treatments in HGSC has been challenging because it is
a heterogeneous disease with few shared mutations. The PAX proteins are promising because PAX8
is ubiquitously expressed in serous tumors and PAX2 loss is an early molecular event shared in the
progression from benign to malignant carcinoma. Targeting these proteins may hold promise in reducing
tumor growth and progression in a majority of patients and significantly improving patient survival.
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