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For the past 150 years cancer immunotherapy has been largely a theoretical hope that
recently has begun to show potential as a highly impactful treatment for various cancers.
In particular, the identification and targeting of immune checkpoints have given rise to
exciting data suggesting that this strategy has the potential to activate sustained antitu-
mor immunity. It is likely that this approach, like other anti-cancer strategies before it, will
benefit from co-administration with an additional therapeutic and that it is this combination
therapy that may generate the greatest clinical outcome for the patient. In this regard,
oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these
immune-modulating therapies in a highly targeted and economically advantageous way
over current treatment. In this review, we discuss the blockade of immune checkpoints,
how oncolytic viruses complement and extend these therapies, and speculate on how this
combination will uniquely impact the future of cancer immunotherapy.

Keywords: oncolytic virus, cancer immunotherapy, immune-checkpoint inhibitors, CTLA-4, PD1, PDL1, PDL2,
blockade of checkpoint inhibitors

INTRODUCTION
Tumors are difficult to treat and in many instances lethal. The
treatment challenge is not surprising as they are genetically unsta-
ble and complex biological systems with an ability to adapt to
and thrive in often harsh and changing environments. Further-
more, this plasticity increases the probability that subpopulations
will acquire resistance to any one therapy. Thus one could argue
that a disease with such a complex etiology must be met with
an equally complex therapeutic approach. Appropriately, oncol-
ogists have for some time combined chemotherapy, radiation
and surgery and complemented these strategies with more tar-
geted approaches such as tumor selective antibodies and/or small
molecule kinase inhibitors (1). More recently, two alternative ther-
apeutic approaches, cancer immunotherapy and oncolytic viruses,
have begun to show promise that should further complement the
oncologist’s repertoire of anti-cancer agents.

The area of cancer immunotherapy has had a long and complex
history (2, 3). The idea that a patient’s own immune system could
remove a tumor in much the same way it so efficiently removes
invading microbes has been around for more than a century.
Through the years, however, this concept of immunosurveillance
has fallen in and out of favor perhaps appropriately given the
complex and dynamic role, it is now believed to play in cancer,
acting anywhere from anti to pro-tumorigenic (4–6). Research is
beginning to elucidate the mechanisms by which tumors evade
the immune system and in some instances how tumors use it to
their advantage. From this research several promising immune-
checkpoint inhibitor targets that are now translating into exciting
clinical trial results have emerged (7–9).

Like cancer immunotherapy, the concept of oncolytic viruses
is not new dating back to at least the beginning of the twen-
tieth century when it was observed that on occasion tumor

regression would follow a viral infection (10, 11). Although over
100 years have passed since these initial observations, the idea of
using a replicating virus to selectively infect and kill tumor cells
remains understandably appealing. Theoretically, either naturally
or through genetic engineering, such an agent would spare normal
neighboring cells while killing cancer cells by viral lysis. Further-
more, the progeny released from the lysed cancer cells would result
in a self-perpetuating and amplifying therapy. Adding to their
appeal is the ability of such agents to deliver exogenous genetic
material whose product or products could augment the oncolytic
viral treatment (12–14). Despite their theoretical promise, the
reality is that oncolytic viruses have had limited clinical success
as monotherapies perhaps due to an imbalanced focus on safety
over potency. Recently however, there are several late-stage clin-
ical trials showing promise which may eventually lead to clinical
acceptance (15, 16).

Here, we suggest merging immune-checkpoint blockers with
oncolytic viruses. We will discuss not only how these approaches
could complement one another biologically for increased thera-
peutic benefit, but also how they may represent a unique opportu-
nity to employ alternative biological formats not normally utilized
commercially (e.g., Fabs, scFv) to increase both the safety and ther-
apeutic profile of these agents. Finally we will touch upon how,
together, these attributes might translate into a more economi-
cally appealing and clinically active therapy resulting in a truly
new and disruptive treatment for malignancies.

CANCER IMMUNOTHERAPY-BLOCKADE OF IMMUNE
CHECKPOINTS
Immunotherapy works to direct the extensive repertoire of the
host immune system to fight cancer. This approach strives to stim-
ulate tumor suppression by (a) boosting the patient’s immune
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system, (b) decreasing the cancer-induced immunosuppression,
and/or (c) increasing the immunogenicity of the tumor itself. If
the immune system’s ability to rapidly respond to and clear invad-
ing microorganisms could be extended to malignant cells then
a powerful therapeutic may be realized. Such an approach may
hold greater potential than current treatment approaches as it may
prove to be more potent, benefit many more cancer types, offer
long-lasting protection against the disease, and come with fewer
off-target effects. Advances in cellular and molecular immunol-
ogy have provided enormous insight into the inter-play between
tumors and immune cells and from this research have come strate-
gies by which the immune system might be harnessed to fight
cancer (7).

The blockade of immune checkpoints is a more recent approach
taken to decrease cancer-induced immunosuppression. Immune
checkpoints refer to a number of inhibitory pathways that play
crucial roles in maintaining self-tolerance and immune homeosta-
sis. Their function is to down-regulate T-cell signaling in order
to prevent uncontrolled T-cell proliferation thereby protecting
tissues from auto-immune damage while maintaining tolerance
to self-antigens. It is becoming increasingly clear that tumors
commandeer certain immune-checkpoint pathways particularly
against T cells that are specific for tumor antigens. Preclinical and
clinical data have demonstrated that this is a major mechanism
utilized by the tumor to evade the immune system. If this could
be reversed, the resulting amplification of T cells and their activity
would be highly beneficial to the patient given the central role T
cells play in cell-mediated immunity. The immune checkpoints are
controlled by ligand–receptor interactions, which can be readily
blocked by antibodies or disrupted by recombinant forms of lig-
ands or receptors making them appealing therapeutic targets. For a
list of immune-checkpoint targeting antibodies that are currently
in clinical trial see Table 1.

The inhibitory receptor, Cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4), was the first checkpoint receptor to be exten-
sively and successfully pursued as an anti-cancer target (32). The
primary function of CTLA-4 is to regulate the magnitude of T-
cell activation. It is expressed solely on T cells where it offsets the
actions of CD28, a T-cell co-stimulatory receptor. Because CTLA-
4 has a higher affinity for the CD28 ligands B7.1 and B7.2 it,
in effect, out-competes CD28 for ligand binding resulting in an
attenuated T-cell response (33–37). The lethal systemic immune
hyperactivation phenotype of Ctla4-knockout mice clearly shows
the importance of CTLA-4 and the need to keep T cells in check
(38, 39). In 2011, an antibody against CTLA-4 (ipilimumab) was
given FDA approval for the treatment of metastatic melanoma (20,
40–42). In a pivotal phase III randomized three-arm clinical trial,
melanoma patients were treated with a glycoprotein 100 (gp100)
peptide vaccine alone, ipilimumab alone, or the gp100 peptide and
ipilimumab. Both ipilimumab groups demonstrated an increased
survival of 3.5 months compared with the group receiving the
gp100 peptide alone. Moreover, long-term survival was greatly
increased with 18% of patients receiving ipilimumab surviving
for greater than 2 years as compared with only 5% for the gp100
peptide alone cohort (17). Although ipilimumab treatment was
relatively brief, spanning only 3 months, the finding of long-term
progression-free survival supports the idea that immune-based

Table 1 |The most advanced clinically evaluated immune-checkpoint

blocking antibodies.

Target Antibody in

development

Current clinical status Reference

CTLA-4 Ipilimumab

(MDX-010)

Approved for melanoma 2012.

Multiple cancers (phase I, II, III)

(17–19)

Tremelimumab

(CP-675,206)

Multiple cancers (phase I, II) (20–22)

PD1 Nivolumab

(BMS-936558

or MDX1106)

Multiple cancers (phase I, II)

Melanoma (recruiting phase III)

(23–25)

CT-011 Multiple cancers (phase I, II) (26, 27)

MK-3475 Multiple cancers (phase I, II, III) (28, 29)

PDL1 MDX-1105

(BMS-936559)

Multiple cancers (phase I) (29)

MPDL3280A Multiple cancers (phase I, II) (30)

MSB0010718C Multiple cancers (phase I)

PDL2 rHIgM12B7 Melanoma (phase I)

B7-H3 MGA271 Multiple cancers (phase I) (31)

Melanoma (phase I)

LAG3 BMS-986016 Multiple cancers (phase I)

Above trial information from ClinicalTrials.gov.

therapies may actually result in a reprogramed immune system
which can confer long-term antitumor immunity. Clinical tri-
als are on-going evaluating the use of anti CTLA-4 antibodies
in other cancer indications including lung, colorectal, renal, and
ovarian (43).

The immune-checkpoint receptor, programed cell death 1
(PD1) and its ligands PDL1 and PLD2, are also emerging as
promising targets. PD1 like CTLA-4 plays a role in regulating
and maintaining the balance between T-cell activation and tol-
erance (44, 45). However, unlike CTLA-4, PD1 is more broadly
expressed and can be found on other activated non-T-lymphocyte
subsets including B cells and natural killer (NK) cells. Additionally
while CTLA-4 primarily regulates T-cell activation, PD1 princi-
pally controls T-cell activity (46). The ligands PDL1 and PDL2 are
commonly upregulated on the surface of many different human
tumors with PDL1 being the predominant PD1 ligand on solid
tumors. High expression levels of PDL1 have been shown on
melanoma, lung, ovarian, and other human cancers (47, 48). PDL1
is also expressed on myeloid cells in the tumor microenviron-
ment. Pdl, Pdl1, and Pdl2-knockout mice demonstrate a milder
auto-immune phenotype than Ctla4-knockout mice (49–52). Pre-
clinical studies have shown that blocking PD1 or its ligand PDL1
enhances immunity in vitro and mediates antitumor activity in
preclinical models (53–55). Although the development of PD1 tar-
geting antibodies is not as mature as that of CTLA-4 antibodies,
preliminary clinical results look encouraging. In phase I trials of an
anti-PD1 antibody (nivolumab), objective responses (complete or
partial responses) were observed in those with non-small-cell lung
cancer, melanoma, or renal-cell cancer with cumulative response

Frontiers in Immunology | Tumor Immunity February 2014 | Volume 5 | Article 74 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bauzon and Hermiston Armed therapeutic viruses and immunotherapies

rates ranging from 18 to 28%. Responses were durable with 20
of 31 responses lasting 1 year or more (56). In a separate phase
I trial of patients with various advanced cancers, an anti-PDL1
antibody (MDX-1105) also induced durable tumor regression
(objective response rate, 6–17%) and prolonged stabilization of
disease (12–41% at 24 week) (57).

Beyond CTLA-4 and PD1, molecular immunology has begun
to reveal additional receptors and ligands that serve an inhibitory
immune function. These include B and T-lymphocyte attenuator
(BTLA), T-cell membrane protein 3 (TIM3), Lymphocyte acti-
vation gene 3 (LAG3), adenosine A2a receptor (A2aR), and the
B7 family of inhibitory ligands (58–66). Each has been associated
with the inhibition of lymphocyte activity in preclinical models
and consequently antibodies against a number of these targets
are being actively pursued (58–66). Additionally, because multiple
inhibitory ligands and receptors contribute to the tumor’s evasion
of the immune system and appear to be non-redundant, there
remains the possibility of further enhancing antitumor immu-
nity by blocking multiple immune checkpoints. Currently several
preclinical and clinical studies are on-going testing the effects
of blocking a combination of immune checkpoints (Table 2)
(67–73). In fact, a recently published phase I study in patients
with melanoma that combined anti-CTLA-4 (ipilimumab) and
anti-PD1(nivolumab) mAbs resulted in a rapid and deep tumor
regression in a substantial proportion of patients (53% of patients
had an objective response, all with tumor reduction of 80% or
more) (74). These objective response rates exceeded the previously
reported results with either mAb alone (17, 56).

ONCOLYTIC VIRUSES AS (IMMUNO)THERAPIES
Oncolytic viruses can be RNA or DNA based and derived from
human (e.g., herpes simplex virus, adenovirus, measles virus) or
animal [e.g., vesicular stomatitis virus (VSV), Newcastle disease
virus, myxoma virus] viruses. By definition they selectively repli-
cate in, and kill cancer cells. This selectivity can be a natural
property of the virus or an engineered trait (75–81). Oncolytic
viruses can also be genetically armed to improve or generate more
tumor selective cell killing. For example, cell death can be induced
by delivering tumor-suppressors (e.g., p53, p16), pro-apoptotic
proteins (e.g., TRAIL, IL-24), or small hairpin RNA targeting cell
survival or proliferation factors (e.g., hTERT, survivin) (82–87).
Arming can also sensitize the tumor to chemo or radiotherapy
(Prodrug enzymes, NIS) (88–90).

Although direct oncolysis was envisioned as the primary desired
outcome of this therapeutic approach, research and clinical data
is supporting the assertion that these productive tumor-specific
infections can elicit additional antitumor effects. For example
there is evidence that oncolytic viral therapy can induce tumor
vasculature shutdown resulting in tumor necrosis (91, 92). Data
also suggests that because oncolytic viruses result in highly pro-
inflammatory and immunogenic events (tumor cell death and the
release of tumor-specific antigens) (93–95) they can elicit a tumor-
specific immune response (96). Additionally, viruses encode prod-
ucts that can be recognized by immune and non-immune cells
as Pathogen-associated molecular patterns (PAMPs) and can also
cause the release of Damage-associated molecular pattern mol-
ecules (DAMPs) (97). PAMPs are structural motifs which serve

Table 2 |The current clinical development of combined

immune-checkpoint targeting agents.

Stage of clinical

development

Targets Antibodies in

development

Target disease

Phase III CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

melanoma

Phase II CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

melanoma

Phase I CTLA-4/PD-1 Ipilimumab +

Nivolumab

Metastatic

renal-cell carcinoma

CTLA-4/PD-1 Ipilimumab +

Nivolumab

Malignant

melanoma

CTLA-4/PD-1 Ipilimumab +

Nivolumab

Non-small-cell lung

cancer

LAG3/PD-1 BMS-986016 +

Nivolumab

Multiple cancers

Above trial information from ClinicalTrials.gov.

as “danger” signals to the host indicating the presence of virus
that trigger host defenses. These danger signals can be structural
proteins and glycolipids but are mainly nucleic acids including
double-stranded RNA (dsRNA), viral single-stranded RNA, and
CpG DNA (98, 99). DAMPs are host nuclear or cytosolic pro-
teins with defined intracellular function that activate effector cells
from the innate immune system when they are released out-
side the cell (100). Virus-induced changes such as an increase
in pro-inflammatory cytokines and chemokines, a decrease in
immunosuppressive cytokines, and the release of PAMPs and
DAMPs at the site of the tumor may diminish or reverse the
established immunosuppressive microenvironment and initiate
antitumor immunity.

Several oncolytic virus classes are currently in late-stage clinical
trials (Table 3). The most advance of these, Talimogene laher-
parepvec (T-VEC, formerly OncoVex or JS1/ICP34.5-/ICP47-
/GM-CSF; an HSV isolate selected for its potency over laboratory
strains, it is deleted in both the ICP34.5 and ICP47 genes to further
increase viral replication and tumor cell killing, it also expresses
human GM-CSF for immune stimulation) has demonstrated some
very promising clinical data. From recently announced results of
a phase III trial in unresectable stage IIIB-IV melanoma receiv-
ing either T-VEC injected into the lesion or GM-CSF adminis-
tered subcutaneously, the overall durable response rate (DRR)
was 16.3% for T-VEC treated patients as compared to 2.1% for
GM-CSF treated individuals (101). The objective overall response
rate (ORR) was 26.4% for the T-VEC group (including 10.8%
complete responders) compared to an ORR of 5.7% and a com-
plete response rate of 0.7% in the GM-CSF alone group (101).
Importantly, in a phase II trial, tumor shrinkage was noted in
non-injected lesions, demonstrating that systemic immunity was
induced (102). In addition, and across a number of viruses, studies
have shown that both innate and adaptive immune responses are
generated following viral tumor lysis (92, 103–111). This antitu-
mor immunity is an important outcome of oncolytic viral therapy
as it would lead to the destruction of tumor cells that escaped the
initial viral lysis.
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Table 3 |The most advanced clinically evaluated oncolytic viruses.

Virus Name Cancer type Reference

Adenovirus ONYX-015 H101 SCCHN (112–114)

Glioma

Ovarian

CGTG-102 Solid tumors (115)

CG0070 Bladder (116, 117)

ICOVIR-5 Solid tumors (118–120)

ColoAd1 Colorectal (121)

Vaccinia virus GL-ONC1 Solid tumors (122–124)

JX-594 Liver tumors (125, 126)

Solid tumors IV

Herpesvirus G207 Glioma (127–129)

NV1020 Liver tumors IA (130, 131)

T-Vec Breast (132, 133)

SCCHN

Melanoma IT

Liver tumors

Reovirus Reolysin SCCHN IT (134–136)

Solid tumors IV

Measles virus MV-CEA Ovarian IP (137, 138)

MV-NIS Ovarian IP (139–141)

Glioma IT

Myeloma IV

Mesothelioma

NDV PV701 Solid tumors (142, 143)

Above trial information from ClinicalTrials.gov.

MERGING ONCOLYTIC VIRUSES AND IMMUNE-CHECKPOINT
BLOCKING
The realization that oncolytic viral therapy can itself be an
immunotherapy has in many ways reinvigorated the field and
expanded the possible approaches that can be taken to treat cancer.
Similarly, the discovery and targeting of immune checkpoints has
opened a new immuotherapeutic avenue generating very promis-
ing clinical results. The potential to combine oncolytic viruses with
a blockade of immune checkpoints is a very exciting strategy that
may be beneficial on many levels and help overcome current short-
comings associated with either approach alone. To date, there have
been only a few preclinical studies combining oncolytic viruses
and immune-checkpoint blockers (anti-CTLA-4 mAb) (144, 145).
However, results have been promising with one study showing
that replication competent VSV in combination with anti-CTLA-4
mAb resulted in the elimination of macroscopic tumor implants in
the majority of test animals, an outcome that could not be achieved
by either treatment alone (145). The study went on to show that the
response was CD4 and CD8 T-cell mediated (145). When combin-
ing these two approaches, the exact virus/checkpoint combination
will likely need to be determined empirically with many factors
including indication and immune status of patient playing a role.
However, in general an argument can be made that the greatest
synergies between these strategies would be realized by delivering

Table 4 |The benefits of using an oncolytic virus to deliver

immune-checkpoint blockers.

Viral attribute Benefit

Safety Potency Economic

Immuno-stimulatory x

Targeted delivery x x x

Delivery of alternative Ab formats x x x

Multi-gene delivery x x x

the immune-checkpoint therapy directly from the oncolytic virus
(Table 4).

INCREASED PRIMING AND GREATER IMMUNE POTENCY
Preclinical studies have shown that in mice bearing partially
immunogenic tumors, treatment with CTLA-4 antibodies could
elicit significant antitumor responses whereas poorly immuno-
genic tumors were refractory to anti-CTLA-4 administration (32,
146). However, these refractory tumors could be made more
responsive by administering granulocyte-macrophage colony-
stimulating factor (GM-CSF) in combination with the anti-
CTLA-4 (146). These findings suggested that a CTLA-4 block-
ade enhances an already existing endogenous antitumor response
resulting in tumor regression. But when the tumor is poorly
immunogenic and does not induce a robust enough immune
response the anti-immune checkpoint is not as efficacious. Sim-
ilar results have been found in the clinic where analysis of
pre-treatment tumors indicated that patients with high baseline
expression levels of immune-related genes were more likely to
respond favorably to ipilimumab (147). Just as the GM-CSF is
used to help boost the initial innate immune response, oncolytic
viruses could have a similar effect as it is clear that the oncolytic
viral infection has pro-inflammatory properties, eliciting both an
innate and adaptive immune response.

ENHANCED SAFETY AND EFFICACY BY EXPRESSING
IMMUNE-CHECKPOINT BLOCKERS FROM THE ONCOLYTIC VIRUS
The oncolytic virus and the immune-checkpoint blocker could
be administered as two separate therapeutics but one of the most
appealing aspects of the oncolytic viral approach is that it is local-
ized to the tumor. This localization confers several advantages
for both safety and potency. Clinical and preclinical data strongly
suggest that a blockade of immune checkpoints is a very potent
antitumor therapy. However, there are, in some cases, unwanted
side effects. Given the importance of the immune checkpoints in
maintaining immune homeostasis there is concern that a blockade
of these receptors and/or ligands could lead to a break in immune
self-tolerance resulting in autoimmune/autoinflammatory side
effects (148). Blocking CTLA-4 as a therapy was initially ques-
tioned given its crucial role in the regulation of T-cell ampli-
fication. The phenotype of Ctla4-knockout mice also hinted at
the possibility of a high number of unwanted immune-related
effects. In the pivotal phase III trial of ipilimumab, Grade 3 or
Grade 4 immune-related adverse events (including rash, colitis,
hepatitis, and endocrinopathies) occurred in 10–15% of patients
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treated with the anti-CTLA-4 antibody as compared to 3% of those
treated with gp100 alone. During this trial, there were 14 deaths
related to ipilimumab (2.1%), 7 of which were due to immune-
related adverse events (17). Delivering the immune-checkpoint
blocker (Ab,Ab derivative or modified ligand or receptor) from the
oncolytic virus would localize the treatment and mitigate the risks
inherent in systemic delivery. In preclinical studies of a replica-
tion competent adenovirus armed with the coding region of a full
length CTLA-4 antibody a 43-fold higher antibody concentration
in the tumor as compared to the plasma was noted (144). More-
over, plasma levels in treated mice remained below the reported
human safety threshold (144).

It is also possible to make expression of these immune-
checkpoint blockers contingent upon a productive viral infection
(i.e., selective replication that is restricted to the tumor cell) fur-
ther increasing the safety of the therapeutic. This can be done
by utilizing endogenous late viral promoters that are dependent
upon the uptake and replication within the target tumor cell to
express exogenous genes and has been described for human ade-
novirus (12, 13, 149). In the normal cell, this expression would be
blocked as replication would not be achieved consequently con-
fining expression to target cancer cells. Potency, like safety also
benefits from this localized delivery, concentrating the therapeutic
to the tumor and its microenvironment. Accumulation of virally
delivered transgenes (including reporter genes, prodrug convert-
ing enzyme, anti-angiogenic factors, immunostimulatory factors)
at the site of the infected tumor has been shown in numerous stud-
ies (97, 115, 132, 150–153). For example, PET imaging experiments
have dramatically demonstrated the tumor localized expression of
thymide kinase following infection with an oncolytic virus armed
with the enzyme (154, 155). This accumulation was translated into
efficacy upon administration of the prodrug Ganciclovir (154).
Additionally, the self-perpetuating nature of an oncolytic infection
results in sustained transgene expression (156) that will continue
until tumor regression is complete and the virus is eliminated from
the tumor site by the immune system (157). Therefore the amount
of material produced would be directly related, in theory, to the
tumor load, personalizing the respective dose to the individual
and their tumor burden. It is also appealing to consider that this
may eliminate peaks and valleys associated with the intravenous
administration of the therapeutic as the virus expressed mole-
cule would be generated on a more constant basis that might also
benefit the patient.

ENABLEMENT OF ALTERNATIVE THERAPEUTICS
Although viruses can be used to deliver an intact IgG, their focused
delivery to the tumor site and their self-perpetuating nature allow
for the use of alternative antibody formats such as diabodies,
Fabs, and scFvs (144, 158). This could have a profound impact
on any mAb-based antitumor therapeutic particulary immune-
checkpoint blockers. From a safety standpoint, the use of these
alternative Ab formats could be beneficial because IgGs, due to
their size (150 kDa), have prolonged serum half-lives (>10 days)
and are therefore more likely to have associated toxicities. If these
alternative formats were to escape the tumor site their faster clear-
ance reduces the risk for off-target events. For immune-checkpoint
blockers, this could help to decrease the immune-related adverse

events that have been associated with this therapeutic approach
(148, 159). Additionally, smaller formats would potentially pen-
etrate the tumor to a greater extent than a full length antibody.
Studies have shown that an intact IgG molecule takes 54 h to
move 1 mm into a solid tumor, whereas a Fab fragment travels
the same distance in only 16 h (160). This enhanced penetration
could increase overall efficacy. The diabodies in particular have
been shown to provide rapid tissue penetration, high target reten-
tion, and rapid blood clearance presumably as a result of their
multi-valent nature and intermediate size (55 kDa) (161). The use
of alternative antibody formats also opens up the possibility of
delivering multiple therapies from one oncolytic virus. This may
have broad implications for the blockade of immune-checkpoint
approach as studies are beginning to show that targeting multiple
checkpoints may be more efficacious (67–71, 74). Without local-
ized delivery, the use of these alternative formats would likely not
be feasible as they would clear too rapidly (on the order of a few
hours or minutes dependent upon the format) (162). This may
necessitate the need for higher input doses or multiple injections
of the Ab, which could potentially be cost prohibitive. Having
localized delivery via the virus would avoid the need for full length
Abs and make the smaller, faster-clearing formats viable therapies
that are still capable of efficacious outcomes.

ECONOMICALLY ADVANTAGEOUS
Expression of immune-checkpoint blockers from an Oncolytic
virus is economically appealing. If one assumes that the initial
promising results seen with combination checkpoint blockers are
maintained in larger phase II and III trials, the delivery of a combi-
nation of blockers from a virus would eliminate the need to com-
mercially manufacture the molecules separately. This approach
utilizes a single entity (the virus) to exploit the natural machinery
of the virus and the tumor cell to continuously produce the thera-
peutic agents so long as the tumor cells continue to exist. Moreover,
it has been demonstrated that multiple exogenous proteins can be
delivered from a single virus (149). Due to their tumor selec-
tive localization, as mentioned previously, they would not need to
express a full length antibody, making this approach potentially
attractive and novel for delivering multiple-checkpoint inhibitors
to the site. In addition, this therapy would have the potential added
benefit of increased immunogenicity and/or direct tumor cell lysis
offered by the oncolytic virus. Thus expressing a single biologi-
cal agent with the ability to deliver multiple-checkpoint inhibitors
that itself has anti-cancer activity is an interesting possibility. How-
ever, it should be kept in mind that the commercial manufacture
of oncolytic viruses is behind that of antibodies and thus may
be only a true economic advantage in the future with additional
optimization.

CONCLUSION
In the fight against cancer, no single magic bullet has emerged.
Despite several improvements in diagnostics and therapies nearly
7 million cancer-related deaths still occur every year worldwide
(163). One reason is that cancer is complex and can evolve to
thrive under harsh conditions and to evade the body’s natural
defenses. Two promising therapeutic strategies have emerged; the
blockade of immune checkpoints and oncolytic viruses and we
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Table 5 |The pros and cons of oncolytic viral, immune-checkpoint inhibition and combination therapy.

Therapeutic approach Pros Cons

Oncolytic virus Selective for cancer cells Selectivity is potentially cancer-type dependent

Self-amplifying therapy Suboptimal potency as a monotherapy

Tumor burden dependent Pro-inflammatory/immunogenic

Pro-inflammatory/immunogenic Manufacturing challenges

Endogenous gene delivery

Immune-checkpoint inhibitor Potential to be non-cancer-type specific Potential for adverse immunological events

Potent/lasting tumor immunity Dependent on immune status of patient

Amendable to current biologics (antibodies,

recombinant ligands, receptors)

Oncolytic virus + immune-checkpoint inhibitor Selective for cancer cells Selectivity is potentially cancer-type dependent

Self-amplifying therapy Manufacturing challenges

Tumor burden dependent

Pro-inflammatory/immunogenic

Endogenous gene delivery

Potent/lasting tumor immunity

believe that an argument can be made that the greatest poten-
tial for both of these therapies lies in the synergies that would
be realized by delivering the immune-checkpoint therapy directly
from the oncolytic virus (Table 5). We look forward to the con-
tinued evolution of these agents and to the exciting years ahead
as we begin to see these agents come forward pre-clinically and
clinically.
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