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Abstract: A facile membrane surface modification process for improving permselectivity and
antimicrobial property was proposed. A polydopamine (PDA) coating was firstly fabricated on
pristine anion exchange membrane (AEM), followed by in situ reduction of Ag without adding any
extra reductant. Finally, 2,5-diaminobenzene sulfonic acid (DSA) was grafted onto PDA layer via
Michael addition reaction. The as-prepared AEM exhibited improved permselectivity (from 0.60 to
1.43) and effective inhibition of bacterial growth. In addition, the result of the long-term (90-h
continuous electrodialysis) test expressed the excellent durability of the modified layer on membrane
surface, because the concentration of Cl− and SO4

2− in diluted chamber fluctuated ~0.024 and
0.030 mol·L−1 with no distinct decline. The method described in this work makes the full use
of multifunctional PDA layer (polymer-like coating, in situ reduction and post-organic reaction),
and a rational design of functional AEM was established for better practical application.
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1. Introduction

Increasing population nowadays accelerates the crisis of fresh water resources [1]. Seawater,
accounting for 97% of the world’s water resources, can provide sustainable clean water after removing
salts and other impurities. Because of its high efficiency and low consumption, membrane separation
technology is increasingly used in seawater desalination. According to the statistics of International
Desalination Association (IDA), more than 60% of the world’s daily output of desalted water is
produced by membrane technology [2–4].

Electrodialysis (ED), one of the membrane separation technologies driven by electric potential
difference on both sides of the membrane [5], is widely used for producing drinking water from
brackish water and purification of effluents [4,6–8]. Anion exchange membrane (AEM), the core part
of electrodialysis system, has the ability to separate anions and cations as the anions in solution would
move directionally under the electric field and transfer to the other side of the membrane with the
Donnan effect [9]. With the further expansion of application, such as the removal of fluorine/nitrogen
from drinking water, brine refining, etc., ED faces a great challenge to treat the complex raw water
including the monovalent anions and multivalent anions. The enrichment of multivalent anions in
concentrated compartment usually result in the formation of CaSO4 precipitation, which decreases
the performance of the ED process [10,11]. It is also difficult to remove harmful fluorine and nitrogen
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anions from drinking water while retaining other divalent anions. AEMs that are capable separating
univalent/multivalent anions are in urgent need.

Generally, AEMs with monovalent selectivity are based on sieving and electrostatic repulsion
mechanisms [12]. The monovalent selectivity is also influenced by membrane surface morphology
and membrane surface hydrophilic–hydrophobic property [13]. Depositing a polyelectrolyte on an
AEM with a negative or positive charge is now one of the most promising methods to improve the
membrane separation performance [14,15]. Wang et al. [10] and coworkers grafted carboxyl groups
onto the membrane surface and then immobilized it with PEI layers. The increase of surface negative
charge density and the hydrophobic nature of membrane surface impeded the permeability of SO4

2−.
The permselectivity of the modified membrane increased from 0.91 to 2.86. Zhao et al. [16] and
coworkers modified an AEM by alternate electrodeposition of polyanions and polycations. The result
turned out that the monovalent anion selectivity increased to 2.9 and the separation efficiency increased
to 0.28 with nine bilayers due to the accumulated surface negative charge. Surface modification by
covalent bonding was also used for better durability. Ding [17] and coworkers prepared AEMs
via constructing a covalently cross-linked interface layer by electrodeposition of polyethyleneimine
with enhanced stability. Additionally, the monovalent selectivity of the modified AEM increased to
4.29. However, the above-mentioned modified membranes with monovalent/multivalent selectivities
had difficulty meeting the demands of situations like complex treatment conditions and storage
environments with many pollutants. A multifunctional AEM is now more in-line with actual needs.
Therefore, Mulyati [18] and coworkers reported a modified AEM with an odd number of layer-by-layer
layers (poly(sodium 4-styrene sulfonate) top layer), which, if above 15, had sufficient monovalent
anion selectivity for practical use, and showed high antifouling potential.

Common AEMs with positive charged ion exchange groups inside the membrane easily attract
bacteria when treating raw water with microorganisms. And bacteria adhesion is more likely to occur
in nonsterile or humid conditions. Therefore, antibacterial activity, as one of the functions of AEM,
is more favorable to its practical application. Nowadays, a large number of studies has been done on
the antibacterial properties of pressure-driven membranes such as ultrafiltration and nanofiltration [19].
Surface modification of the membrane has a great effect on enhancing the antibacterial property by
limiting the adhesion of microorganisms or by killing the bacterial. Xu [20] and coworkers prepared
ultrafiltration membranes by blending polysulfone with Ag/Cu2O hybrid nanowires; the prepared
membrane exhibited enhanced antibacterial performance. The inhibition zone of the membrane
increased from 7.9 mm to 28.1 mm with the doping of Ag/Cu2O hybrid nanowires. Xie [21] and
coworkers fabricated antifouling (organic) and antibacterial membranes by codeposition of dopamine
and zwitterionic polymers, followed by incorporating bactericidal silver nanoparticles. However,
there are few reports on the antibacterial properties of anion exchange membranes and the studies
are insufficient.

Inspired by the universal adhesion of mussel protein, Messersmith et al. [22] found that dopamine
can be oxidized in an alkaline aqueous solution and forms a polymer-like coating on a variety of
materials with great adhesive strength. Many studies applied the deposition of dopamine on membrane
surface for further functionalization because of the abundant active functional groups.

In this study, a novel AEM was fabricated with antibacterial property and monovalent selectivity
simultaneously. Dopamine deposition was used as mediated active layer for ulterior multifunctional
modification. The antibacterial property was realized via the reduction of Ag nanoparticles [23–25].
By utilizing the electrons released by the oxidation of catechol to catecholquinone, the Ag nanoparticles
(NPs) were in situ synthesized on the membrane surface without adding any external reducing
agents [21,26,27]. 2,5-Diaminobenzenesulfonic acid is a micromolecule with abundant amino, the high
reactivity of amino can easily be used in surface modification. The selective functional layer was
obtained via the Michael addition reaction and polymerization between the residual active site
and amino group, which was induced by ultraviolet cross-linking. Electrodialysis was used to
investigate the membranes performance in terms of the selectivity between Cl− and SO4

2− at a
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constant current. It turned out that improved rejection of SO4
2− can be obtained by the introduction of

sulfonyl groups. Meanwhile, the Ag nanoparticles on membrane surface significantly enhanced the
antibacterial property.

2. Experimental

2.1. Materials

Dopamine hydrochloride and tris (hydroxymethyl) aminomethane (Aladdin industrial
Corporation, Shanghai, China) were used as received. Silver nitrate was purchased from Shanghai SSS
Reagent Co., Ltd. 2,5-Diaminobenzenesulfonic acid was purchased from Aladdin Reagent Co. Ltd.,
Shanghai, China. All the other reagents and solvents were brought from commercial sources and used
as received without further purification. Distilled water was used throughout.

Gram negative bacteria (coliform bacteria) is a model biofouling bacterium commonly used to
investigate the anti-biofouling property. Luria-Bertani (LB), phosphate-buffered saline (PBS), and agar
were purchased from Sinopharm Chemical Reagent Co., Ltd, Shanghai, China.

The membranes used were commercial anion exchange membrane (AEM Type-I) and commercial
cation exchange membrane (CEM Type-II) purchased from Fujifilm Corp. Japan; the parameters are
shown in Table 1. The area resistance was measured with 0.5 M NaCl solution.

Table 1. Characteristics of the anion and cation exchange membranes (commercial data).

Membrane Type Thickness
(µm)

Area Resistance
(Ω·cm2)

pH
Stability Functional Group

Homogeneous (AEM-Type I) 125 1.3 2–10 Quaternary amino group
Homogeneous (CEM-Type II) 135 2.7 4–12 Sulfonic group

2.2. Membrane Modification

2.2.1. Synthesis of Silver Nanoparticles Chelated Dopamine Coating onto Membrane Surface

The commercial original AEM was alternately immersed in the NaOH solution (0.2 M) and
HCl solution (0.2 M) for 30 min to remove the impurities. Dopamine solution with a concentration
of 2 mg/1 mL was prepared by dissolving dopamine in tris (hydroxymethyl) aminomethane-HCl
(Tris-HCl) buffer solutions (pH = 8.5). Subsequently, the prepared solution was added into a
custom-designed experimental setup assembled with a certain area of pristine AEM (shown in
Figure 1). The dopamine solution darkens over time and the polymerization of dopamine lasted
4 h. The prepared membranes were rinsed with deionized water several times and the membranes
were termed DA/AEM.

Figure 1. A custom-designed experimental setup for modification of anion exchange membranes (AEMs).
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Then, the above prepared membranes (DA/AEM) were immersed single-sided with AgNO3

(0.02M) solution for 12 h. In this experiment, silver ions were supposed to be reduced into metallic
silver and grown into silver nanoparticles without adding any external reducing agents.

The membranes incorporated with Ag were then rinsed with deionized water and were named
DA/Ag/AEM.

2.2.2. Grafting of Sulfonic Functional Groups on Prepared Membranes

The AEMs with PDA deposition were supposed to be further surface-modified and functionalized
via secondary treatments, because of their robust reactivity. To endow the membranes with permselectivity,
2,5-diaminobenzene sulfonic acid (DSA), which is rich in amino functional groups, was used as a
reactive carrier containing sulfonic acid, and can react with polydopamine by Michael addition [28].

Herein, the prepared DA/Ag/AEM (DA/AEM) was loaded in a lab designed setup (seen
in Figure 2) and immersed with 2.46 mg/mL DSA/Tris-HCl buffer solution. The device with
membrane immersed was exposed to Ultraviolet (UV) light (260 nm, 7.5 mW·cm−2, HgXe lamp)
in UV cross-linkers for 12 h, helping induce the grafting reaction between PDA and DSA. The prepared
membranes were then rinsed with deionized water several times, and the membranes were named
DA/Ag/DSA/AEM (DA/DSA/Ag/AEM).

Figure 2. A lab designed setup for membrane modification.

2.3. FTIR Characterization and X-ray Photoelectron Spectroscopy (XPS)

The chemical composition and structure of silver-loaded and -unloaded membranes were
determined by XPS (KratosAXIS Ultra DLD, Kyoto, Japan) and FTIR spectra (ATR-FTIR, Nicolet6700,
Thermofisher, New York, NY, USA). The prepared membranes were scanned from 400 to 4000 cm−1 by
Attenuated Total Reflectance.

Attenuated Total Reflec Fourier Transform Infrared Spectra (ATR-FTIR) and X-ray photoelectron
spectroscopy (XPS) were utilized to detect the elemental composition of different type of membranes.
Membrane samples were dried under vacuum at 25 ◦C before tests.

2.4. Electrochemical Characterization of Modified AEMs

2.4.1. Membrane Surface Resistance and Ion Exchange Capability

In order to measure the surface resistance of the membranes, the pristine and modified membranes
were immersed in a 0.5 M NaCl solution or a 0.5 M Na2SO4 solution to reach the equilibrium
of ion-exchange adsorption prior to measurement. Membrane surface resistance measurements
were carried out in a home designed setup (seen in Figure 3) with the solution of 0.5 M NaCl or
0.5 M Na2SO4 solution at ambient temperature, the effective membrane surface area was 7.065 cm2.
Ag/AgCl electrodes were utilized to determine the potential difference between the two sides of
membranes under the condition of a constant current. In order to reduce the concentration polarization
and diffusion effect of the solution in the feed chamber, the solutions in the two chambers are
interlinked and the continuous agitation is replaced by a pump during resistance measurement
process. The membrane surface resistance were calculated according to the following equation.

Rn =
U − U0

I
× S (1)
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where Rn represents the surface resistance of membranes expressed in Ω·cm2, U represents the voltage
value of the membrane and U0 represents the voltage of blank expressed in V, and I represents the
constant current through the membrane and insure the current at 0.04 A.

Figure 3. Schematic drawing of a four-compartment device for membrane surface area resistance
measurement.

After being dried in vacuum at 50 ◦C overnight, the AEM samples were then weighed and
immersed in 1 mol/L NaCl solution for 24 h to transform the exchangeable anion group in the
membrane into Cl− anions. Afterward, the samples were rinsed with deionized water completely,
and the leacheate was tested with a 0.1 mol/L AgNO3 solution to make sure there was no AgCl
precipitation observed. Next, the samples were immersed in 50 mL 0.5 mol/L Na2SO4 solution for
24 h to exchange all the Cl− anions in membrane into solution and the resultant immersion solution
was finally titrated by 0.01 mol/L AgNO3 solution. The above operation was repeat for 3 times to
obtain the average data and the titration process was carried out via Automatic Potentiometric Titrator
(METTLER TOLEDO T50, Zurich, Switzerland). The IEC was calculated by the formula

IEC =
nCl−

md
(2)

where nCl− represents the amount of substance of chloride ions expressed in mmol and md represents
the weight of dry membrane expressed in g.

2.4.2. ζ-Potential

The electrical properties on the surface of different types of membranes were investigated by a
Zeta-potential electrokinetic analyzer (SurPASS, Anton Paar, Glaz, Austria) with 1 mM KCl as the
electrolyte solution. The pH dependence of surface zeta potential was investigated via adjusting the
pH by using NaOH and HCl solutions.

2.5. Monovalent Anions Selectivity Measurement

The selectivity between divalent and monovalent anions of membrane was measured in a four-cell
ED apparatus (shown in Figure 4). The volume of each compartment is 100 mL and the effective
area of the membrane is ~19.625 cm2. The modified membrane was clamped in the middle of the
four compartments, and the side of membrane’s active layer was directed towards the cathode.
The compartments near the electrodes were divided by two commercial cation exchange membranes
for inhibiting the leakage of anions in electrode solution to the dilute compartment. The 0.05 M Na2SO4

and 0.05 M NaCl mixed solution was used as feed solution in the middle of the two compartments, and
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a 0.2 M Na2SO4 solution was used as electrode solution. The electrodialysis experiment was carried
out at the current density of 5.1 mA·cm−2 for 2 h. The concentration of Cl− and SO4

2− in the dilute
compartment were measured by an anion chromatography (Thermo Fisher ICS-1100, Thermofisher,
New York, NY, USA) at room temperature every 30 min. The permselectivity of membranes between
Cl− and SO4

2− was calculated by the following equation.

PCl−

SO2−
4

=
tCl−/tSO2−

4

cCl−/cSO2−
4

=
JCl− × cSO2−

4

JSO2−
4

× cCl−
× 100% (3)

where ti represents the transport number of the ions in the membrane, Ji represents the flux of the
target anion through the membrane expressed in mol·m−2·s−1, and c represents the concentration of
anions in the dilute compartment expressed in M. The flux of ions was obtained from the change in
concentration of the ions on the dilute side:

Ji =
V × dci

dt
A

(4)

where V is the volume of the electrolyte solution in the dilute compartment, which was 100 mL, and A
is the active area of the membranes, which was 19.625 cm2.

Figure 4. Schematic drawing of a four-compartment device for the monovalent anion selectivity
measurement.

2.6. Antibacterial Test of Membranes

2.6.1. Antibacterial Activity Test

The antibacterial activity of the membranes was tested toward the model bacterial: Gram-negative
Escherichia coli (abbreviated as E. coli). The inhibition zone method was utilized to determine the
antibacterial activity, and membranes were sterilized before the test. Then, membranes were placed
on the top of Luria Bertani (LB) agar plates (containing 10 g/L peptone, 5 g/L yeast extract, 10 g/L
sodium chloride, and 16 g/L agar at a pH of 7.0) uniformly cultured with Escherichia coli bacteria at the
concentration of 106 cfu·mL−1 and incubated at 37 ◦C overnight. The diameters of inhibition zones in
the sample disks were measured and recorded using a digital camera.

2.6.2. Bacterial Suspension Test

The bacterial suspension test was carried out to describe the antibacterial activity of the modified
membranes. All of the membrane samples were disinfected by ultraviolet radiation for 30 min before
test. Then, membranes were immersed in 10 mL of E. coli bacterial suspension (106 cfu·mL−1) and
incubated at 37 ◦C with a stirring speed of 250 rpm to grow the bacterial overnight. To test the
antibacterial efficiency, the prepared membranes were taken out and washed with ultrapure water
followed by dealing with 3% (v/v) glutaraldehyde for 5 h at 4 ◦C [29]. At last, the surface morphologies
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of the pristine and modified membranes were observed by scanning electron microscopy (SEM)
(SU8010 Hitachi, Tokyo, Japan) with an acceleration voltage of 5 kV. All samples were fixed on a SEM
sample holder with double-sided conductive adhesive and then were sputter-coated with 10 nm of
gold before imaging.

3. Result and Discussion

3.1. Surface Characterization of the Membrane Surfaces

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was utilized
to identify the chemical compositions of membrane surfaces (see in Figure 5). After the
ultraviolet-induced Michael addition, DSA was easily grafted onto the membrane surface with
a polydopamine layer. The characteristic peak, which occurred at ~1022 cm−1, corresponds to
the symmetric stretching vibrations of sulfonyl (–SO3–) groups, indicating that the successful
functionalization of the dopamine onto membrane surface with DSA. In addition, the appearance of
the absorbance band at 1182 cm−1 can be assigned to the symmetric stretching vibrations of the –S–O
band [16], which further proved the grafting of sulfonyl groups.

Figure 5. Fourier transform infrared (FTIR) spectra of the pristine AEM and the modified AEMs.

The surface chemical composition of pristine membrane and the chemical state of silver on
membrane surface of modified membrane were further investigated by XPS and XRD.

The XPS spectrum of the in situ reduced silver-loaded membrane is shown in Figure 6a,b. It can
be seen that Ag is present at the DA/Ag modified membrane, and that Ag and S are present
at DA/Ag/DSA modified membrane. The S is attributed to the Michael addition reaction of
2,5-Diaminobenzene sulfonic acid. Characteristic peaks of Ag are attributed to the Ag nanoparticles,
and the binding energies of the doublets are found to be 367.95 eV (Ag3d5/2) and 373.85 eV (Ag3d3/2)
in the XPS narrow spectrum, representing the characteristics of metallic Ag [30,31]. Figure 6c shows
the XRD patterns of the pristine membrane and Ag nanoparticle immobilized membrane. It can be
seen that the strong characteristic peak located at 2θ of 38.2. Weak characteristic peaks located at 2θ
of 44.3◦, 64.6◦, and 77.7 are assigned to the (111), (200), (220), (311) planes of the cubic structure of
metallic Ag, respectively [31]. These characteristic peaks indicate that the silver particles on membrane
surface are in the metallic state.
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Figure 6. XPS spectra of (a) DA/Ag/AEM and (b) DA/Ag/DSA/AEM. (c) XRD spectra of pristine
AEM and modified AEM.

The in situ reduction mechanism of silver ions were shown in step (2) in graphic abstract, the silver
ions in solution were firstly chelated by the hydroxyl groups on the polydopamine, and then the silver
ions were in situ reduced to silver atoms via accepting the electrons released by the simultaneously
oxidation of catechol to catecholquione structures. Due to the equilibrium state of catechol and
catecholquione groups [32], the reduction of silver ions was proceeded continuously without adding
extra reducing agent.

3.2. Membrane Surface Resistance and Ion Exchange Capability

Surface modification was an effective way to exchange physicochemical property of membrane
surface, which was convenient to improve some specific performance. However, surface modification
increases the surface membrane resistance, resulting in a decrease of the current efficiency [33].
The surface resistance of modified membrane and pristine membrane are listed in Table 2. Among
them, the surface resistance of pristine membrane was 1.03 ± 0.019 Ω·cm2, which was 0.24 Ω·cm2

higher after DA modification. It could be explained that the deposited DA layer increased the thickness
of the integral membrane and endowed the membrane surface with reinforced electronegativity,
as shown in Figure 7. The surface resistance of DA/Ag membrane was 1.28 ± 0.01 Ω·cm2, which was
almost the same with DA membrane (1.27 ± 0.02 Ω·cm2). The surface resistance of DA/Ag/DSA
membrane was 1.49 ± 0.02 Ω·cm2, which was lower than DA/DSA membrane (1.67 ± 0.02 Ω·cm2). The
reduced silver atoms could be bonded on the N-site and O-site in the polydopamine layer, which means
there were less reactive sites left for DSA. Compared with the DA/DSA membrane, the less-grafted
DSA around the Ag nanoparticles on the DA/Ag/DSA membrane surface resulted in the more leaked
chloride ions passing through the selective layer. In other words, chloride ions passed through the
membrane more easily and expressed low surface resistance. In addition, the surface resistance of
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membranes in 0.5 M Na2SO4 solution expressed a similar trend but higher value. This phenomenon
can be explained by the fact that sulfate ions were subjected with greater resistance than chloride ions
through the membrane.

Table 2. Surface resistance and the ion exchange capability of both the pristine and modified AEM.

Type Area Resistance (Ω·cm2)
IEC (mmol·g−1)

in 0.5 M NaCl Solution in 0.5 M Na2SO4 Solution

Pristine AEM 1.03 ± 0.02 3.09 ± 0.03 1.71 ± 0.02
DA/AEM 1.27 ± 0.02 3.79 ± 0.06 1.67 ± 0.02

DA/DSA/AEM 1.67 ± 0.03 5.15 ± 0.05 1.55 ± 0.01
DA/Ag/AEM 1.28 ± 0.01 3.92 ± 0.04 1.66 ± 0.01

DA/Ag/DSA/AEM 1.49 ± 0.02 4.85 ± 0.05 1.54 ± 0.02

Figure 7. The ζ-potentials of (a) the pristine AEM, (b) the DA/Ag/DSA AEM, and (c) the DA/DSA
AEM at various pH values.

The ion exchange capability (IEC) of the membrane declined after surface modification. As shown
in Table 2, the IEC of pristine AEM was 1.71 mmol·g−1, and the IEC of the modified AEM
slightly decreased to 1.67 mmol·g−1 (DA/AEM), 1.55 mmol·g−1 (DA /DSA/AEM), 1.66 mmol·g−1

(DA/Ag/AEM), and 1.54 mmol·g−1 (DA/Ag/DSA/AEM). This is due to the electrostatic neutralization
between the sulfonyl groups and quaternary ammonium groups. With the partly blocked transfer sites,
the decreased ion exchange sites of the modified AEM resulted in the decline of IEC.

3.3. ζ-Potential of Membrane Surface

The charge property surrounding the membrane surface could be changed after surface
modification, which influences the performance of as-prepared AEM during the ED process.
For instance, anions can effectively enter the membrane via the Donnan effect [11] and transfer to the
other side of membrane under direct current field. AEM modified with electronegative materials would
partly inhibit multivalent anions due to the electrostatic repulsion. The ζ-potential was performed
to describe the electrical surface charges of the membrane surface via the inversion of membrane
surface charge with mutative surroundings [16]. Figure 7 shows the ζ-potentials at various pH
values of the (a) pristine AEM, (b) DA/Ag/DSA AEM, and (c) DA/DSA AEM. With increasing pH
value, both DA/DSA and DA/Ag/DSA AEM show a more negative charge. The introduction of
negative sulfonyl groups and the deprotonation of phenolic hydroxyl on polydopamine, the modified
layers exhibit more characteristics of anionic polyelectrolytes. It can be inferred that DA/Ag/DSA
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and DA/DSA AEM have the potential to express higher permselectivity than the pristine AEM.
In addition, the DA/DSA membrane expressed higher zeta potential than DA/Ag/DSA at low pH.
This phenomenon can be explained by the loading of Ag NPs on the membrane surface, which means
that the surface of polydopamine was partly covered with Ag NPs. The less-grafted DSA and partly
covered polydopamine supplied fewer amino groups for protonation at low pH, which resulted in
lower potential of DA/Ag/DSA than DA/Ag at low pH.

3.4. Monovalent Anion Selectivity

Permselectivity is a reference indicating the transport of monovalent and multivalent anions
through the membrane. Cl− and SO4

2− were chosen as target anions in the diluted compartment and
the permselectivity was calculated and shown in Figure 8.

Figure 8. Permselectivity of pristine AEM, DA AEM, DA/Ag AEM, DA/DSA AEM, and DA/Ag/DSA
AEMs in the ED process under the system of Cl−/SO4

2−.

The temporal evolution of transport number ratios changed in the diluted compartment was
indicated by permselectivity. All of the membranes exhibited improved permselectivity after
modification. As shown in Figure 8, the permselectivity of pristine AEM fluctuated approximately
0.6 during the 120 min ED process. DA AEM and DA/Ag AEM exhibited a similar performance of
permselectivity under the Cl−/SO4

2− system. Compared with pristine AEM, the permselectivity of
DA AEM and DA/Ag AEM increased to 0.98 and 1.0, respectively. The deprotonation of polydopamine
partly inhibits the migration of anions under electrostatic repulsion; meanwhile, the deposition of
a macromolecule could impede the anions with bigger hydrated ionic radius by forming a denser
surface layer. The permselectivity of DA/DSA AEM and DA/Ag/DSA AEM were further enhanced
by the introduction of sulfonyl groups, which increased to 1.42 and 1.43, respectively. The charged
property of membrane surface were shown in Figure 7. The in situ reduction of silver on the membrane
surface had a negligible effect on the permselectivity.

To evaluate the duration performance of modified membranes, a continuous electrodialysis was
operated with a total time of 90 h. The long term ED test lasted for 90 h with the same DA/Ag/DSA
AEM under a current density of 5.1 mA·cm−2. During the 90-hour electrodialysis, the tested membrane
was never replaced. The ED device was rinsed and filled with new feed solution (0.05 M Cl− and
SO4

2−) every two hours [15,34], and the samples were taken and analyzed for anion content at the
end of every two hours. As shown in Figure 9, the changes of concentration (Cl− and SO4

2− anions)
during 90 h ED process have expressed acceptable limits: both Cl− and SO4

2− anions were centered at
0.024 and 0.030 mol·L−1 , respectively. The slight change of concentration indicates the strong adherent
strength of the PDA layer which provides a good modifying medium and consolidates the subsequent
modification. Thus, the prepared AEMs possess good stability for the ED process.
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Figure 9. The stability test (Cl− and SO4
2− system) of the DA/Ag/DSA AEM under the ED process.

3.5. Antibacterial Test

Reduced Ag NPs on membrane surface was supposed to endow modified AEM with antibacterial
property via multi-interactions with the bacteria, including proteins, DNA, and the bacterial cell
wall [23,35].

The bactericidal activity of modified AEM was firstly tested via a bacterial inhibition zone toward
Gram-negative E. coli. As can be observed in Figure 10, no obvious inhibition zone was observed
around (a) pristine AEM, (b) DA AEM, and (c) DA/DSA AEM due to the lack of limitation of bacteria
growth. The result indicates the non-antibacterial property to E. coli for these membranes. After the in
situ reduction of Ag, the modified membrane showed a distinct inhibition effect on E. coli. The result
was shown in Figure 10, the diameter of inhibition zone toward E. coli of (d) DA/Ag AEM reached
10.6 mm, while the diameter of inhibition zone of (e) DA/Ag/DSA AEM reached 11.3 mm. The result
indicates that the presence of the Ag nanoparticles on membrane surface significantly enhance the
antimicrobial property and exhibit excellent inhibition capacity of membrane.

Figure 10. Inhibition zone test towards E. coli of (a) pristine AEM, (b) DA AEM, (c) DA/DSA AEM,
(d) DA/Ag AEM, and (e) DA/Ag/DSA AEM.
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The bacteria growth test on the membrane surface was carried out to evaluate bacterial growth
activity under an aqueous solution system in the presence of a modified membrane. The fresh bacterial
suspension with a concentration of 106 cfu·mL−1 replaced the bacterial medium and cocultured with
the modified AEM for 12 h. The morphology of (a) pristine AEM, (b) DA AEM, (c) DA/DSA AEM,
(d) DA/Ag AEM, and (e) DA/Ag/DSA AEM without E. coli was shown in Figure 11. No bacteria
was observed on pristine AEM and modified AEM, while there were a few polymer-like structures on
(b) DA AEM and (c) DA/DSA AEM, they may be ascribed to the polymerization of dopamine and
the grafting of DSA. Compared with Figure 6, Ag nanoparticles were confirmed on the surface of (d)
DA/Ag AEM and (e) DA/Ag/DSA AEM. The morphology of bacteria on the surface of the tested
membrane cocultured with bacterial suspension is shown in Figure 12. A similar conclusion could
also be drawn that lots of bacteria on the surface of (a) pristine AEM, (b) DA AEM, and (c) DA/DSA
AEM were observed clearly, while almost no bacteria exist on the surface of (d) DA/Ag AEM and (e)
DA/Ag/DSA AEM. This phenomenon indicates that the Ag nanoparticles on the surface of (d) DA/Ag
AEM and (e) DA/Ag/DSA AEM endowed these modified AEMs with excellent antimicrobial property.

Figure 11. Morphology of (a) pristine AEM, (b) DA AEM, (c) DA/DSA AEM, (d) DA/Ag AEM, and
(e) DA/Ag/DSA AEM without E. coli.

Figure 12. Morphology of E. coli on (a) pristine AEM, (b) DA AEM, (c) DA/DSA AEM, (d) DA/Ag
AEM, and (e) DA/Ag/DSA AEM.
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4. Conclusions

In this study, dual-functional (monovalent selectivity and antibacterial property) membrane
surfaces were successfully fabricated using a multifunctional PDA layer. The improved selectivity
reached 1.43 of DA/Ag/DSA AEM was prepared using the Michael addition reaction between
the catechol groups of PDA and the amino groups of 2,5-Diaminobenzene sulfonic acid, and the
Ag nanoparticles were in situ reduced on a membrane surface for enhanced microbial property.
Meanwhile, the modified layer on membrane surface expressed good durability during the 90-h
continuous electrodialysis process and the permselectivity showed no obvious change. The easy
synthesis procedure involved during the proposed modification process and the improved performance
indicates the potential of modified membranes in the separation of monovalent and multivalent anions,
and the better antimicrobial property expands the applied range for broader application conditions.
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