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Abstract: Conspicuous expansion and intensification of impervious surfaces accompanied by rapid
urbanization are widely recognized to have exerted evident impacts on the urban thermal environment.
Investigating the spatially and temporally varying relationships between Land Surface Temperature
(LST) and impervious surfaces (IS) at multiple scales is of great significance for steering IS expansion
and intensification. This study proposes an analytical framework to investigate the spatiotemporal
variations of LST and its responses to IS in Wuhan, China at both city scale and sub-region scale.
The summer LST patterns in 2002–2017 are extracted by Multi-Task Gaussian Process (MTGP) model
from raw 8-day synthesized MODerate-resolution Imaging Spectroradiometer (MODIS) LST data.
At the city scale, the weighted center of LST (LSTWC) and impervious surface fraction (ISFWC),
multi-temporal trajectories and coupling indicators are utilized to comprehensively examine the
spatial and temporal dynamics of LST and IS within Wuhan. At the sub-region scale, urban
heat island ratio index (URI), impervious surfaces contribution index (ISCI) and sprawl rate are
introduced for further quantifying the relationships of LST and IS. The results reveal that IS and hot
thermal landscapes expanded by 407.43 km2 and 255.82 km2 in Wuhan in 2002–2017 at city scale.
The trajectories of LSTWCs and ISFWCs are visually coherent and both heading to southeast direction
in general. At the sub-region scale, the specific cardinal directions with the highest ISCI variations
are examined to be the exact directions of ISFWC trajectories in 2002–2017. The results reveal that
the spatiotemporal variations of LST and IS are highly correlated at both city and sub-region scales
within Wuhan, thus testifying the significance of steering IS expansion and renewal for controlling
urban thermal environment deterioration.
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1. Introduction

Unparalleled urbanization in China has led to the more obvious differences of temperature in
urban relative to non-urban surroundings, a phenomenon known as the urban heat island (UHI)
effect [1–3]. The increasing expansion and intensification of impervious landscapes are considered to
be non-negligible external forces that intensify the UHI [2,4]. Anabatic urban warming poses threats
to environmental sustainability and public health [5–8]. In this study, UHI is identified as surface
urban heat island (SUHIs1) for the emphasis on land surface temperature (LST) [5,6]. The studies of
SUHI and its environmental (public health [9], local climate change [2,10], plant phenology [11] and air
pollution [12]) and socioeconomic impacts are well-documented [6,9]. Thermal remote sensing has
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been a powerful tool used in the exploration of LST and SUHI for its broad spatial coverage, frequent
revisit cycle and multiple data source [6,13,14]. Furthermore, thermal remotely sensed imageries can
vigorously support the SUHI and LST studies for its advantages over in-situ observations as avoidance
of non-climatic artifacts (e.g., asynchronous observation time, lack of spatial resolution, non-standing
siting) [1,13].

Optimizing the expansion and renewal of impervious surfaces (IS) within urban areas, considering
their spatially and temporally varying relationships with LST, is a practical approach to prevent or
alleviate urban thermal environment deterioration. As one of the representations of urbanization, the
expansion and intensification of IS [15,16] are considered to have significantly modified the radiation
fluxes and evapotranspiration within urban areas, thus amplifying SUHI by capturing heat and
lessening evaporative cooling [17,18]. There is a commonly recognized fact that LST hotspots are
mainly located at impervious landscapes and bare surfaces within cities [19]. Noting the fact that LST
and IS are highly correlated, the relationships between LST and IS are well studied in the past several
years [15,19–22]. A positive exponential relationship between IS and LST has been investigated by
Xu et al. [22] in Xiamen (China), a subtropical city. Besides, the contribution of IS towards LST variations
is claimed to be six times greater than the synergetic contribution of water and green spaces [22,23].
The expansion and intensification of IS within urban areas are generally accompanied by the
encroachment of green spaces, thus the deterioration of urban thermal environment and the underlying
environmental risks are further exacerbated [24,25]. Investigation of the relationships between LST
and IS patterns is essential to facilitate urban landscape planning and management. Notably, the
correlation of IS patterns with LST is incompetent to replace the correspondence between LST and
other factors, such as urban landscape diversity and composition [24], urban 3-D expansion [9,26] and
urban redevelopment [27], etc.

The power of numerous previous studies to provide evidence for urban heterogeneous landscape
management is limited because they mainly share two features: (1) the spatial dynamics of LST and
IS relationships are emphasized, while the temporal variations of LST are neglected by normally
adopting just one snapshot to depict LST patterns in a static state, when in fact, numerous studies
have shown that LST patterns are complex and possess significant temporal variability, mainly
characterized as diurnal [28], seasonal [10,29], annual [30,31] and inter-annual variations [10]. Besides,
the associations between LST and surface factors (including IS) have been verified to be seasonally
varying by Liu et al. [29]. The conclusions drawn from a static perspective of LST, a typical geographical
and climatic process, can be misleading [20,32,33]. Thus, more considerations have been made to
generate typical LST patterns for a specific period, such as average monthly LST [14,34], BLEnding
Spatiotemporal Temperatures (BLEST) [35], temporal upscaling [36] and non-parametic models [32,37].
(2) The explorations of the spatiotemporal correlations of LST and IS generally tend to be implemented
at a city scale. Zhao et al. [38] have investigated the urban expansion (exactly, IS expansion) in eight
cardinal directions from 1984 to 2014 in Shanghai, while its impacts on LST variations are discussed
at a city scale. Qiao et al. [39] have depicted the trajectories of center of SUHI and IS in Beijing at a
sub-regional scale using distances and angles, but the coupling relationships of SUHI and IS have
not been quantified at either the city scale or sub-regional scale. Weng et al. [40] have introduced
statistical indicators to quantify the spatiotemporal dynamics of SUHI in eight sub-regions, while the
corresponding analysis of surface factors have not implemented.

Keeping in mind the importance of providing implications for steering urban expansion and
intensification from the standpoint of LST and IS correlations at multiple scales either spatially or
temporally, this study (1) generates typical summertime-scale LST patterns considering temporal
variations of LST using non-parametric Multi-Task Gaussian Process (MTGP) model [32]; (2) quantifies
the relationships between LST and IS by integrating moving trajectories and multiple indicators
(e.g., spatial coupling indicators [41] and impervious surfaces contribution index (ISCI) [42]) at
both the city scale and sub-region scale. The typical summer time LST maps maintain the global
diversity and local variation of LST patterns instead of investigating LST and UHI in a static
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perspective [32,33]. The correlations between IS and LST can provide implications for steering
IS expansion and intensification considering the underlying impacts on urban thermal deterioration.
Such correlations are believed to facilitate the application of environmental research findings in urban
planning and management [24,32,43].

This study proposes an analytical framework to investigate the multi-temporal trajectories of
LST and IS as well as their correlations with a geographical focus on the megacity Wuhan, China.
Twenty-four MODerate-resolution Imaging Spectroradiometer (MODIS) 8-day synthesized LST subsets
from 2002 to 2017 with a 3-year interval are selected. Besides, IS maps with abundant spatial details
extracted from a 40-year dataset [44] are adopted. The MTGP model are utilized to generate typical
LST patterns in summer days [32]. The analyses in this study has been divided into two parts: (1)
at the city scale, characterizing the spatiotemporal variations of LST and IS patterns using weighted
center [16,39], moving trajectories [16,39] and spatial coupling indicators [41]; (2) at the sub-region
scale, quantifying the coupling relationships of LST and IS in eight cardinal directions using ISCI [42],
urban heat island ratio index (URI) [40] and sprawl rate [34,42].

2. Study Area and Datasets

2.1. Wuhan, China

This study investigates the spatiotemporal dynamics of LST and IS as well as their correlations
with a geographical focus on Wuhan, China, a megacity located in the middle and lower reaches of
the Yangtze River. Wuhan is considered as the “furnace” city in China, with a typical subtropical
monsoon climate. In Wuhan, more than a third of the year (specifically, 135 days on average) presents
as summer days [10,29]. An unprecedented rapid urbanization (the built-up area within Wuhan has
increased from 259.27 km2 to 755.09 km2 in 1995–2015) in the past two decades has been witnessed in
Wuhan, resulting in the significant deterioration of the local thermal environment [33,42]. The spatial
extent of the study area is 49 km× 44 km. The upper-left and lower-right coordinates are 30◦47′32′′ N,
114◦12′01′′ E and 30◦20′19′′ N, 114◦38′32′′ E. This study area covers almost all the downtown and
suburban districts and is thus appropriate to represent the land composition and transformation of the
city. The study area has been divided into eight sub-regions in eight cardinal directions (Figure 1).
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2.2. Land Surface Temperature (LST) Products

MODIS/Aqua (MYD11A2) V5 LST/E 8-Day L3 Global 1 km Grid products acquired at 13:30 are used
to represent the typical LST patterns of summer days in Wuhan in the selected years. The MODIS LST
product is a common-used data source in LST and UHI studies [6,45]. The product is generated using
the split-window algorithm with an ideal accuracy claimed to be better than 1K [46,47]. The adopted
8-day synthesized LST product is produced by simple averaging, which avoids abundant noise from
cloud contamination, snow coverage and other factors [33,34]. Since July and August are investigated
to be the hottest months in Wuhan, all 6× 4 MODIS 8-day LST subsets (six years in this study, and
four subsets for July and August in each year) are utilized to extract the typical summertime LST
patterns in this study. Specifically, one raw MYD11A2 subset is selected as the dominant data and three
temporally adjacent subsets with the least null observations are adopted as the auxiliary data in each
year. The selected LST datasets have been adopted in our previous study [33]. The specific dates of the
24 images in this study are shown in Table 1. The multivariate weather information collected online
(https://www.wunderground.com/) of six dominant LST products are listed in Table 2. To ensure the
adopted LST products are all desirable, the stability of weather conditions during 8 days of each LST
product are investigated in this study [32]. Atmospheric stability plays an essential role in pollutants
dispersion [48] and temperature variability [49,50]. Pasquill [51] proposed an easy-to-use method
to evaluate the atmospheric stability, taking into account both mechanical turbulence and buoyancy
turbulence. This method is of great significance for the investigation towards the relationship between
atmospheric dispersion coefficient and categorized stability of boundary layer turbulence [49,51].
The adapted Pasquill-Gifford scale adopted in this study utilizes the in-situ observations of wind speed,
cloud cover and sunshine duration to classify the atmospheric stability with multiple parameters [48,49].
The adapted Pasquill-Gifford scale is introduced to ensure the stability of climatic and hydrological
conditions during the LST acquirement days. The Pasquill-Gifford scale evaluate the stability of
weather conditions in terms of average wind speed and cloud coverage by categorizing the stability
into five classes as D (Neutral), E (Slightly Stable), F (Moderately Stable), and G (Extremely Stable) [32].
The utilization of Pasquill-Gifford scale enables us to filter out undesirable LST products considering
local atmospheric events and images quality [32,49].

Table 1. The dates of LST products of each year in this study.

Year Date of the Dominant LST Product Dates of the Auxiliary Products

2002 July 4th
July 12th

August 21th
August 29th

2005 July 12th
July 20th
July 28th

August 5th

2008 August 21th
July 11th
July 19th
July 27th

2011 August 13th
July 4th

July 20th
August 29th

2014 July 28th
July 20th

August 5th
August 13th

2017 July 12th
July 20th

August 13th
August 21th

https://www.wunderground.com/
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Table 2. Weather information of the selected dominant land surface temperature (LST) products.

Selected Date 8-Day Average Air
Temperature (◦C)

8-Day Average
Relative

Humidity

Average Wind
Force (m/s)

Average Cloud
Cover

Adapted
Pasquill-Gifford
Stability Class

2002/07/04 33.42 68.62 1.19 2.61/8 G
2005/07/12 32.71 65.68 1.64 2.34/8 G
2008/08/20 30.86 81.52 1.94 3.57/8 G
2011/08/13 33.07 67.59 2.56 1.82/8 F
2014/07/28 34.12 74.64 3.89 3.67/8 E
2017/07/12 34.35 67.38 2.30 2.16/8 F

2.3. Impervious Surface (IS) Maps

The IS maps are derived from the open-source datasets (http://data.ess.tsinghua.edu.cn/) provided
by Gong et al. [44]. This dataset is generated at 30-meter resolution from Landsat satellite imageries with
the aid of night-time light (NTL) data on Google Earth Engine (GEE) using the “exclusion/inclusion”
algorithm [52] and temporal consistency check algorithm [53]. Firstly, normalized difference vegetation
index (NDVI) maps, modified normalized water index (MNDWI) maps and short-wave infrared (SWIR)
band are derived from Landsat images using the “exclusion/inclusion” algorithm [52]. The impervious
surface thresholds of each year are determined separately. NTL data is then adopted to facilitate the
determination the spatial constraints of impervious surfaces. Furthermore, the initial classification
results are verified and corrected using temporal consistency check algorithm [53] to avoid unexpected
errors caused by temporal non-stationarity. The overall accuracy of IS extractions is claimed to be
higher than 93% [44]. More detailed information can be checked in the reference [44]. In this study, the
IS maps at 30-meter resolution in 2002, 2005, 2008, 2011, 2014 and 2017 are extracted from the dataset.
Furthermore, the impervious surface fraction (ISF) data has been calculated using 500 m × 500 m
gridded fishnet on the ArcGIS 10.2 software platform (Environmental Systems Research Institute Inc.,
Redlands, CA, USA) for the ISF weighted center identification [16].

2.4. Methodology

The analytical framework proposed in this study can be summarized as a technical flow represented
in Figure 2. It includes four principle steps: (1) generate typical LST patterns with noise removed and
missing observations filled in summer using MTGP (Section 3.1); (2) categorize the thermal landscapes
into five classes as hot, medium-hot, mediate, medium-cold, cold by LST grading (Section 3.2); (3)
investigate the spatiotemporal dynamics of LST and IS at both the city scale and sub-region scale, using
the weighed center of IS (ISFWC in Section 3.3) and LST (LSTWC in Section 3.4) as well as sprawl
rate (Section 3.5) of IS expansion and hot thermal landscape variations; (4) quantify the coupling
relationship between LST and IS using coupling indicators (Section 3.6) at the city scale and impervious
surfaces contribution index (ISCI in Section 3.7) at the sub-region scale.

http://data.ess.tsinghua.edu.cn/


Int. J. Environ. Res. Public Health 2019, 16, 3865 6 of 21
Int. J. Environ. Res. Public Health 2019, 16, x 6 of 22 

 

 

Figure 2. The technical flow of this study. 

2.4.1. Multi-Task Gaussian Process (MTGP) Model for Typical LST Patterns Extraction 

In this study, the non-parametric Multi-Take Gaussian Process (MTGP) model is used to extract 
typical LST patterns in summer using one raw MODIS LST map with the auxiliary information in 
three temporally adjacent LST maps [32,33]. It is generally acknowledged that raw remotely-sensed 
LST products suffers from noises and null pixels resulted by undesirable weather conditions, 
atmospheric interferences or observation failures [54,55]. It can be assumed that the typical LST 
distribution of a specific site is a potential pattern hidden in the raw LST products suffered from 
discrete noises, which needs to be recovered [37,55,56]. The benefits of introducing MTGP into this 
study are three-folds: (1) the missing observations are filled and the poor-quality pixels around cloud 
coverage and noises are smoothed [10,55], (2) the noise-free and continuous LST patterns support 
pattern analysis more effectively [57], and (3) the extracted summertime LST patterns by MTGP can 
capture the typical patterns for sharing information across multiple images, instead of considering 
LST in a static view [32,33,36]. In this study, the produced typical LST patterns are interpolated into 
500-meter resolution, which approximates to the optimal scale towards LST studies at urban scale 
[20,58]. Besides, the interpolated LSTs at finer resolution containing more spatial details are believed 
to support pattern recognition better and can benefit the local LST anomalies characterization [20,33]. 

The observed LST dataset can be defined as 𝐷 = 𝑥 , 𝑡 𝑖 = 1, … , 𝑛, 𝑗 = 1, … 𝑚 , n is the number 
of pixels on one image, and m is the number of images applied in the model. The Gaussian process 
(GP) model generalizes the extraction form to a vector [𝑓 ,..., 𝑓 ]T of infinite length, where the vector 
of any finite set is joint Gaussian. Model 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝐾 𝐾 ) is completely defined by mean 
function 𝑚(𝑥) and covariance function. Specifically, 𝐾  represents the covariance function of inter-
task information between images, and 𝐾  represents the covariance function of inter-task 
information within images. 

The typical LST pattern 𝑓∗ can be predicted as: 𝑓∗ = 𝑚(𝑥∗) + 𝑘 ⊗ 𝑘 (𝑥∗, 𝑥) (𝐾 ⊗ 𝐾 +△ ⨂𝐼) 𝑡 − 𝑚(𝑋) , (1)
where 𝑓∗  is the latent LST value predicted by MTGP, 𝑥∗  represents the test input, ⊗  is the 
Kronecker product of matrices, and △ is a diagonal matrix recording noise 𝜎 . 

2.4.2. LST Grading 

The thermal landscapes in both urban areas and suburban surroundings have been classified 
into five categories as Cold, Medium-cold, Median, Medium-hot and Hot using the mean-standard 
deviation (STD) method (Table 3) [14]. The hot thermal landscape extracted using LST grading has 
been testified to highly correlated to IS coverage [14,19]. Thus, in the following sections, the hot 

Figure 2. The technical flow of this study.

2.4.1. Multi-Task Gaussian Process (MTGP) Model for Typical LST Patterns Extraction

In this study, the non-parametric Multi-Take Gaussian Process (MTGP) model is used to extract
typical LST patterns in summer using one raw MODIS LST map with the auxiliary information in three
temporally adjacent LST maps [32,33]. It is generally acknowledged that raw remotely-sensed LST
products suffers from noises and null pixels resulted by undesirable weather conditions, atmospheric
interferences or observation failures [54,55]. It can be assumed that the typical LST distribution of a
specific site is a potential pattern hidden in the raw LST products suffered from discrete noises, which
needs to be recovered [37,55,56]. The benefits of introducing MTGP into this study are three-folds:
(1) the missing observations are filled and the poor-quality pixels around cloud coverage and noises
are smoothed [10,55], (2) the noise-free and continuous LST patterns support pattern analysis more
effectively [57], and (3) the extracted summertime LST patterns by MTGP can capture the typical patterns
for sharing information across multiple images, instead of considering LST in a static view [32,33,36].
In this study, the produced typical LST patterns are interpolated into 500-meter resolution, which
approximates to the optimal scale towards LST studies at urban scale [20,58]. Besides, the interpolated
LSTs at finer resolution containing more spatial details are believed to support pattern recognition
better and can benefit the local LST anomalies characterization [20,33].

The observed LST dataset can be defined as D =
{(

xi, ti j
)∣∣∣∣i = 1, . . . , n, j = 1, . . .m

}
, n is the number

of pixels on one image, and m is the number of images applied in the model. The Gaussian process (GP)
model generalizes the extraction form to a vector [ f1, . . . , fn]T of infinite length, where the vector of any
finite set is joint Gaussian. Model f (x) ∼ GP

(
m(x), K f Kx

)
is completely defined by mean function m(x)

and covariance function. Specifically, K f represents the covariance function of inter-task information
between images, and Kx represents the covariance function of inter-task information within images.

The typical LST pattern f ∗ can be predicted as:

f ∗ = m(x∗) +
(
k f
⊗ kx(x∗, x)

)T(
K f
⊗Kx + ∆ ⊗ I

)−1
(t−m(X)), (1)

where f ∗ is the latent LST value predicted by MTGP, x∗ represents the test input, ⊗ is the Kronecker
product of matrices, and ∆ is a diagonal matrix recording noise σ2.

2.4.2. LST Grading

The thermal landscapes in both urban areas and suburban surroundings have been classified
into five categories as Cold, Medium-cold, Median, Medium-hot and Hot using the mean-standard
deviation (STD) method (Table 3) [14]. The hot thermal landscape extracted using LST grading has
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been testified to highly correlated to IS coverage [14,19]. Thus, in the following sections, the hot
thermal landscape shall perform as basic role for LST spatiotemporal dynamics investigation (Section
4.2) and LST-IS coupling relationships quantification (Section 4.3).

Table 3. Thermal landscape classification using mean-standard deviation (STD) method.

Thermal Landscape LST Range

Hot T(x, y) ≥ Tmean + STD
Medium-hot Tmean + 0.5× STD ≤ T(x, y) < Tmean + STD

Median Tmean − 0.5× STD ≤ T(x, y) < Tmean + 0.5× STD
Medium-cold Tmean − STD ≤ T(x, y) < Tmean − 0.5× STD

Cold T(x, y) < Tmean − STD

T(x, y) is the specific LST values at the local (x, y), Tmean and STD are mean value and STD of the LST
patterns, respectively.

2.5. Weighted Center of LST and IS

2.5.1. Impervious Surface Fraction Weighted Center (ISFWC)

The impervious surface fraction weighted center (ISFWC) is introduced by Xu et al. [16] to
reveal the urban expansion orientation with impervious surface fraction (ISF) maps. The ISFWC is
calculated as:  x =

∑n
i=1 fixi∑n
i=1 fi

y =
∑n

i=1 fi yi∑n
i=1 fi

, (2)

where x, y are ISFWC coordinates, i represent the i-th pixel, n is the total amount of pixels in an ISF
map, fi is the ISF of i-th pixel. In this study, the ISF maps from 2002 to 2017 are calculated using
500 m× 500 m gridded fishnet on ArcGIS 10.2 platform based on corresponding IS images at 30-meter
resolution provided by Gong et al. [44].

2.5.2. LST Weighted Center (LSTWC)

The spatiotemporal dynamics (moving directions and trajectories) of LST are depicted using LST
weighted center (LSTWC), the modified ISFWC considering the LST patterns. The coordinates of
LSTWC are calculated as:  x =

∑n
i=1 mixi∑n
i=1 mi

y =
∑n

i=1 mi yi∑n
i=1 mi

, (3)

where x, y are the coordinates of calculated LSTWC x, y are the coordinates of a specific pixel, and mi is
the difference between LST value of ith pixel and mean LST values of the city. The moving trajectories
of LSTWC in 2002–2017 reflect the general trends of LST variations in Wuhan.

2.6. Quantification of Spatiotemporal Dynamics and Relationships between LST and IS

2.6.1. Urban Heat Island (UHI) Ratio Index

The urban heat island ratio index (URI) is used to quantitatively characterize the UHI intensity
within the study area in this study [22,39,40]. URI index is defined as follows:

URI =
1

100m

∑n

i=1
wipi, (4)

where m is the number of thermal landscape categories classified using the method in Section 3.2 (m = 5
according to Table 3), n is the number of thermal landscapes with higher LST values than the mediate
thermal landscapes (n = 2 in this study), wi is the weight of a specific thermal landscape (Cold = 1,
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Medium-cold = 2, Median = 3, Medium-hot = 4 and Hot = 5) and pi is the coverage proportion of the
corresponding thermal landscape. The range of URI is from 0 to 1, and a higher URI index indicates
that the UHI effect is more severe.

2.6.2. Sprawl Rate

In this study, the sprawl rates of hot thermal landscape (identified in Section 3.2) and IS are
quantified. This sprawl rate can be calculated to reveal the expansion intensity of hot thermal landscape
and IS in specific regions and periods. The sprawl rate is defined as:

Vt =
St

St−1
, (5)

where t denotes the specific year, t− 1 is the previous time of t. For example, when t equals to 2005,
t− 1 shall be 2002. St and St−1 are areas of hot thermal landscape or IS in t or t− 1, respectively.

2.6.3. Coupling Indicators between IS and LST

To quantitatively evaluate the coupling relationships between ISFWCs and LSTWCs in the spatial
extent, the coupling indicators are utilized in this study [41]. The coupling indicators are capable to
measure the spatial distance of ISFWCs and LSTWCs and the azimuths of the moving trajectories of
ISFWCs and LSTWCs, respectively. The closer spatial distance of LSTWCs and ISFWCs and smaller
angle between trajectories of LSTWCs and ISFWCs reveal the stronger coupling relationship between
LST and IS in the study area. The spatial distance and azimuth are calculated as:

D =

√
(XISFWC,t −XLSTWC,t)

2 + (YISFWC,t −YLSTWC,t)
2, (6)

cosα =
∆XISFWC × ∆XLSTWC + ∆YISFWC × ∆YLSTWC√(
∆X2

ISFWC + ∆Y2
ISFWC

)
×

(
∆X2

LSTWC + ∆Y2
LSTWC

) , (7)

where D is the spatial distance between LSTWC and ISFWC at a specific time. And α is the angle
between moving trajectories of LSTWCs and ISFWCs. XISFWC,t and YISFWC,t are coordinates of ISFWCs
at a specific time t (XLSTWC,t and YLSTWC,t share the similar meaning). ∆XISFWC and ∆YISFWC are the
coordinates differences of ISFWC between the locations at a specific time t with the previous time
t− 1, respectively (e.g., ∆XISFWC = XISFWC,t −XISFWC,t−1). ∆XLSTWC and ∆YLSTWC are the coordinates
differences of LSTWC. The data range of cosα is (−1, 1). The cosα equals to −1 reveals that the angle
between trajectories of LSTWCs and ISFWCs at a specific time equals to 180◦, and cosα equals to 1
reveals that the angle equals to 0◦.

2.6.4. Impervious Surface Contribution Index

The contribution of IS expansion to the LST variation in eight cardinal directions from 2002 to
2017 are quantified using impervious surface contribution index (ISCI) as follows [34,42]:

ISCI = (LSTIS − LSTmean) × PIS, (8)

where ISCI is the impervious surface heating contribution in a specific region, LSTIS is the average
LST of impervious surfaces in the region, LSTmean is the mean LST value of the city, and PIS is the
proportion of impervious surfaces in the region. PIS varies from 0 to 1 in this study.

3. Results and Discussion

3.1. Impervious Surfacve Expansions within Wuhan

The ISF maps in Wuhan from 2002 to 2017, as presented in Figure 3, show an obvious expansion
trend from 2002 to 2017. In the period of 2002–2008, the expansion of IS mainly has occurred in the
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East Lake High-Tech Development Zone located in Hongshan District. From 2008 to 2014, in addition
to East Lake High-Tech Development Zone, the expansion of IS can also be seen in the Tianhe Airport
in the northwest corner of the study area, Yangluo new town in the northeast corner of the study area
and Jiangxia district in the south of the research area. In 2017, the IS coverage has been expanded
without directivity into suburban surroundings, such as Huashan new town in the east and southeast
of the area, the Tianhe Airport and its surroundings as well as the Yangtze River new town lies in the
north of the study area.
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The detailed statistics of the IS expansion are reported in Table 4. The IS coverage has significantly
expanded from 270.75 to 678.18 km2 in the period of 2002–2017. The expansion of IS occurs in a
gradually increasing manner from 2002 to 2011 (sprawl rate up to 1.25), while decelerating from 2014
to 2017 (sprawl rate decreased from 1.25 to 1.17). At the sub-regional scale, the IS expansion and the
sprawl rates of IS in eight cardinal directions are respectively shown in Figure 4 and Table 5. The west
sub-region has the most IS coverage (114.3 km2 in 2002 and 140.36 km2 in 2017), but the area growth of
IS in the west sub-region is the least significant (overall rate equals to 18.22).

Table 4. Detailed information of impervious surfaces (IS) in the study area from 2002 to 2017.

Year IS Area (km2) Sprawl Rate of IS

2002 270.75 -
2005 313.04 1.16
2008 373.51 1.19
2011 466.54 1.25
2014 580.70 1.25
2017 678.18 1.17

A dash means no data.



Int. J. Environ. Res. Public Health 2019, 16, 3865 10 of 21
Int. J. Environ. Res. Public Health 2019, 16, x 10 of 22 

 

 

Figure 4. The variations of impervious surface area in eight sub-regions from 2002 to 2017. 

Table 5. Statistics of impervious surface sprawl in eight sub-regions from 2002 to 2017. 

Sub-regions 2002–2005 2005–2008 2008–2011 2011–2014 2014–2017 Overall 
N 1.08 1.18 1.28 1.20 1.25 2.45 

NE 1.22 1.38 1.48 1.28 1.21 3.83 
E 1.10 1.19 1.59 1.81 1.36 5.13 

SE 1.17 1.45 3.19 2.27 1.49 18.22 
S 1.72 1.42 1.39 1.26 1.17 4.98 

SW 1.20 1.19 1.24 1.27 1.16 2.58 
W 1.05 1.05 1.06 1.04 1.03 1.26 

NW 1.21 1.22 1.23 1.27 1.16 2.68 
The overall sprawl rate is calculated through dividing the IS area in 2017 by the IS area in 2002. 

The west sub-region mainly includes Jianghan district, Qiaokou district and Hanyang district, 
which have been the main downtown area of Wuhan since the 1950s [59]. Previous studies have 
revealed that this area has been mainly updated internally from 2000 to 2015 without significant 
expansion [59,60]. The southeast region has experienced the most significant IS expansion in the 
study area. Specifically, the IS coverage of this sub-region is the least among the eight sub-regions in 
2002 (2.77 km2), while the IS area in southeast sub-region have increased remarkably to 109.99 km2 
with an overall rate of 18.22 (up to 3.19 in the period of 2008–2011) from 2002 to 2017. 

3.2. Spatiotemporal Dynamics of LST Patterns 

The monthly LST patterns in summer days from 2002 to 2017 are extracted by the heuristic 
MTGP model using one raw MODIS LST subset with three temporally adjacent auxiliary LST maps. 
The accuracy of monthly LST patterns has been verified to be within 1 °C (0.5 °C in most cases) in the 
previous studies [10,32,33].  

The typical summertime LST pattern extraction and accuracy evaluation in this study is 
exemplified using raw MODIS LST product on July 4th 2002 as shown in Figure 5. The continuous 
and noise-free LST map (Figure 5(b)) with typical summertime LST pattern has been recovered from 
the cloud contaminated image using MTGP, which is claimed to support local LST anomalies 
investigation better [20,33]. In such operation, three LST products acquired on July 12th, 2018, August 
21th, 2018 and August 28th, 2018 are utilized as auxiliary data in typical summertime LST patterns 
extraction. The MTGP has been conducted in all six years based on six dominant images (one in a 
year) with eighteen auxiliary LST products (three in a year). Furthermore, Figure 5(c) shows that all 
the raw LST observations are within the two standard deviation (STD) of monthly LST pattern. It 
reveals that the extracted LST patterns can reflect the typical monthly LST pattern with an acceptable 
accuracy [20,33]. 

 

Figure 4. The variations of impervious surface area in eight sub-regions from 2002 to 2017.

Table 5. Statistics of impervious surface sprawl in eight sub-regions from 2002 to 2017.

Sub-Regions 2002–2005 2005–2008 2008–2011 2011–2014 2014–2017 Overall

N 1.08 1.18 1.28 1.20 1.25 2.45
NE 1.22 1.38 1.48 1.28 1.21 3.83
E 1.10 1.19 1.59 1.81 1.36 5.13

SE 1.17 1.45 3.19 2.27 1.49 18.22
S 1.72 1.42 1.39 1.26 1.17 4.98

SW 1.20 1.19 1.24 1.27 1.16 2.58
W 1.05 1.05 1.06 1.04 1.03 1.26

NW 1.21 1.22 1.23 1.27 1.16 2.68

The overall sprawl rate is calculated through dividing the IS area in 2017 by the IS area in 2002.

The west sub-region mainly includes Jianghan district, Qiaokou district and Hanyang district,
which have been the main downtown area of Wuhan since the 1950s [59]. Previous studies have
revealed that this area has been mainly updated internally from 2000 to 2015 without significant
expansion [59,60]. The southeast region has experienced the most significant IS expansion in the study
area. Specifically, the IS coverage of this sub-region is the least among the eight sub-regions in 2002
(2.77 km2), while the IS area in southeast sub-region have increased remarkably to 109.99 km2 with an
overall rate of 18.22 (up to 3.19 in the period of 2008–2011) from 2002 to 2017.

3.2. Spatiotemporal Dynamics of LST Patterns

The monthly LST patterns in summer days from 2002 to 2017 are extracted by the heuristic
MTGP model using one raw MODIS LST subset with three temporally adjacent auxiliary LST maps.
The accuracy of monthly LST patterns has been verified to be within 1 ◦C (0.5 ◦C in most cases) in the
previous studies [10,32,33].

The typical summertime LST pattern extraction and accuracy evaluation in this study is exemplified
using raw MODIS LST product on July 4th 2002 as shown in Figure 5. The continuous and noise-free LST
map (Figure 5b) with typical summertime LST pattern has been recovered from the cloud contaminated
image using MTGP, which is claimed to support local LST anomalies investigation better [20,33].
In such operation, three LST products acquired on July 12th, 2018, August 21th, 2018 and August 28th,
2018 are utilized as auxiliary data in typical summertime LST patterns extraction. The MTGP has been
conducted in all six years based on six dominant images (one in a year) with eighteen auxiliary LST
products (three in a year). Furthermore, Figure 5c shows that all the raw LST observations are within
the two standard deviation (STD) of monthly LST pattern. It reveals that the extracted LST patterns
can reflect the typical monthly LST pattern with an acceptable accuracy [20,33].
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Figure 5. (a) The raw MODIS land surface temperature (LST) product of 4 July 2002. (b) The
corresponding monthly LST pattern extracted by Multi-Task Gaussian Process (MTGP) model.
(c) Accuracy assessment of extracted monthly LST pattern.

The accuracy of all six monthly LST patterns are evaluated using STD, bias [61] and correlation
coefficient (CC) [33,62]. The detailed assessments of monthly LST patterns are reported in Table 6.
As reported in Table 6, the biases of six LST patterns are all within two STD. The maximum and
minimum bias values are 0.15 ◦C and 0.48 ◦C, and the CC values are all larger than 0.96. The accuracy
assessments demonstrate that the monthly LST patterns are generated with ideal accuracy.

Table 6. Accuracy assessments of extracted LST patterns from 2002 to 2017.

Year STD Bias (◦C) CC

2002 0.27 0.33 0.99
2005 0.21 0.29 0.98
2008 0.12 −0.26 0.99
2011 0.23 0.15 0.97
2014 0.30 0.41 0.96
2017 0.20 0.48 0.99

The monthly LST patterns and classified thermal landscapes are shown in Figures 6 and 7,
respectively. Visually, the distributions of hot thermal landscape in six years are quite consistent
with that of IS. The direction of hot thermal landscape expansion within the study area is southeast
in general.
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Figure 7. The five categories of thermal landscapes in Wuhan from 2002 to 2017. (a) 2002; (b) 2005;
(c) 2008; (d) 2011; (e) 2014; (f) 2017.

Specifically, the thermal landscape in the Huashan new town and the Tianhe Airport transformed
from medium-hot into hot in 2017, about three years after IS expansion witnessed in such areas.
Furthermore, hot thermal landscape can be seen in Huashan new town in the east part of the study
area. Referring to ISF maps in Figure 3, 2014 is the specific year when ISF in Huashan new town
increased significantly.

As reported in Table 7, the areas of hot thermal landscape in the city have expanded significantly
from 276.09 to 531.91 km2 during 2002–2017. The increased URIs from 2002 to 2017 indicate that
the UHI effect of the city has become more extensive [39,40]. Specifically, the URI of east sub-region
have increased significantly from 0.0001 in 2014 to 0.14 in 2017. The URIs of west sub-region were all
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greater than 0.61, indicating the UHI effect of the west sub-region was the most extensive among the
eight sub-regions. During 2002–2008, a 0.06 increase of hot thermal landscape sprawl rate has been
witnessed in the city. However, the sprawl rate of hot thermal landscape fluctuated in the period of
2011–2017. Besides, URI at the city scale increased one time (from 0.13 to 0.25) in this period.

Table 7. The sprawl rate of hot thermal landscape (HTL) and urban heat island ratio index (URI) in
Wuhan in 2002–2017.

Year The Area of HTL (km2) Sprawl Tableate of HTL URI

2002 276.09 - 0.33
2005 298.88 1.08 0.34
2008 369.11 1.24 0.37
2011 433.30 1.17 0.40
2014 460.07 1.06 0.51
2017 531.91 1.15 0.55

A dash means no data.

At the sub-region scale, there was no hot thermal landscape distribution in the east and southeast
sub-regions before 2011, thus URIs in the east and southeast sub-regions were equal to zero before 2011
(shown in Figure 8). From 2011 to 2017, the hot thermal landscape area in the southeast sub-region
increased from 9.12 to 26.15 km2. In addition, in the eastern sub-region, 0.11 km2 of hot thermal
landscape appeared for the first time in 2014, and then significantly increased to 26.04 km2 in 2017.
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Figure 8. The variations of the urban heat island ratio index (URI) and hot thermal landscape area in
eight sub-regions from 2002 to 2017. (a) URI; (b) Hot thermal landscape.

The sprawl rates of hot thermal landscape in the eight sub-regions are generally greater than
1, which indicates that hot thermal landscape keeping expanded in 2002–2017 (Table 8). The sprawl
rates of the northern and northwestern regions were less than 1 from 2002 to 2005 and from 2011
to 2014, indicating that the hot thermal landscape areas of these two regions decreased in above
periods. The east sub-region has experienced a flying increase of sprawl rate during 2014–2017, which
is consistent with the former discussion. Besides, in the period of 2008–2011, the hot thermal landscape
sprawl rate was up to 2.86 in the northeast sub-region. Referring to Figure 7, this variation can be
ascribed to the emergence of a hot thermal landscape in the Yangluo new town in 2011.
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Table 8. Statistics of hot thermal landscape sprawl rate in eight sub-regions from 2002 to 2017.

Sub-Regions 2002–2005 2005–2008 2008–2011 2011–2014 2014–2017 Overall

N 0.63 1.23 1.06 0.91 1.31 0.99
NE 1.07 1.06 2.86 1.19 1.16 4.48
E - - - - 233.65 233.65

SE - - - 1.85 1.55 2.87
S 1.43 2.21 1.27 1.02 1.01 4.12

SW 1.22 1.15 1.05 1.24 1.10 2.03
W 1.11 1.02 1.02 1.01 1.05 1.22

NW 0.92 1.42 1.31 0.90 1.13 1.73

A dash means that the sprawl rate cannot be calculated by dividing zero. The overall sprawl rates of east sub-region
and southeast sub-region are calculated by dividing area in 2017 using area in 2014 and 2011, respectively.

3.3. The Multi-Scale Correlations between LST and IS

The strong correlations between LST and IS/ISF are well documented in previous
studies [15,20,22,38–40]. In this study, the contributions of IS variations towards LST are quantified at
both city scale and sub-region scale using multiple indicators. At the city scale, the weighted gravity
center of LST (LSTWC) and impervious surface (ISFWC) are adopted to reveal the spatiotemporal
dynamics of LST and IS in this study. The specific locations and moving trajectories are shown in
Figure 9.
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Figure 9. The moving trajectories of LSTWCs and ISFWCs from 2002 to 2017.

As shown in Figure 9, the movement trajectories of LSTWCs and ISFWCs are quite similar and the
overall trends heads the southeast. But the trajectory of ISFWCs and LSTWCs do not match in 2005 and
2014. Such discords can be ascribed that the warming contributions of IS expansions are geographically
and temporally varying, i.e., the same amount of IS expansion at different geographical locations or
different times may not contribute the same to the variations of urban thermal environment [40,42].

The warming contribution of IS expansion will be discussed in the subsequent paragraphs using
ISCI. Specifically, LSTWC moved to the southwest while ISFWC moved to the southeast during
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2002–2005 and 2011–2014. At the city scale, the variations of LSTWCs are generally more significant
than that of ISFWCs in the perspective of distances and azimuths. Besides, a positive linear relationship
(R2 = 0.969) between IS and URI has been explored at the city, revealing that the IS expansion has been
resulted in the emerge of UHI effect in Wuhan (Figure 10a). Furthermore, the hot thermal landscape is
highly correlated to IS (R2 = 0.927) in the study area (Figure 10b), indicating that the expansion of hot
thermal landscape can be attributed to the expansion of IS.Int. J. Environ. Res. Public Health 2019, 16, x 15 of 22 
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Figure 10. (a)The relationship between IS and URI; (b) The relationship between IS and hot
thermal landscape.

At the city scale, the coupling relationship of LST variations and IS expansions are further
quantified by the distance of LSTWC and ISFWC as well as the cosine of the angle (cos α) between
LST trajectories and ISFWC trajectories. As reported in Table 9, the distances between LSTWCs and
ISFWCs have been increased from 1944.49 meters to 5047.76 meters in the period 2002–2014, and have
been decreased to 3948.09 meters in 2017. Correspondingly, cos α between trajectories of LSTWC and
ISFWC have decreased significantly from 0.925 to 0.254 during 2002–2014 and then have increased to
0.709 in 2017. The quantitative results reveal that the coupling relationship between IS expansions and
LST dynamics is quite strong (cos α larger than 0.709 and distances between LSTWCs and ISFWCs
shorter than 3948.09 meters in general) in the period of 2002–2017. But the coupling relationship have
been weakened at the city scale.

Table 9. The statistics of the coupling of LSTWCs and ISFWCs at the city scale.

Year Distance between LSTWC
and ISFWC (m)

Angle Cosine (cos α) between LSTWC Trajectories
and ISFWC Trajectories (◦)

2002 1944.49 -
2005 2632.78 0.925
2008 2737.43 0.891
2011 3369.70 0.768
2014 5047.76 0.254
2017 3948.09 0.709

A dash means no data.

The weakened coupling relationship can be partially attributed to the LST decrease in downtown
areas within Wuhan explored in the previous study [10] (especially the Qingshan industrial park,
which experienced the hottest LST within Wuhan from 2002 to 2017). Furthermore, the landscape
composition and diversity are explored to be highly correlated to the LST patterns in the context of
urbanization [24,25]. As one of the central cities in China, Wuhan has experienced not only extensive
expansion, but also remarkable landscape renewal during the study period [42,63]. The decreased
UHI effects within downtown Wuhan, induced by landscape renewal [42], can be partially responsible
for the weakened coupling relationship between IS and LST in the study area.
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At the sub-region scale, the heating contribution of IS have been quantified using impervious
surface contribution index (ISCI) introduced in Section 3.7. As reported in Table 10, all the sub-regions
possess ISCIs larger than zero, indicating all the eight sub-regions are experienced the positive warming
contribution [42].

Table 10. The impervious surfaces contribution indexes (ISCIs) in the eight sub-region.

Sub-Region 2002 2005 2008 2011 2014 2017

N 34.52 62.49 58.66 66.61 72.00 105.40
NE 9.71 19.64 22.95 35.71 34.13 66.54
E 2.93 4.20 1.68 10.26 15.83 44.05

SE 0.48 1.09 6.03 20.23 17.43 45.77
S 24.40 55.24 49.27 60.10 77.71 89.63

SW 21.96 59.86 55.93 64.41 112.58 82.12
W 56.73 83.68 65.17 70.63 57.27 55.42

NW 35.45 65.80 59.25 66.98 60.12 74.96

During 2002–2011, the west sub-region with the most coverages of hot thermal landscape and IS
possessed the most significant positive contribution to the UHI effect of the city. However, the ISCI of
the west sub-region was not the highest, and the southwest sub-region ranked the first with ISCI value
of 112.58. And in 2017, the north sub-region possessed the highest ISCI value of 105.40. Generally,
the ISCIs in all sub-regions have experienced significant increase from 2002 to 2017, especially the
southeast sub-region with a remarkable increase of 45.29. Such increases indicate that the warming
contribution of IS towards UHI effect in Wuhan has become more intensive in the period of 2002–2017.

The variations of ISCIs in the sub-regions from 2002 to 2017 are listed in Table 11. The variations
of ISCIs can be regarded as the potential driving forces of the LSTWCs movements [39,42]. As reported
in Table 11, the impervious surfaces warming contribution within west sub-region has dramatically
decreased by 68.36 during 2002–2017. The ISCIs increases of the northeast, east and southeast
sub-regions are 36.54, 26.95 and 27.74, indicating the IS warming contributions of these sub-regions
have been significantly strengthened in this period. Generally, during each period, the LSTWCs have
moved in the same direction as ISCIs have the most positive increase. In 2002–2005, the southwest
sub-region has a positive ISCI increase of 37.90, and LSTWCs exactly move towards southwest
direction. Such consistency can be witnessed in the period of 2005–2008, 2008–2011, 2011–2014 and
2017. Furthermore, the southeast sub-region possesses the most significant increase of ISCI value (an
increase of 27.74), which is consistent with the overall southeast directions of LSTWCs movements
at the city scale during 2002–2017. This quantitative warming contribution results reveal that the
spatiotemporal dynamics of LST landscapes has strong coupling relationships with IS expansions at
the sub-region scale. And the variation of impervious surface contribution has been explored to be
highly correlated with the movements of LSTWCs.

Table 11. The variations of ISCIs in the eight sub-region.

Sub-Region 2002–2005 2005–2008 2008–2011 2011–2014 2014–2017 Overall

N 27.97 −3.83 7.94 5.40 33.40 5.42
NE 9.93 3.31 12.76 −1.58 32.41 22.48
E 1.27 −2.52 8.59 5.57 28.22 26.95

SE 0.60 4.94 14.20 −2.80 28.34 27.74
S 30.84 −5.97 10.83 17.61 11.91 −18.93

SW 37.90 −3.93 8.48 48.17 −30.46 −68.36
W 26.95 −18.51 5.46 −13.36 −1.85 −28.80

NW 30.35 −6.55 7.73 −6.86 14.84 −15.51

The overall variations of ISCIs are represented the differences of ISCIs of 2017 and ISCIs of 2002.
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3.4. Implications and Limitations

The deterioration of urban thermal environment poses more serious influences towards
public health [7,9,64], e.g., thermal comfort degradation [65,66], mental illness [67], extreme
heat-related morbidity and mortality [68], especially for vulnerable city dwellers such as the elderly
population, juveniles and children, outdoor workers and low-income groups [9,55,66,69]. A better
understanding of thermal center movements and orientations corresponding to IS variations can
facilitate the decision-making towards steering urban expansion and intensification and public health
improvement [69–71]. This study has quantified the coupling relationships between LST and IS at
both the city scale and sub-region scale. Such multi-scale quantitative analysis can bridge the gap
between local climate studies and urban planning by providing implications for better managing
the land use/land cover changes within cities considering their underlying impacts on local thermal
environment and public health. Furthermore, the LST and UHI maps can be integrated with urban
morphological indicators (e.g., sky view factor) [29,72], local climate zone (LCZ) [9,73], socioeconomic
and demographic factors to estimate heat exposure risk [9]. On the basis of existing studies, the
continuous exposure to hot temperature could increase health risks and energy consumption [8,55,74].
Therefore, how to regulate the movements and orientations of urban thermal center in response
to the distribution of urban construction center, population center and economic center is of great
significance for urban public health preparedness oriented to the urban sustainability and resilience
improvement [45,75].

However, there are still some uncertainties in this study. The 3-year temporal internal may not
be the optimal temporal scale. As scale is claimed to be crucial for all ecological and geographical
studies [51], the variations of LST and its responses to IS should be investigated at multi-temporal scales
in the further studies. However, this study does not implement multi-temporal scale investigations
to identify the optimal temporal scale for the comparative explorations of LST-IS relationships.
Furthermore, urban renewal is not only two-dimensional (2-D) expansions such as IS expansion
and intensification, but also accompanied by conspicuous three-dimensional (3-D) expansion [26,72]
(attached to variations of urban forms) and urban function transformations [9,29]. In this study, only
the relationships between LST and satellite imageries derived IS maps are examined. The interactions
between LST and other surface factors should be emphasized in future studies, especially factors
reflecting urban metabolisms that cannot derived from remotely sensed images [24].

4. Conclusions

The multi-temporal trajectories of LST and IS as well as their underlying relationships have been
comparatively investigated at both the city scale and the sub-region scale in Wuhan (China). The major
findings can be summarized as follows:

(1) The hot thermal landscapes of the study area have significantly expanded from 276.09 to 531.91 km2

and the impervious surfaces has expanded by 407.43 km2 (from 270.75 to 678.18 km2) at the city
scale. There is a positive linear relationship between the expansions of hot thermal landscape and
IS (R2 = 0.969).

(2) URIs have increased from 0.33 to 0.55, indicating the UHI effect of the study area have become
more intensive in the period of 2002–2017. The increase of URIs is highly correlated to the
expansion of IS at the city scale (R2 = 0.927).

(3) The most expansion of hot thermal landscape has been witnessed in the east, southeast and
northeast sub-regions, which is quite consistent with the IS expansions at the sub-region scale.

(4) At the city scale, the coupling relationship between LST and IS is quite strong (cos α larger
than 0.709 and distances between LSTWCs and ISFWCs shorter than 3948.09 meters in general).
However, the coupling relationship has been weakened in 2002-2014, afterwards strengthened
in 2017.
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(5) At the sub-region scale, the warming contribution of impervious surfaces has been examined to
be the external forcing of the movements of LSTWC. Specifically, LSTWC tend to move towards
the sub-region with the most significant variation of impervious surfaces contribution index.
Implications and suggestions are available for the decision makers to steer land use/land cover
and allocate urban sprawl based on the findings of this study.

Although the heuristic MTGP is capable of generating typical summertime LST patterns by
integrating four temporally adjacent LST maps, the long-term variations of LST and the optimal
temporal scale of time-series LST data deserve consideration in the further studies. Furthermore, IS
variations are incompetent to interpret the spatiotemporal dynamics of LST solely. The interactions
between LST variations and other surface factors should be further quantified. The impacts of urban
form and urban function on LST within cities should be emphasized in the future studies.
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