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Abstract: Classical swine fever (CSF) caused by the CSF virus (CSFV) is one of the most important swine
diseases, resulting in huge economic losses to the pig industry worldwide. Systematic vaccination is one
of the most effective strategies for the prevention and control of this disease. Two main CSFV vaccines,
the modified live vaccine (MLV) and the subunit E2 vaccine, are recommended. In Taiwan, CSF cases
have not been reported since 2006, although systemic vaccination has been practiced for 70 years.
Here, we examined the sero-dynamics of the piglets born from sows that received either the CSFV MLV
or the E2 vaccine and investigated in the field the correlation between the porcine reproductive and
respiratory syndrome virus (PRRSV) loads and levels of CSFV antibody. A total of 1398 serum samples
from 42 PRRSV-positive farms were evaluated to determine the PRRSV loads by real-time PCR and
to detect CSFV antibody levels by commercial ELISA. Upon comparing the two sow vaccination
protocols (CSFV MLV vaccination at 4 weeks post-farrowing versus E2 vaccination at 4–5 weeks
pre-farrowing), the lowest levels of CSFV antibody were found in piglets at 5–8 and 9–12 weeks of
age for the MLV and E2 groups, respectively. Meanwhile, the appropriate time window for CSFV
vaccination of offspring was at 5–8 and 9–12 weeks of age in the MLV and E2 groups, respectively.
There was a very highly significant negative correlation between the PRRSV load and the level of
CSFV antibody in the CSFV MLV vaccination group (P < 0.0001). The PRRSV detection rate in the
pigs from the MLV group (27.78%) was significantly higher than that in pigs from the E2 group
(21.32%) (P = 0.011). In addition, there was a significant difference (P = 0.019) in the PRRSV detection
rate at 5–8 weeks of age between the MLV (42.15%) and E2 groups (29.79%). Our findings indicate
that the vaccination of CSFV MLV in piglets during the PRRSV susceptibility period at 5–8 weeks of
age may be overloading the piglet’s immune system and should be a critical concern for industrial
pork production in the field.

Keywords: classical swine fever; porcine reproductive and respiratory syndrome virus;
quantitative PCR; antibody; modified live vaccine; E2 subunit vaccine

1. Introduction

Classical swine fever (CSF) caused by the CSF virus (CSFV) is one of the most important swine
diseases, resulting in huge economic losses to the pig industry worldwide, and it is a World Organization
for Animal Health (OIE)-listed disease. CSFV (previously called hog cholera virus) belongs to the
genus Pestivirus within the family Flaviviridae together with bovine viral diarrhea virus 1, bovine viral
diarrhea virus 2 and border disease virus [1]. Recently, CSFV has been redesignated as Pestivirus C [1].

Pathogens 2020, 9, 427; doi:10.3390/pathogens9060427 www.mdpi.com/journal/pathogens

http://www.mdpi.com/journal/pathogens
http://www.mdpi.com
http://www.mdpi.com/2076-0817/9/6/427?type=check_update&version=1
http://dx.doi.org/10.3390/pathogens9060427
http://www.mdpi.com/journal/pathogens


Pathogens 2020, 9, 427 2 of 10

CSF is an immunosuppressive disease in which several immune escape mechanisms of CSFV
have been reported, such as apoptosis, autophagy and pyroptosis in bone marrow hematopoietic
cells, lymphocytes and lymphoid organs [2]. A low CD4/CD8 ratio has been observed in
the peripheral blood mononuclear cells of infected fetuses and piglets challenged with either
high- or low-virulence CSFV strains. A low CD4/CD8 ratio indicates dysregulation of the immune
response [3]. During CSFV infection, the clinical signs mainly depend on the ages of pigs and the
virulence of the viral strains. The clinical forms of CSFV can show acute, chronic and persistent courses.
The persistent course usually requires infection of sows at approximately 50–70 days of pregnancy [4–6].
In general, the acute form of CSF leads to clinical and pathological features that are very similar to those
of African swine fever [5,6]. In addition, CSF must also be considered in the differential diagnosis of
erysipelas, porcine circovirus type 2 (PCV2)-associated diseases (PCVAD), salmonellosis and porcine
reproductive and respiratory syndrome (PRRS) [6]. The overlapping of the clinical presentations
may lead to a misdiagnosis of CSF as PRRS virus (PRRSV) infection. PRRSV infection also
causes reproductive symptoms in gestational sows and respiratory problems in young pigs [7,8].
PRRSV infection can induce several immunosuppressive responses [9], such as: i) dysregulation
of NK cell cytotoxic activity [10]; ii) poor production of IFN-alpha [11]; and iii) promotion of the
secretion of immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth
factor-beta [10,12,13].

Systematic vaccination and non-vaccination stamping-out are the two main strategies to control
CSF [6,14]. Due to the enormous costs of stamping-out, systematic vaccination is a more effective
strategy for CSF control in CSF endemic areas [6]. Two major kinds of CSFV vaccines, the modified live
vaccine (MLV) and the subunit vaccine, are widely used in many countries [6,14]. The MLV vaccine can
induce not only humoral immune responses but also cell-mediated immune responses against virulent
CSFV. Subunit vaccines, such as E2 vaccines, usually only induce antibody responses [14]. However,
the disadvantages of CSFV MLV vaccines are that their efficacy is inhibited by maternal-derived
antibody (MDA) [14–19] and they lack differentiation with infection from vaccinated animals (DIVA)
according to serological assays [16,20]. The CSFV subunit vaccines based on the E2 protein allow DIVA
by Erns enzyme-linked immunosorbent assays and provide good protection [21–23]. The drawbacks of
E2 subunit marker vaccines are that they induce protection later than MLV vaccines, and their efficacy
also interferes with maternal antibodies [21,24].

Transplacental transmission of CSFV occurred before the onset of the antibody response when
sows were challenged with either high- or low-virulence CSFV strains. Therefore, rapid and solid
immunity after sow vaccination is required for the prevention of congenital viral persistence [3].
In Taiwan, CSFV MLV has been used since the 1950s and proven to be sufficiently protective.
CSFV MLV vaccination is only recommended in sows at 4 weeks post-farrowing (nonpregnancy
stage) to overcome persistent infection. To avoid MDA, which interferes with the efficacy of CSFV MLV
in the clinic, piglets should be vaccinated at 6 and 9 weeks old when sows are vaccinated in the
nonpregnancy stage. However, PRRSV is still a major problem and difficult to control in the nursery
stage, which overlaps with the CSFV MLV vaccination period in Taiwan. Certain severe PRRS cases in
the nursery were observed just after CSFV MLV vaccination (data from the Animal Diseases Diagnostic
Center of National Pingtung University of Science and Technology, not shown). The most reasonable
explanation for PRRS and porcine respiratory disease complex induction is stress, which would be
caused not only by vaccination but also by the side effects of CSFV MLV, pathogens spread by needles,
the synergistic effects of bacterial pathogens such as Glaesserella parasuis (G. parasuis, previously called
Hemophilus parasuis) and other factors [25]. In contrast, the E2 vaccine is recommended for application
in sows at 4–5 weeks pre-farrowing and elicits a high level of neutralizing antibody [26–28], whereas
the vaccination of offspring can be delayed until they are 10–12 weeks old [28], which is when most
piglets have recovered from PRRS. Therefore, the level of MDA is very important for CSFV vaccination
programs in piglets. Previous research findings showed that PRRSV infection prior to CSFV vaccination
significantly suppressed the antibody response [29,30]. In addition, CSFV immunization during the
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acute phase of PRRSV infection could result in vaccination failure [31]. However, the correlation
between the CSFV MDA levels produced in response to different types of CSFV vaccines and the
PRRSV load in the field remains to be investigated. Herein, this retrospective study aimed to elucidate
the sero-dynamics of the CSFV and PRRSV loads in piglets born from sows immunized with different
types of CSFV vaccines to further the understanding of the interactions between the CSFV vaccine and
the PRRSV, which is still prevalent in most areas of intense pork production in the field.

2. Results

2.1. Levels of CSFV Antibody in Pigs of Different Ages from Sows Immunized with Different Types of
CSFV Vaccines

A total of 1398 blood samples from 42 PRRSV-positive commercial herds were included in this
study that were obtained from 943 cases (from 29 pig herds) from the MLV group together with 455 cases
(from 13 pig herds) from the E2 group. The evaluation of CSFV antibody levels at different ages in
pigs revealed that the level of CSFV antibody was very highly significant (P < 0.001), higher in the
E2 group than in the MLV group when pigs were less than 4 weeks old and 5–8 weeks old (Figure 1).
However, the level of CSFV antibody in the MLV group was significantly higher than that in the
E2 group at 9–12 weeks of age (P < 0.01), but the difference between the two groups was not statistically
significant after 13 weeks of age (Figure 1).
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Figure 1. The humoral responses based on ELISA in piglets born in the classical swine fever virus
modified live vaccine, (CSFV MLV) and E2 vaccine groups. The results are expressed as blocking
%. The dashed line indicates a blocking %, the threshold below which the samples were considered
negative. A blocking % between 30 and 40 was interpreted as suspected (gray area). A blocking %
greater than or equal to 40 was interpreted as positive. The error bars show the standard deviation
(SD). P values < 0.05, < 0.01 and < 0.001 were considered statistically significant, highly significant and
very highly significant, respectively.

2.2. Correlation of the PRRSV Load and Level of CSFV MDA in the Piglets without CSFV Vaccination from
Different Groups

To examine the correlation of the PRRSV load and level of CSFV MDA in different groups,
the PRRSV load of all serum samples was quantitated by real-time polymerase chain reaction (PCR).
The presence of PRRSV was calculated only in the piglets without CSFV vaccination. A total of
802 samples fit this criterion. The correlation between the PRRSV load and the level of CSFV antibody in
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piglets without CSFV vaccination was calculated using a linear regression analysis. The results of MLV
group showed that there was a very highly significant negative correlation between the PRRSV load and
the level of CSFV antibody (P < 0.0001) (Figure 2a). Surprisingly, there was no significant correlation
between the PRRSV load and the level of CSFV antibody in piglets from E2 group (P > 0.05) (Figure 2b).
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Figure 2. Linear regression analysis was used to calculate the porcine reproductive and respiratory
virus (PRRSV) loads and levels of CSFV maternal-derived antibody (MDA) in piglets without CSFV
vaccination in the MLV (a) and E2 (b) groups. The dashed line indicates a blocking %, the threshold
below which the samples were considered negative. A blocking % between 30 and 40 was interpreted
as suspected (gray area). A blocking % greater than or equal to 40 was interpreted as positive.
P values < 0.05, < 0.01 and < 0.001 were considered statistically significant, highly significant and very
highly significant, respectively.

2.3. Viral Load and Detection Rate of PRRSV in the Piglets without CSFV Vaccination from Different Groups

In the piglets without CSFV vaccination in different groups, 152 of 517 samples (29.40%)
from the MLV group and 72 of the 285 samples (25.26%) from the E2 group were positive for
PRRSV. The difference in the detection rate of PRRSV in the piglets without CSFV vaccination between
both groups was not statistically significant (P = 0.24). However, the PRRSV load was significantly higher
(ranging from 1.38 to 5.75 log10 PRRSV genome/µL, median 3.09 log10) in the MLV group than in the
E2 group (ranging from 1.46 to 6.15 log10 PRRSV genome/µL, median 2.66 log10) (P = 0.03) (Figure 3).
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Figure 3. PRRSV loads in the serum samples from both the CSFV MLV and E2 vaccinated groups. The red
horizontal lines represent the median concentrations for each group. Unpaired, 2-tailed Student’s t-tests
were used to compare the PRRSV loads between the MLV and E2 groups. P values < 0.05, < 0.01 and < 0.001
were considered statistically significant, highly significant and very highly significant, respectively.
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2.4. Viral Load and Detection Rate of PRRSV in Different Age Groups

The evaluation of the PRRSV load at different ages revealed that the mean PRRSV load was not
significantly different for both vaccine types in piglets that were less than 4 weeks old, 5–8 weeks old and
9–12 weeks old (Figure 4). Surprisingly, no PRRSV viremia was found in pigs aged more than 13 weeks
in the E2 group (Figure 4 and Table 1). Furthermore, we compared the detection rate of PRRSV at
different ages for different types of CSFV vaccines. The details of the detection rate of PRRSV for different
types of CSFV vaccines are shown in Table 1. The highest detection rate of PRRSV in pigs was found
at 5–8 weeks old (37.81%) compared to that found at other ages (Table 1). At 5–8 weeks old, the detection
rate of PRRSV was significantly higher in the pigs from the MLV group (42.15%) compared with that in
pigs from the E2 group (29.79%) (P = 0.019). The overall detection rate of PRRSV was significantly higher
in the pigs from the MLV group than in that in pigs from the E2 group (P = 0.011) (Table 1).
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Figure 4. PRRSV loads (dot, left Y axis) and detection rates of PRRSV (bar chart, right Y axis) in serum
samples from pigs of different ages from both the CSFV MLV and E2 groups. The dots represent the
individual PRRSV load of each pig. The red horizontal lines represent the median concentrations for
each group. The bar represents the detection rate of PRRS in pigs of different ages. An unpaired,
2-tailed Student’s t-test was used to compare the PRRSV loads between the MLV and E2 groups.
P values < 0.05, < 0.01 and < 0.001 were considered statistically significant, highly significant and very
highly significant, respectively.

Table 1. Detection rates of PRRSV in the serum samples from pigs at different ages from both the CSFV
MLV and E2 groups.

Age (Weeks)
CSFV Vaccine Type

Total P Value †
MLV E2

<4 47/276 (17.03) 18/135 (13.33) 65/411 (15.82) 0.412
5–8 110/261 (42.15) 42/141 (29.79) 152/402 (37.81) 0.019

9–12 86/261 (32.95) 37/119 (31.09) 123/380 (32.37) 0.081
>13 19/145 (13.10) 0/60 (0) 19/205 (9.27) N/A *

Total 262/943 (27.78) 97/455 (21.32) 359/1398 (25.68) 0.011
† P values < 0.05, < 0.01 and < 0.001 were considered statistically significant, highly significant and very highly
significant, respectively. * N/A, not applicable; the chi-square calculation does not support cell values that are zero.
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3. Discussion

In industrial pork production, multiple viral infections, either in an individual pig or in a herd,
with or without bacterial complications have occurred regularly. The systemic application of CSFV MLV
further complicates the situation. In order to avoid this background noise, a total of 1398 cases were
collected from commercial pig herds for statistical analysis. This study explored the intersectional
plane of the interaction between PRRSV and CSFV to shed light on the day-to-day situation in the field.

In areas without CSFV eradication, such as Taiwan, routine vaccination is one of the most
effective strategies for the prevention and control of this disease. Two major CSFV vaccines,
the MLV and E2 vaccines, are recommended [6,14]. The CSFV MLV vaccine can induce not only
humoral immune responses but also cell-mediated immune responses against virulent CSFV [14].
However, several disadvantages of CSFV MLV vaccines have been identified: i) a lack of DIVA
according to serological assays [16,20]; ii) the adverse effects of the CSFV MLV vaccine in vaccinated
pigs [32,33]; iii) pig-to-pig transmission of MLV [32]; and iv) farm-to-farm transmission of MLV by
vehicles [32]. Additionally, the influence of MDA on the efficacy of CSFV MLV in the field has been
well discussed [14–19]. Therefore, there is a negative correlation between the levels of MDA and CSFV
MLV efficacy [16,17,19]. In Taiwan, CSFV MLV vaccination is only recommended in sows at 4 weeks
post-farrowing to overcome persistent infection. Our results showed that the lowest level of CSFV
antibody in piglets was found at 5–8 weeks of age in the MLV group (Figure 1), which suggests a
time window that may be appropriate for CSFV vaccination. In addition to MDA, several other
immunosuppressive viruses, such as PRRSV [29–31], PCV2 [34–36] and pseudorabies virus [37],
can potentially interfere with the efficacy of the CSFV MLV vaccine.

The immunosuppression caused by PRRSV is related to IL-10 stimulation and inflammatory
cytokine downregulation [10,12,13,30]. It has also been shown that vaccine failure can occur when
CSFV MLV vaccine strain replication is inhibited by tumor necrosis factor-alpha induced by PRRSV [30].
Previous studies demonstrated that CSFV MLV immunization during the acute phase of PRRSV
infection could suppress the efficacy of CSFV vaccination [29–31]. Thus, the CSFV vaccination time
should not overlap with the PRRSV infection period. The efficacy of the CSFV MLV vaccine in the field is
worthy of further investigation for the purpose of CSF eradication. According to the diagnostic reports
of the Animal Diseases Diagnostic Center of National Pingtung University of Science and Technology,
some severe PRRS cases in nursery pigs occurred just after CSFV MLV vaccination (data not shown).
In industrial pork production, pigs often have multiple viral infections (e.g., PRRSV + PCV2) together
with complicated bacterial infections such as G. parasuis [38]. A study revealed that infection with
multiple viruses, such as PRRS and PCV2, may affect the replication or viral activity of the CSFV MLV
virus [39]. PCVAD cause multifactorial syndromes that have been be a major problem in Taiwan [40,41].
Fortunately, the problems caused by PCV2 have resolved significantly since the PCV2 vaccine became
available in Taiwan [42]. Currently, PRRSV remains a major problem and is difficult to control in
the nursery stage, as indicated by the overall detection rate of PRRSV in pigs being the highest at
5–8 weeks of age (37.81%) compared to that at other ages (Table 1). Taken together, it should be further
considered that the efficacy of CSFV MLV and stress caused by CSFV MLV vaccination during the
PRRSV susceptibility period may induce clinical signs of PRRSV infection.

In the E2 group, the lowest level of CSFV antibody was observed at 9–12 weeks of age (Figure 1).
To enhance CSFV vaccine efficacy, this time window may be more appropriate for CSFV vaccination in
piglets. Based on the results of E2 vaccination in sows at 4–5 weeks pre-farrowing, the vaccination
time of the offspring can be delayed until they are 10–12 weeks old [28], which is when they are
less susceptible to PRRSV, as observed in most Taiwanese pig herds. In addition, the level of CSFV
antibody was significantly higher at the suckling stage (less than 4 weeks old) in the E2 group than in
the MLV group (Figure 1), reflecting the different levels of CSFV antibody in sows. This difference
was due to sows being vaccinated with E2 at 4–5 weeks pre-farrowing, which elicited a sufficiently
high level of CSFV antibody (Figure 1) [27,28]. However, decreases in CSFV antibody titers should be
considered when sows are vaccinated with the MLV vaccine post-farrowing and/or when some sows
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have returned several times. Although the E2 vaccine can only induce antibody responses without
inducing cellular immunity, the shedding of vaccine antigens in the field should not be a concern.
In addition, the E2 vaccine induces E2-specific neutralizing antibodies to protect different genotypes
from highly virulent CSFV challenge [23]. Although there may be other background issues (such as
hygiene status and management of the herds) which co-influence the piglets’ health state according to
previous studies, CSFV E2 subunit vaccine on sows has shown several benefits, such as: (i) the detection
rate of CSFV nucleic acid in saliva in their offspring was dramatically decreased [43]; (ii) the efficient
induction of high levels of CSFV antibody until slaughter when their offspring only received a single
shot of CSFV immunization [26]; and (iii) increase in the survival rate of the nursery pigs in our
analyzed herds (herd practitioners’ observation), which are consistent with our interpretation of the
results in this study. Finally, and most importantly, the major difference between CSFV MLV vaccine
and E2 subunit vaccine or inactivated vaccine is that only CSFV MLV provides replicating antigen [14].

In conclusion, our study revealed the sero-dynamics of piglets born from sows vaccinated with
the CSFV MLV and E2 vaccines. There was a very highly significant negative correlation between the
PRRSV load and the level of CSFV antibody in the CSFV MLV group. The lowest level of CSFV antibody
was observed in the CSFV MLV group at 5–8 weeks of age, during which pigs are highly susceptible to
PRRSV and CSFV MLV vaccination should be avoided. In contrast, after E2 vaccination of sows at
4–5 weeks pre-farrowing, the level of CSFV antibody remained positive at 9–12 weeks, which allowed
CSFV vaccination with MLV to be postponed to avoid an overlap with the PRRS susceptibility period at
5–8 weeks of age. Additionally, our findings indicate that the vaccination of CSFV MLV in piglets during
the PRRSV susceptibility period at 5–8 weeks of age may be overloading the piglet’s immune system
and should be a critical concern for industrial pork production in the field. Thus, using vaccines that
provide non-replicating antigen such as E2 subunit vaccines is recommended.

4. Materials and Methods

4.1. Sample Source and Processing

Blood samples were collected in BD Vacutainer tubes with clot activator and gel (BD Diagnostics,
Plymouth, UK) from piglets and submitted to the Animal Diseases Diagnostic Center of National
Pingtung University of Science and Technology, Taiwan. All piglets were divided into two groups, the
MLV and E2 groups. Piglets in the MLV group were born from sows vaccinated with the CSFV MLV
vaccine at 4 weeks post-farrowing, whereas piglets in the E2 group were born from sows vaccinated
with the CSFV E2 subunit vaccine (Bayovac® CSF-E2, Bayer Animal Health) at 4–5 weeks pre-farrowing.
The blood samples were centrifuged at 2150× g for 15 min with a Himac CF 9RX (Hitachi Koki, Tokyo,
Japan), and then the sera were carefully transferred into 1.5 mL centrifuge tubes. The stock serum was
kept at −80 ◦C until needed.

4.2. Sample Preparation and PRRSV Real-Time PCR

Nucleic acid extraction was performed with a MagNA Pure LC 2.0 instrument by using the
MagNA Pure LC total nucleic acid isolation kit (Roche Applied Science, IN, USA). cDNA synthesis
was performed using PrimeScriptTM RT reagent kits (Takara, Kyoto, Japan). To quantify the PRRSV
load in serum samples, a ZNA probe-based real-time PCR assay was tested and performed with a
LightCycler® 96 System (Roche Applied Science, Basel, Switzerland) [44].

4.3. Serologic Assessment

The serum concentration of CSFV antibody was evaluated by a commercial ELISA (HerdChek
CSFV antibody ELISA test kit, IDEXX, ME, USA). After measuring the optical density at a wavelength of
450 nm (OD450) with a Biochrom Anthos Zenyth 200st spectrophotometer (Anthos Labtec Instruments,
Salzburg, Austria), if the mean OD450 of the duplicate negative controls (NCx) was more than 0.5 and the
mean blocking % of the duplicate positive controls was greater than 50, the assay was considered valid.
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The blocking % was calculated with the equation, Blocking % = 100× NCx−Sample OD450
NCx . A blocking %

less than or equal to 30 was interpreted as negative. A blocking % between 30 and 40 was interpreted
as suspected. A blocking % greater than or equal to 40 was interpreted as positive.

4.4. Statistical Analysis

Student’s t-test was applied to assess differences in the PRRSV load in the different conditions
between the two groups. The relationship between the PRRSV load and the blocking percentage of the
CSFV antibody was analyzed by linear regression. Positive rates of PRRSV in different age groups
were determined with the chi-square test with Yate’s correction. P values < 0.05, < 0.01 and < 0.001
were considered statistically significant, highly significant and very highly significant, respectively.
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