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ABSTRACTWith the rise of both the number and the complexity of traits of interest, control of the false discovery rate (FDR) in genetic
association studies has become an increasingly appealing and accepted target for multiple comparison adjustment. While a number of
robust FDR-controlling strategies exist, the nature of this error rate is intimately tied to the precise way in which discoveries are
counted, and the performance of FDR-controlling procedures is satisfactory only if there is a one-to-one correspondence between what
scientists describe as unique discoveries and the number of rejected hypotheses. The presence of linkage disequilibrium between
markers in genome-wide association studies (GWAS) often leads researchers to consider the signal associated to multiple neighboring
SNPs as indicating the existence of a single genomic locus with possible influence on the phenotype. This a posteriori aggregation of
rejected hypotheses results in inflation of the relevant FDR. We propose a novel approach to FDR control that is based on prescreening
to identify the level of resolution of distinct hypotheses. We show how FDR-controlling strategies can be adapted to account for this
initial selection both with theoretical results and simulations that mimic the dependence structure to be expected in GWAS. We
demonstrate that our approach is versatile and useful when the data are analyzed using both tests based on single markers and
multiple regression. We provide an R package that allows practitioners to apply our procedure on standard GWAS format data, and
illustrate its performance on lipid traits in the North Finland Birth Cohort 66 cohort study.
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INthe last decade, genome-wideassociation studies (GWAS)
have been the preferential tool to investigate the genetic

basis of complex diseases and traits, leading to the identifi-
cation of an appreciable number of loci (GWAS Catalog;
Welter et al. 2014). Soon after the first wave of studies, a
pattern emerged: there exists a sizable discrepancy between,
on the one hand, the number of loci that are declared signif-
icantly associated and the proportion of phenotypic variance
they explain (Manolio et al. 2009) and, on the other hand, the
amount of information that the entire collection of genotyped
single nucleotide polymorphisms (SNPs) appears to contain
about the trait (Purcell et al. 2009; Yang et al. 2010). To in-
crease the number of loci discovered (and their explanatory

power), substantial efforts have been made to obtain larger
sample sizes by genotyping large cohorts (Kvale et al. 2015;
UK Biobank, http://www.ukbiobank.ac.uk) and by relying on
meta-analysis. However, the gap remains, although not as large
as in the original reports. This parallels, in part, the discrepancy
between the polygenic model that is used to define complex
traits and the simple linear-regression approach to the discovery
of associated SNPs which is standard practice, as underscored,
for example, in Kang et al. (2010), Stringer et al. (2011), and
Sabatti (2013).

Two approaches to bridge the gap emerge quite naturally:
(a) an attempt to evaluate the role of genetic variants in the
context of multiple linear regression, more closely matching
the underlying biology; and (b) relaxing the very stringent
significance criteria adopted by GWAS to control the false
discovery rate (FDR) (Benjamini and Hochberg 1995) rather
than the family-wise error rate (FWER)—a strategy that has
been shown to be attractive when prediction is considered as
an end goal together with model selection (Abramovich et al.
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2006). Both strategies have been pursued, but have encoun-
tered a mix of successes and challenges.

The use of multiple linear regression for the analysis of
GWASdata has been proposed as early as 2008 (Hoggart et al.
2008; Wu et al. 2009). By examining the distribution of the
residuals, it is clear that it provides a more appropriate model
for complex traits. However, its use to discover relevant ge-
netic loci has encountered difficulties in terms of computational
costs and interpretability of results. On the computational side,
progress has been made using approaches based on convex
optimization such as the lasso (Zhou et al. 2010), developing
accurate methods to screen variables (Fan and Lv 2008; Wu
et al. 2010; He and Lin 2011), and relying on variational Bayes
(Logsdon et al. 2010; Carbonetto and Stephens 2011). There
are, however, remaining challenges. First, the genetics commu-
nity is, correctly, very sensitive to the need of replicability, and
finite-sample guarantees for the selected variants are sought.
Unfortunately, this has been difficult to achievewith techniques
such as the lasso: Alexander and Lange (2011) attempt to use
stability selection; Yi et al. (2015) do a simulation study of a
variety of penalized methods, showing that tuning parameters
play a crucial role and that standard selection methods for
these do not work well; and Frommlet et al. (2012) and
Dolejsi et al. (2014) propose some analytical approximation
of FDR as an alternative to the lasso. Our recent work
(Bogdan et al. 2015) also explores alternative penalty functions
that, under some circumstances, guarantee FDR control. Sec-
ond, multiple linear regression encounters difficulties in deal-
ing with correlated predictors, in that the selection among
these is often arbitrary: this is challenging in the context of
GWAS, when typically there is a substantial dependence be-
tween SNPs in the same genetic region.

The suggestion of controlling FDR rather than FWER in
genetic mapping studies that expect to uncover a large num-
ber of loci was put forward over a decade ago (Sabatti et al.
2003; Storey and Tibshirani 2003; Benjamini and Yekutieli
2005b) and is accepted in the expression quantitative trait
loci (eQTL) community, where FDR is the standard error
measure. The existence of strong local dependence between
SNPs has also posed challenges for FDR-controlling proce-
dures. While the Benjamini–Hochberg procedure (BH)
(Benjamini and Hochberg 1995) might be robust to the corre-
lation between tests that one observes in GWAS, the fact that the
same biological association may be reflected in multiple closely
located SNPs complicates both the definition and the counting of
discoveries, so that it is not immediately evident howFDR should
be defined. Prior works (Perone Pacifico et al. 2004; Benjamini
andHeller 2007; Siegmund et al. 2011) underscore this problem
and suggest solutions for specific settings.

This article proposes a phenotype-aware selective strategy
to analyze GWAS data which enables precise FDR control and
facilitates the application of multiple regressionmethodology
by reducing the dependency between the SNPs included in
final testing. The Methods section starts by briefly recapitu-
lating the characteristics of GWAS, with reference to an ap-
propriate count of discoveries and the identification of a

meaningful FDR to control. We introduce our selective strat-
egy and provide some general conditions under which it con-
trols the target FDR. We then describe a specific selection
procedure for GWAS analysis and describe how it can be
coupled with standard BH for univariate tests, or with SLOPE
(Bogdan et al. 2015) to fit multiple regression. In the Results
section, we explore the performance of the proposed meth-
odology with simulations and analyze a data set collected in
the study of the genetic basis of blood lipids. In both cases,
the FDR-controlling procedures we propose allow us to ex-
plain a larger portion of the phenotype variability, without a
substantial cost in terms of increased false discoveries.

With this article, we are making available an R package
geneSLOPE (Brzyski et al. 2016) at the Comprehensive R
Archive Network (CRAN). The package can analyze data in
the PLINK (Purcell et al. 2007) format.

Methods

The GWAS design, dependence, and definition
of discoveries

Thegoalof aGWASstudy is to identify locations in thegenome
that harbor variability which influences the phenotype of
interest. This is achieved using a sample of n individuals,
for whom one acquires trait values yi and genotypes at a
collection of M SNPs that span the genome. Following stan-
dard practice, we summarize genotypes by the count of cop-
ies of minor alleles that each individual has at each site,
resulting in an n3M matrix X, with entries Xij 2 f0; 1; 2g:
The variant index j is taken to correspond to the order of
the position of each SNP in the genome. The true relation
between genetic variants and phenotypes can be quite com-
plex. For simplicity, and in agreement with the literature, we
assume a linear additive model, which postulates that the
phenotype value yi of subject i depends linearly on her/his
allele counts at an unknown set C of causal variants. Since
there is no guarantee a priori that the variants in C are part of
the genotype set, we indicate their allele counts with Zij;
letting

yi ¼ b0 þ
X
j2C

bjZij þ ei:

Investigating the relation between y and X is helpful to learn
information about the set of causal variants C and their ef-
fects bj in two ways: (1) it is possible that some of the causal
variants are actually genotyped, so that Zij ¼ Xik for some k;
and (2) most importantly, the set of M genotyped SNPs con-
tains reasonable proxies for the variants in C: To satisfy (2),
GWAS are designed to capitalize on the local dependence
between variable sites in the genome known as linkage dis-
equilibrium (LD), which originates from the modality of
transmission of chromosomes from parents to children, with
modest recombination. The set of M genotyped SNPs is cho-
sen with some redundancy, so that the correlation between Xj

and Xjþk is expected to be nonzero for k in a certain range:
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this is to ensure that any untyped casual variant Zl will be
appreciably correlated with one (or more) of the typed Xj9s
that are located in the same genomic region. Any discovered
association between a SNP Xj and the phenotype y is inter-
preted as an association between y and some variant in the
genomic neighborhood of Xj: This design has a number of
implications for statistical analysis:

1. Often, the existence of an association between y and each
typed variant Xj is queried via a test statistic tj which is a
function of y and Xj only: these test statistics are “locally”
dependent, with consequences for the choice of multiple
comparison adjustment, that, for example, might not need
to be as stringent as in the case of independence.

2. When multiple regression models are used to investigate
the relation between y and X, one encounters difficulties
due to the correlation between regressors—the choice
among which is somewhat arbitrary.

3. The fact that the true causal variants are not necessarily
included among the genotyped SNPs makes the definition
of a true/false association nontrivial.

Wewant to underscore the last point. To be concrete, let us
assume the role of each variant Xj is examined with tj; the t-
statistic for Hj

0 : bj ¼ 0; with bj defined in the univariate re-
gression yi ¼ aþ bjXij þ ei: Even if none of the M genotyped
variants are causal, a number of them will have a coefficient
bj 6¼ 0 in these reduced models; whenever Xj is correlated
with one of the variants in C; Hj

0 should be rejected. Indeed,
simulation studies that investigate the power and global error
control of different statistical approaches routinely adopt def-
initions of “true positive” that account for correlation be-
tween the known causal variant and the genotyped SNPs
(see Yi et al. 2015 for a recent example). At the same time,
a rejection of Hj

0 should not be interpreted as evidence of a
causal role for Xj : in fact, geneticists equate discovery with
the identification of a genomic location rather than with the
identification of a variant. The rejection ofHj

0 for a number of
correlated neighboring SNPs in a GWAS is described in terms
of the discovery of one single locus associated with the trait of
interest. The number of reported discoveries, then, corre-
sponds to the number of distinct genomic regions (whose
variants are uncorrelated) where an association has been
established. This discrepancy between the number of rejected
hypotheses and the number of discoveries has important im-
plications for FDR-controlling strategies, which have received
only a modest attention in the literature. Siegmund et al.
(2011) suggest that in situations similar to those of GWAS,
neighboring rejections should be grouped and counted as a
single rejection and that the global error of interest should
be the expected value of the “proportion of clusters that are
falsely declared among all declared clusters.” This FDR of
clusters—a notion first introduced in Benjamini and Heller
(2007)—is not the error rate controlled by the Benjamini–
Hochberg procedure on the P-values for the Hj

0 hypotheses.
Indeed, because FDR is the expected value of the ratio of the
randomnumber of discoveries, its control depends crucially on

how one decides to count discoveries. In Peterson et al. (2016)
we give another example of how controlling FDR for a collec-
tion of hypotheses does not extend to controlling FDR for a
smaller group hypotheses logically derived from the initial set.
Both in the setting described here and in Peterson et al. (2016),
targeting FWER would have resulted in less surprising behav-
ior; assuring that the probability of rejecting at least one null
Hj

0 is smaller than a level a and this would also guarantee that
the probability of rejecting at least one null cluster of hypoth-
eses is smaller than a. Siegmund et al. (2011) study a setting
that is close to our problem and propose a methodology to
control their target FDR by relying on a Poisson process distri-
bution for the number of false discoveries. Here we investigate
a different approach, one that is more tightly linked to the
GWAS design, is adapted to the variable extent of LD across
the genome, and capitalizes on results in selective inference
(Benjamini and Bogomolov 2014).

Controlling the FDR of interesting discoveries by
selecting hypotheses

The approach we study emerged from our interest in using
multiple linear regression to analyze the relation between y
and X, so it is useful to motivate it in this context. Suppose
both Xj and Xjþ1 are strongly correlated with the untyped
causal variant Zk: When univariate regression is used as the
analysis strategy, both the test statistics tj and tjþ1 would have
large values, resulting in the discovery of this locus. Instead,
the marginal P-values for each of the coefficients of Xj and
Xjþ1 derived from a multiple linear regression model that
includes both variables would be nonsignificant, as Xj and
Xjþ1 carry roughly the same information and can be substi-
tutes for each other. Model selection strategies would rather
arbitrarily result in the inclusion of one or the other regressor,
leading to an underestimate of their importance when resam-
pling methods are used to evaluate significance. Using mul-
tiple linear regression, onewould achieve the best performance
if, from the start, only one of Xj and Xjþ1 (the most strongly
correlatedwith Zk) is included among the possible regressors. A
natural strategy is to prune the set ofM-typed SNPs to obtain a
subset of m quasi-orthogonal ones and supply these to the
model selection procedure of choice. However, this encounters
the difficulty that the best proxy for some of the causal variants
might have been pruned, resulting in a loss of power. It seems
that, ideally, one would select from a group of correlated SNPs
the one that has the strongest correlation with the trait to in-
clude among the potential regressors. Unfortunately, this initial
screening for association would invalidate any guarantees of
the model selection strategy, which operates now not on m
variables, but on m selected ones. The emerging literature of
selective inference, however, suggests that we might be able to
appropriately account for this initial selection step, preserving
guarantees on error rate control.

Abstracting from the specifics of multiple regression, con-
sider the setting where a collection H of M hypotheses
H1

0 ; . . . ;H
M
0 with some redundancy is tested to uncover an

underlying structure of interest. The hypotheses in H can
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be organized linearly or spatially and are chosen because a
priori they provide a convenient and general way of probing
the structure; however, it is expected that a large portion of
these will be true, and that when one Hj

0 is false, a number of
neighboring ones would be also false. In the case of GWAS,
these clusters of false hypotheses would correspond to
markers correlated with causal mutations. Because of the
mismatch betweenH and the underlying structure, the num-
ber of scientifically interesting discoveries does not corre-
spond to the number of rejected Hj

09s; and strategies that
control the FDR defined in terms of these might not lead to
satisfactory inference. Specifically, as noted in Siegmund
et al. (2011), “a possibly large number of correct rejections
at some location can inflate the denominator in the definition
of false discovery rate, hence artificially creating a small false
discovery rate, and lowering the barrier to possible false de-
tections at distant locations.” This problem was recognized
already in Perone Pacifico et al. (2004) and Benjamini and
Heller (2007), who introduce the notion of cluster FDR and
suggest defining a priori clusters of hypotheses correspond-
ing to signals of interest and applying FDR-controlling strat-
egies to hypotheses relative to these clusters. An implicit
example of this approach can be found in the eQTL literature.
When investigating the genetic basis of variation in gene
expression, the authors in Ardlie et al. (2015) change the unit
of inference from SNPs to genes, so as to bypass the redun-
dancy due to many SNPs in the same neighborhood. Here we
take a different approach, where “clusters” of hypotheses are
defined after looking at the data, and used to select a subset
of representative hypotheses. Only this subset is then tested
with a procedure that accounts for this initial selection.

Formally, let y indicate the data used to test the hypotheses
in H and let Sð yÞ be a selection procedure that, on the basis
of the data, identifies a subset Hs of s representative hypoth-
eses. Let S ¼ fi : 1# i#M    Hi

0 2 Hsg be the set of their in-
dexes, so that it is relevant to control the following FDRs:

FDRs ¼ E

"P
j2S1

�
Hj
0   rejected

�
1
�
Hj
0   true

�
1∨
P

j2S1
�
Hj
0   rejected

�
#
: (1)

In other words, the decision of acceptance/rejection is made
only for the hypotheses in the selected set and FDRs is a
natural notion of global error rate. Naively, to control
FDRs # q; one might consider applying a BH at level q to
the P-values p½S� corresponding to the subset of hypotheses
Hs: However, since these have been chosen by looking at the
data—so that, for example, it is acceptable to select the most
“promising” hypotheses—the naive approach would not
guarantee FDR control. Indeed, consider the case where Hs

contains only the hypothesis with the smallest P-value: BH
applied to this subset of one hypothesis would compare its
P-value with the target rate q, thereby ignoring the original
multiplicity. It seems clear that we need to “remember”where
the selected hypotheses come from: while we might focus on
a subset—to avoid scientific repetition—we need to account

for the fact that this subset is selected from an original larger
pool, which provided us with a larger freedom margin. A
solution that emerges quite naturally consists of using a set
of increasing P-value thresholds (just as in BH), but one
whose severity is defined in terms of the original large col-
lection of hypotheses: the smallest P-value p½S�ð1Þ for Hs

should be compared with q=M; the second smallest p½S�ð2Þ
with 2q=M; etc. This can be formally stated by requiring the
application of BH to the P-values p½S� targeting the more strin-
gent level qjSj=M; where the coefficient jSj=M penalizes for
the initial selection. This rule already appears in the literature
in slightly different contexts (Benjamini and Yekutieli 2005a;
Benjamini and Bogomolov 2014) and it is useful for our prob-
lem in that the P-value thresholds are identical to those im-
plied by BH on H; but the number of hypotheses tested is
smaller and the hypotheses are more clearly separated. This
prevents the excessive deflation of the BH threshold that
results when each true discovery is represented by many
rejected hypotheses, and therefore helps to control the num-
ber of false discoveries. The following theorem, proven in the
Appendix, reassures us that, under some conditions, the rule
that we have described not only makes intuitive sense, but
indeed guarantees control of FDRs # q:
Theorem 1. FDR control for selected hypotheses. Let SðyÞ be a
selection procedure, and let RS be the number of rejections
derived by applying BH with target qjSj=M on the selected
hypotheses HS: If the P-values satisfy the condition of the
positive regression dependence on a subset (PRDS)
(Benjamini and Yekutieli 2001) and the selection procedure
is such that RSðp1; . . . ; pMÞ is nonincreasing in each of the
P-values pi; rejecting RS guarantees control of FDRs.

Two conditions are required for the discussed program to
guarantee FDRs control: (1) The P-values have to satisfy the
PRDS property; this is a requirement for most of the proofs of
FDR control, and—while difficult to verify—it can be loosely
interpreted as the requirement of the positive correlation be-
tween P-values at linkedmarkers, and it is therefore a reason-
able assumption in the GWAS setting (Sabatti et al. 2003).
(2) The selection procedure has to be such that if we imagine
reducing one of the P-values of the original hypotheses, leav-
ing everything else the same, the final number of rejections
does not decrease. This is a property that appears very rea-
sonable and that one would intuitively desire in a testing
procedure. An example selection procedure that satisfies
the assumptions of the theorem is as follows: the hypotheses
H are separated in groups a priori and, from each group, SðYÞ
selects the hypothesis with the smallest associated P-value. In
the next section, we describe a slightly more complicated
selection procedure SðyÞ that appears appropriate for the case
of GWAS, and where the separation of hypotheses into
groups is data driven. While this procedure does not satisfy
the assumption that the number of rejections is always a non-
increasing function of the P-values, it does do so for an over-
whelming proportion of realistic P-value configurations, and
our extensive simulations studies suggest that its use in the
context of Theorem 1 still leads to FDRs control.
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A GWAS selection procedure: phenotype-aware
cluster representatives

In the context of genetic association studies, the selection
function Sð yÞ defined in Procedure 1 below and illustrated in
Figure 1, emerges quite naturally. One starts by evaluating
the marginal association of each SNP to the phenotype using
the P-value of the t-test for its coefficient in a univariate re-
gression. Then, SNPs with a P-value larger than threshold p

are removed from consideration. The collection of remaining
SNPs is further pruned to obtain a selected set S with low
correlation, so that each variant Xi 2 S can be equated to a
separate discovery. To achieve this, we define clusters of SNPs
using their empirical correlation in our sample, starting from
the variants with the strongest association to the phenotype,
which are selected as cluster representatives.
Procedure 1. Selection function SðyÞ to identify cluster
representatives.
Input: r2 ð0; 1Þ; p2 ð0; 1� : Screen SNPs:

1. Calculate the P-value for Hj
0: bj ¼ 0; with bj defined in the

univariate regression yi ¼ aþ bjXij þ ei; as j varies across
all SNPs.

2. Retain in B only those SNPs whose P-values are smaller
than p.

Cluster SNPs:

3. Select the SNP j in B with the smallest P-value and find all
SNPs whose absolute value of the Pearson correlation with
this selected SNP jrj are larger than or equal to r.

4. Define this group as a cluster and SNP j as the representative
of the cluster. Include SNP j in S; and remove the entire
cluster from B:

5. Repeat steps 3–4 until B is empty.

Procedure 1 has two parameters: p and r, corresponding
to the two steps of the selection. The screening in steps 1–2 is
similar to that described in Fan and Lv (2008) and Wu et al.
(2009) for model selection procedures, where the parameter
p controls the stringency of the selection based on univariate
association. On the one hand, large values of p result in
larger cluster sizes, and hence less precise localization. On
the other hand, in the context of multiple regression, it is
possible to uncover a role for variants that have weak mar-
ginal effects due to masking. To enable this, one must not be
too stringent in the initial screening step. In all the simula-
tions and data analyses presented here we have used
p ¼ 0:05;which seems to be a good compromise. The results
in Fan and Lv (2008) and Wu et al. (2009) can provide ad-
ditional guidance on the choice of p.

Steps 3–5 of Procedure 1 aim to “thin” the set of SNPs on
account of the dependency among them. This is related to
the selection of tag SNPs (Halperin et al. 2005), for which
there is an extensive literature, and is similar to correlation-
reduction approaches (Stell and Sabatti 2016). A defining
characteristic of Procedure 1, however, is that both the SNP
clusters and their representatives are selected with refer-

ence to the phenotype of interest. This ensures that the
representatives maximize power, and that the location of
the true signal is as close as possible to the center of the
respective cluster. This also reduces the probability of the
selection of more than one SNP per causal variant.

The parameter r needs to be chosen to reflect what re-
searchers would consider as independent discoveries. Rather
than aggregating discoveries at one locus a posteriori, our
procedure simply requires specifying a priori which level of
correlation between two SNPs would result in considering
the signals at these two SNPs as indistinguishable. Typically,
the researcher’s choice would depend on the density of the
available markers, sample size, and the expected effect size.
We note that as sample size increases, methods based on
marginal analysis [with single-marker tests (SMTs)] and
multivariate linear regression behave differently. When sam-
ple or effect size increases, the signal due to one causal var-
iant is detectable at SNPs with decreasing levels of
correlation. Therefore, to avoid excessive true discoveries
by SMTs, the researcher might want to choose a correspond-
ingly lower value of r. However, with multiple linear regres-
sion, an increase in sample size results in an increase of
resolution. This means that with increasing probability only
the “best” representative of the causal variant will be selected
and a meaningful analysis of the data can be carried out with
larger values of r. We note that this is one advantage of
analyzing the datawithmultiple linear regression rather than
relying on marginal tests.

Certainly, Procedure 1 is but one possibility for creating
clusters. For example, one might want to include information
on physical distance in the formation of clusters. In our
experiments, however, this has not led to better performance.
On the other hand, we note that clusters cannot be defined
using information on physical distance alone: it is the corre-
lation r between the SNPs that determines how the signal due
to one causal variant leaks across multiple sites. The Result
section illustrates some of the properties of the clusters de-
rived from Procedure 1.

We now consider two approaches to the analysis of GWAS
data that can be adopted in conjunction with the selection of
cluster representatives to control the FDRs.

Univariate testing procedures after selection

By and large, the most common approach to the analysis of
GWAS data relies on univariate tests of association between
trait and variants. This has advantages in terms of computa-
tional costs, handlingofmissingdata, andportability of results
across studies. We therefore start by considering how to
control relevant FDR in this context.

Weconsider twodifferent approaches toobtain theP-values
for each of the Hj

0 hypotheses: univariate linear regression
(which we indicate with SMT) and EMMAX (Kang et al.
2010), a mixed model that allows us to consider polygenic ef-
fects. To enable computational scaling, EMMAX only estimates
the parameters of the variance component model once rather
than for everymarker.We use SMTs and EMMAXs to denote the
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procedures that consist of testing the set of hypotheses Hs cor-
responding to cluster representatives, using P-values
obtained with SMT and EMMAX, respectively, and identify-
ing rejections with the BHs procedure described below.
Procedure 2. Benjamini-Hochberg on selected hypotheses BHs.
Input: M = total number of SNPs (before initial screening),
Hs = collection of selected hypotheses (cluster representatives),
q2 ð0; 1� = desired level for FDRs.

Let jSj be the number of hypotheses in Hs; and p½S� the
vector of their P-values. Apply BH to p½S� with target level
jSjq=M:

GeneSLOPE: FDR control in multiple regression

SLOPE (Bogdan et al. 2015) is a recently introduced exten-
sion of the lasso that achieves FDR control on the selection of
relevant variables when the design is nearly orthogonal. Spe-
cifically, assume the following model:

Y ¼ Xbþ z;

where X is the design matrix of the dimension n3M;

z � Nð0;s2In3 nÞ is the n-dimensional vector of random er-
rors, and b is the M-dimensional vector of regression coeffi-
cients, a significant portion of which is assumed to be zero.
For a sequence of nonnegative and nonincreasing numbers
l1; . . . ; lM ; the SLOPE estimate of b is the solution to a con-
vex optimization problem

b̂ ¼ arg min
b2RM

(
1
2
ky2Xbk2 þ s

XM
i¼1

lijbjðiÞ
)
; (2)

where jbjð1Þ $ . . . $ jbjðMÞ are sorted absolute values of the
coordinates of b.

Defining a discovery as every estimated b̂i 6¼ 0; and a false
discovery as the case where b̂i 6¼ 0 but the true bi ¼ 0;
Bogdan et al. (2015) show that with a specific sequence of
li (corresponding to the sequence of decreasing thresholds
in BH) the program in (2) controls FDR at a desired level
when X is orthogonal. Moreover, the modified sequence
l—described in Procedure 4 in the Appendix—has been
shown in simulation studies to achieve FDR control when
the regressors are nearly independent and the number of
nonzero b’s is not too large.

Note that, as for other shrinkage methods (Tibshirani
1994; Fan and Li 2001), the results of SLOPE depend on
the scaling of explanatory variables: the values of the reg-
ularizing sequence in Procedure 4 assume that explanatory

variables are “standardized” to have zero mean and a unit l2
norm. Moreover, since in most cases the variance of the
error term s2 is unknown and needs to be estimated, in
Bogdan et al. (2015) an iterative procedure for the joint
estimation of s and the vector of regression coefficients
was proposed. This is described in the Appendix as Proce-
dure 5, and closely follows the idea of scaled lasso (Sun and
Zhang 2012). All these data preprocessing and analysis
steps are implemented in R package SLOPE, available on
CRAN.

The fact that SLOPE comes with finite-sample guaran-
tees for the selected parameters makes it an attractive
procedure for GWAS analysis. However, the presence of
substantial dependence between SNPs (regressors Xj)
presents challenges: on the one hand, the FDR-controlling
properties have only been confirmed so far when the ex-
planatory variables are quasi-independent; and, on the
other hand, the definition of FDR is problematic in a set-
ting where the true causal variants are not measured and
X contains a number of correlated proxies. The identifica-
tion of a subset of variants with Procedure 1 takes care of
both aspects: the regressors are not strongly correlated
and they represent different locations in the genome, so
that we can expect the projection of the true model in the
space they span to be sparse and the number of b̂i 6¼ 0
to capture the number of scientifically relevant discover-
ies. We therefore propose, as a potential analysis pipeline,
the application of Procedure 1 followed by Procedure 3,
which outlines the application of SLOPE to the selected
cluster representatives. Both procedures have been imple-
mented in the R package geneSLOPE, which is available on
CRAN and can handle typical GWAS data provided in
PLINK format.
Procedure 3. geneSLOPE.
Input: y = vector of trait values, M = total number of SNPs
(before initial screening), X½S� = selected SNPs (cluster represen-
tatives), and q 2 ð0; 1� = desired level for FDRs.
Initialize A ¼ ∅:

1. Center y by subtracting its mean, and standardize X½S� so that
each column has a zero mean and unit l2 norm.

2. Calculate the sequence l using Procedure 4 and using M as a
total number of regressors, and retain the first jSj elements of
it.

3. Compute the residual sum of squares (RSS) obtained by regress-
ing y onto variables in A and set ŝ2 ¼ RSS=ðn2 jAj2 1Þ;
where jAj denotes the cardinality of A:

Figure 1 Phenotype-aware cluster rep-
resentatives. The x-axis represents the
genome, with the locations of geno-
typed SNPs Xi indicated by tick marks.
The true causal effect of each position
of the genome is indicated in red; there
is only one causal variant in this region,
between SNPs X6 and X7: Solid black

circles indicate the value of bi ; coefficient of Xi in a linear approximation of the conditional expectation EðyjXiÞ: Asterisks mark the estimated b̂i9s in
the sample. The SNPs X5 and X14; selected as cluster representatives in this schematic diagram, are indicated in blue.
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4. Compute the solution b̂ for SLOPE as in Equation 2, explain-
ing y as a linear function of X½S� with parameters ŝ and l. Set
Aþ ¼ suppðb̂Þ:

5. If Aþ ¼ A stop; if not, set A ¼ Aþ and reiterate steps 3–4.

Data availability

To illustrate the performance of our methods, we used the
data from the North Finland Birth Cohort (NFBC66) study
(Sabatti et al. 2009), available in the database of Geno-
types and Phenotypes (dbGaP) under accession number
phs000276.v2.p1 (http://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000276.v2.p1).

Results

To test the performance of the proposed algorithms, we relied
on simulations and real data analysis. In both cases, genotype
data came from the NFBC66 study (Sabatti et al. 2009). The
raw genotype matrix contains 364,590markers for 5402 sub-
jects. We filtered the data in PLINK to exclude copy-number
variants and SNPs with Hardy–Weinberg equilibrium
P-value ,0.0001, minor allele frequency ,0.01, or call
rate ,95%. This resulted in an n3M predictor matrix with
n ¼ 5402 and M ¼ 334;103: When applying GeneSLOPE,
missing genotype data were imputed as the SNP mean.

For simulations, the trait values are generated using the
multiple regression model:

Yi ¼
X
j2Ck

bj
~Xij þ ei; i 2 f1; . . . ; ng  ; (3)

where ~X is the standardized matrix of genotypes, Ck is the
set of indices corresponding to “causal” mutations, and

ei � Nð0; 1Þ: The number of causal mutations takes the value
k 2 f20; 50; 80; 100g; and in each replicate the k causal fea-
tures are selected at random from a subset of theM SNPs. For
each k, the values of bj are evenly spaced in the interval
½SignalMin; SignalMax�; with SignalMin :¼ 0:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logM

p
and

SignalMax :¼ 1:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logM

p
: As a result, the smallest genetic

effect is rather weak (heritability in a single quantitative trait
loci model h2 = 0.0017), while the strongest effect is rela-
tively large ðh2 ¼ 0:0091Þ: Each scenario is explored with
100 simulations.

In evaluating FDRs and power we adopt the following
conventions, which we believe to closely mimic the expecta-
tions of researchers in this field: the null hypothesis relative
to a SNP/cluster representative is true if the SNP/cluster
representative has a correlation,0.3with any causal variant.
Similarly, a causal variant is discovered if at least one of the
variants in the rejection set has correlation of at least magni-
tude 0.3 with it.

In addition to evaluating performance in the context of
simulated traits, we apply the proposed procedures to four
lipid phenotypes available in NFBC66 (Sabatti et al. 2009):
high-density lipoproteins (HDL), low-density lipoproteins
(LDL), triglycerides (TG), and total cholesterol (CHOL). We
compare the discoveries obtained by the simple and multiple
regression approaches on the NFBC data to those reported in
the Global Lipids Genetics Consortium (2013), a much more
powerful study based on 188,577 subjects.

Simulation study

Cluster characteristics: We begin by exploring the distribu-
tion of the size of clusters created according to Procedure 1 for
two values of r ¼ 0:3; 0:5: Figure 2A illustrates the size of
clusters when the trait was generated according to the model
in Equation 3 with k ¼ 80 and genotypes from the NFBC data

Figure 2 (A) Histograms of the number of SNPs included in each cluster when Procedure 1 is applied to P-values with p ¼ 0:05 and r ¼ 0:3 or r ¼ 0:5: (B)
Histogram of the maximal distance between SNPs in the same cluster. The symbol “S” on the x-axis corresponds to clusters that contain only one SNP.
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set. Most of the clusters are rather small and do not include
more than five SNPs, and in fact.50% of them is comprised
of one SNP only. Figure 2B reports the maximal distance in
base pairs between the elements of one cluster: apart from
the spike at zero (corresponding to clusters with one SNP
only), the median distance spanned by clusters is 4:43 104

ð2:93 104Þ for r ¼ 0:3  ð0:5Þ; respectively. Of course, differ-
ences in the genotype density would result in differences in
the cluster sizes obtained.

Error control with EMMAX and SMT: Figure 3 illustrates
the results of simulations exploring the FDRs control prop-
erties of BH applied to the complete set of M P-values
obtained from EMMAX or SMT (i.e., with no prescreening
or clustering of the hypotheses) and the corresponding two-
step approaches we recommend (EMMAXs and SMTs),
where cluster representatives are first chosen using Proce-
dure 1 and then discoveries are identified with Procedure 2.
The FDRs for the traditional version of EMMAX and SMT is
calculated by mimicking what researchers typically do in
practice to interpret GWAS results. Specifically, the SNPs
for which the null hypotheses are rejected using BH are
supplied to Procedure 1 to identify clusters. The realized
FDRs is defined as the average across 100 iterations of the
fraction of falsely selected clusters over all clusters
obtained.

Figure 3 illustrates that, in agreement with Theorem 1,
EMMAXs controls FDRs at all levels of r and for any number
of causal SNPs. In contrast, BH applied to the full set of P-
values obtained from EMMAX with post hoc clustering of
the discoveries results in a somewhat elevated FDRs due to
the deflation of the BH threshold. Moreover, EMMAXs of-
fers better control of FDRs than SMTs, particularly as the
number of causal SNPs increases. This makes sense given
that EMMAX better accounts for the polygenic effects than
the SMT.

GeneSLOPE error control and power: Figure 4 illustrates
the performance of geneSLOPE in terms of FDRs and power in

the context of the performance of EMMAXs and SMTs for the
same setting and range of k. For all procedures, power de-
creases as k increases, with a slower decay for geneSLOPE.
Note that the average power of geneSLOPE is systematically
larger than the power of SMTs, with the difference increas-
ing with k, while the FDRs of geneSLOPE is always smaller
than that of SMTs. Figure 4 also demonstrates how using
the standard genome-wide significance threshold setting
p ¼ 53 1028 results in a very substantial loss of power as
compared to procedures controlling FDR.

Real data analysis

To analyze the lipid phenotypes, we adopted the protocol
described in Sabatti et al. (2009): subjects that had not fasted
or were being treated for diabetes (n= 487) were excluded,
leaving a set of 4915 subjects for further analysis. All pheno-
types were adjusted for sex, pregnancy, oral contraceptive
use, and population structure as captured by the first five
genotype principal components (computed using EIGENSOFT,
Price et al. 2006); the residuals were used as the trait values
Yi in the subsequent association analysis.

We compare the results of geneSLOPE, EMMAXs, and
classically applied EMMAX. GeneSLOPE (Procedure 1 fol-
lowed by Procedure 3) was applied using p ¼ 0:05; r = 0.3
or 0.5, and q = 0.05 or 0.1 (for a total of four versions) to a
centered and normalized version of the genotype matrix
where each column has mean 0 and ℓ2 norm 1. EMMAXs
(Procedure 1 followed by Procedure 2) was applied with
p ¼ 0:05; r = 0.3 or 0.5, and q = 0.05 or 0.1. To mimic
the standard GWAS analysis, we ran EMMAX identifying as
significant those SNPs with P-value # 53 1028; to obtain
comparable numbers of discovered SNPs we applied Proce-
dure 1 to cluster the results.

We compare the discoveries of these three methods on the
NFBC data to those reported in Global Lipids Genetics Con-
sortium (2013), a much more powerful study based on
188,577 subjects. We compute the realized selected false
discovery proportion FDPs for each method assuming that
SNPs within 1 Mb of a discovery (defined as P , 5 3 1028)

Figure 3 FDRs for the described procedures: in (A)
we report results relative to EMMAX and in (B) rel-
ative to SMT. The dashed black line represents the
target FDRs level of 0.05. Note that EMMAXs with
r ¼ 1 (i.e., with no clustering) coincides with
EMMAX, and that the FDRs for this specific case
corresponds to the regular FDR. Shapes indicate
the procedures: empty triangles for the application
of BH to the collection of P-values from EMMAX for
all hypotheses followed by clustering of the discov-
eries; filled triangles for the selective procedure
EMMAXs; empty squares for the application of BH
to the collection of P-values from SMTs for all hy-
potheses followed by clustering of the discoveries;
filled squares for the selective procedure SMTs; and
empty diamonds for the application of BH to the full
collection of P-values with no clustering. Colors in-
dicate the parameters for clustering: orange for
r ¼ 0:3; turquoise for r ¼ 0:5; and blue for r ¼ 1:
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in the comparison study are true positives (even if, of course,
the biological truth for the given study population is not
known, and the association statistics in Global Lipids Genet-
ics Consortium 2013 are based on univariate tests and may
therefore not fully capture the genetic underpinnings of these
complex traits). We also seek to understand what proportion
of the trait heritability is captured by the selected SNPs. To
this end, we estimate the proportion of phenotypic variance
explained by the set of genome-wide autosomal SNPs using
Genome-wide Complex Trait Analysis (GCTA) (Yang et al.
2011), and compare this to the adjusted r2 obtained from
a multiple regression model including the selected cluster
representatives as predictors.

The estimated proportion of phenotypic variance explained
by genome-wide SNPs is 0.34, 0.32, 0.10, and 0.29 for HDL,
LDL, TG, and CHOL, respectively. A comparison of the number
of discoveries (i.e., the number of selected cluster representa-
tives), number of true discoveries, FDPs, and r2 acrossmethods
is given in Figure 5. As an illustrative example, geneSLOPE
selections with p = 0.05, q = 0.1, and r = 0.5 are shown in
Figure 6 alongwith P-values obtained using EMMAX and those
obtained in the more highly powered comparison study
(Global Lipids Genetics Consortium 2013).

The application on real data illustrates how FDRs control-
ling procedures are more powerful than the standard prac-
tice of identifying significant SNPs using a P-value threshold
of 53 1028: Both EMMAXs and geneSLOPE attain realized
selected false discovery proportions that are consistent
with the nominal targeted FDRs. There does not appear
to be a power advantage of multiple linear regression
(geneSLOPE) over univariate tests (EMMAXs) in this exam-
ple. This is consistent with the results in our simulations,
which indicate that multivariate analysis is really more pow-
erful when there are many (detectable) signals contributing
to the phenotype. While it is by now established that 100s of
different loci contribute to lipid levels, the signal strength in
our data set (which has a modest sample size) is such that
only a handful can be identified. In this regime, we find no
evidence of an increased power for the multiple linear
model. However, this data analysis also shows the potential
advantage on the multivariate methods with respect to sig-

nal resolution. Changing the value of r from 0.3 to 0.5 had a
negligible influence on the number of discoveries made by
geneSLOPE but substantially increased the number of dis-
coveries by EMMAXs. This suggests that some of the clusters
corresponding to r ¼ 0:3 were split into smaller clusters for
r ¼ 0:5; and that in the case of SMT, the resolution of
r ¼ 0:5 is not sufficient to prevent representing one biolog-
ical discovery by two or more clusters. This observation goes
along with the simulation results reported in the previous
section.

Discussion

Following up on an initial suggestion by Siegmund et al.
(2011) and reflecting on the elements of the standard prac-
tice, we argue that discoveries in a GWAS study should not be
counted in terms of the number of SNPs for which the hy-
pothesis of no association is rejected, but in terms of the
number of clusters of such SNPs. We propose a strategy to
control the FDR of these discoveries that consists in identify-
ing groups of hypotheses on the basis of the observed data,
selecting a representative for each group, and applying a
modified FDR-controlling procedure to the P-values for the
selected hypotheses. We present two articulations of this
strategy: in one case we rely on marginal tests of association
and modify the target rate of BH on the selected hypotheses,
and in the other case we build on our previous work on
SLOPE to fit a multiple linear regression model. We show
with simulations and real data analysis that the suggested
approaches appear to control FDRs and allow an increase in
power with respect to the standard analysis methods for
GWAS.

The idea of identifying groups of hypotheses and somehow
transferring the burden of FDR control from the single hy-
pothesis level to a group one is not new (Perone Pacifico et al.
2004; Benjamini and Heller 2007). In particular, two recent
contributions to the literature can be considered parallel to
our suggestions. In the context of tests for marginal associa-
tion, Foygel Barber and Ramdas (2015) propose a method-
ology to control FDR both at the level of single hypotheses
and groups. In the context of multiple regression, Brzyski

Figure 4 (A) FDRs and (B) power for geneSLOPE.
Clustering is done with p ¼ 0:05; r ¼ 0:3; and the
target FDRs level 0.05 (marked with a dashed line).
Values for geneSLOPE are in blue. For comparison,
we reproduce from Figure 3 the curves indicating
the performance of EMMAXs and SMTs for
the same setting (marked in shades of orange).
We also include the values of (A) FDRs and (B)
power when EMMAXs and SMTs are carried
out using cluster representatives selected with
p ¼ 531028; the standard GWAS genome-wide
significance threshold (marked in shades of pur-
ple). Shapes indicate the procedures: Filled circles
for geneSLOPE, filled triangles for EMMAXs, and
filled squares for SMTs.
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et al. (2016) extend SLOPE to control the FDR for the discov-
eries of groups of predictors. Both these contributions, how-
ever, are substantially different from ours in that they require
a definition of groups prior to observation of the data. In-
stead, our clusters are adaptive to the signal, and are identi-
fied starting from the data. This assures that the group of
hypotheses are centered around the locations with strongest
signal.

Defining cluster representatives that are input into a mul-
tiple regression framework allows us to think more carefully
about what FDR means in the context of a regression model
that does not include among the regressor the true causal
variants; where one is substantially looking for relevant prox-
ies. In their recent work, Foygel Barber and Candès (2016)
take a different approach, deciding to focus on the directional
FDR. The knock-off filter provides an attractive methodol-
ogy to analyze GWAS data. However, it still requires an
initial selection step: top performance can be achieved only
when the selected features are optimally capturing the
signal present in a given data set. We believe that the cluster-
representatives approach has a substantial edge at this level
over, for example, running lasso with only amodest penalization
parameter.

Here, we consider a fairly simple strategy to construct
clusters of SNPs, exploring two possible levels of resolution
corresponding to r ¼ 0:3 and r ¼ 0:5: In reality, depending

on sample size and genotype density, each data set might
have a different achievable level of resolution. The study of
how this can be adaptively learned is deferred to future
work.

It should be noted that while we conduct formal testing
only on the selected set of cluster representatives, when the
null hypothesis of no association is rejected for a selected SNP,
the entire cluster is implicated. In other words, in follow-up
studies, the entire region spanned by the cluster should be
considered associated with the trait in question. This is en-
tirely similar to what is standard practice after localizing
association to a region: all variants in LD with the signal
are implicated, and to sort through them, multiple regression
models are employed (Hormozdiari et al. 2014).

It is common practice in GWAS studies to rely on the
imputation of untyped SNPs to augment the power to detect
association. In this context, a cluster should be formed using
both the typedand imputedSNPs, so that representativeswith
maximal powermight be selected. Theadjusted thresholds for
significance (or the penalization coefficients in the case of
SLOPE), however, should be determined on the basis of the
number of typed SNPs only; since this defines the degrees of
freedom of the problem.

Finally, we would like to underscore how, even if we have
focused on the case of GWAS here, adopting a selective
approachmight havewide range applicationswhenever there

Figure 5 Study of four lipid traits. Comparison of results for HDL, LDL, TG, and CHOL. “Number of discoveries” corresponds to the number of selected
cluster representatives under each method; true and false discoveries are marked in green and red, respectively. FDPs is the realized selected false
discovery proportion, and r2=h2 is the adjusted r2 obtained when using the set of selected cluster representatives as predictors in a multiple regression
model divided by the proportion of phenotype variance explained by genome-wide SNPs obtained using GCTA.
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is not an exact correspondence between the hypotheses con-
veniently tested and the granularity of the scientific discov-
eries. Further studies of the emerging literature on selective

inference should lead to better understanding of the theoret-
ical properties of the method we propose, as well as to the
identification of other possible strategies.

Figure 6 Localization of lipid signals. GeneSLOPE selections using p ¼ 0:05; r = 0.5, and target FDRs 0.1 are marked using solid green bars for cluster
representatives and semitransparent bars for the remaining members of the cluster. P-values from EMMAX (purple) and the Global Lipids Genetics Consortium
comparison study (orange) are plotted on the2log10 scale. The horizontal dashed line marks a significance cut off of 53 1028, and the purple diamonds below
the x-axis represents selected cluster representatives under EMMAX using p ¼ 0:05; r ¼ 0:3; and a P-value threshold of 5 3 1028.
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Appendix: Proof of Theorem 1

Throughout, R is the number of rejections the two-step procedure commits. Note that the critical values for the BH procedure
after selection are of the form qk ¼ qk=M:

By definition, letting H0 of cardinality M0 be the set of nulls,

FDR ¼ E

 P
i2H0

1fHi   rejectedg
maxf1;Rg

!
:

Setting Vi ¼ 1fHi   rejectedg; we have that for all i 2 H0;

E

 
Vi

maxf1;Rg

!
¼
XM
k¼1

E

 
1fi 2 S  and  pi # qkg  1fR ¼ kg

k

!
#
XM
k¼1

E

 
1fpi # qkg  1fR ¼ kg

k

!
¼ q

M

XM
k¼1

ℙðR ¼ k  and  pi # qkÞ
ℙðpi # qkÞ

¼ q
M

XM
k¼1

ℙðR ¼ kjpi # qkÞ:

(4)

The calculation is now as in Benjamini and Yekutieli (2001). The key observation is that since 1fR# kg is an increasing set,
we have

ℙðR# kjpi # qkÞ# ℙ
�
R# kjpi # qkþ1

�
:

So consider the first two terms of the sum (4):

ℙðR# 1jpi # q1Þ þ ℙðR ¼ 2jpi # q2Þ# ℙðR# 1jpi# q2Þ þ ℙðR ¼ 2jpi# q2Þ ¼ ℙðR# 2jpi# q2Þ:

Continuing in this fashion, we have that

XM
k¼1

ℙðR ¼ kjpi# qkÞ# ℙðR#Mjpi # qMÞ ¼ 1:

Hence, for each i 2 H0;

E

�
Vi

maxf1;Rg
�
# q=M ⇒ FDR# qM0=M:

Remark: Under independence, we know that if we select everything, i.e., S ¼ f1; . . . ;Mg almost surely, then FDR ¼ qM0=M:

Here, when we select less while retaining the monotonicity assumption, it is possible to have an FDR less than qM0=M: h

Procedure 4. Sequence of penalties l for SLOPE.
Input: q 2 ð0; 1Þ; n;M 2 ℕ

1. set lBH ¼ ½lBHð1Þ; . . . ; lBHðMÞ�T ; for lBHðiÞ ¼ F21ð12 qi
2MÞ;

2. define

lGðiÞ ¼
lBHð1Þ; i ¼ 1

lBHðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPj, i

l2GðjÞ
n2 i

r
; i ¼ 1

;

8><
>:

3. find the largest index, k⋆; such that lGð1Þ$ . . . $ lGðk⋆Þ;
4. put

li ¼
�

lGðiÞ; i# k⋆

lGðk⋆Þ; i ¼ k⋆ :
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Procedure 5. Selecting l when s is unknown.
Input: y, X, and basic sequence l

1. initialize:Sþ ¼ ∅

And repeat

2. S ¼ Sþ
3. compute RSS obtained by regressing y onto variables in S
4. set ŝ2 ¼ RSS=ðn2 jSj2 1Þ; where |S| is the number of elements in S
5. compute the solution ~b to SLOPE with parameter sequence ~s � lS
6. set Sþ ¼ suppð~bÞ (i.e., Sþ is the set of regressors selected by SLOPE in step 5).

until Sþ ¼ S
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